Jump to content

Recommended Posts

Posted
The_Young_Professional_Satellite_-_Dream Video: 00:13:39

In this first episode of our docu-series, we embark on the exciting journey of the YPSat (Young Professional Satellite), a satellite flying on-board the inaugural flight of Ariane 6, Europe’s new heavy launcher. Two years ago, a team of Young Professionals at ESA, with diverse backgrounds, nationalities and expertise, have come together around one passion and with one ambition; design, manufacture and send their own satellite to space.

Starting with some trivial ideas, the team matured their mission objectives and won the approval and support of ESA management to kick start the project. YPSat will be ‘the witness’ of Ariane 6: it will record the fairing separation, document the CubeSats deployment and send back beautiful in-orbit images of Earth and space.

This scaled-down mission has all the ingredients of a large flagship mission; engineering, verification, testing and production assurance; project management, tight schedule, team coordination and communication; failures, crisis situations and successes.

YPSat is a blueprint for the future of European space exploration. It has been a life changing opportunity for young professionals at ESA to get hands-on experience and experience the process of developing a space mission. But it has also been an eye-opening occasion for the European Space Agency to get inspired by the young generations, bringing in new ideas and technologies.

This is just the beginning of the adventure for the YPSat team. The next episode will unravel the creativity, ingenuity and determination that the young professionals brought in to achieve the mission’s objectives. What powers the satellite? Who activates the cameras? How is the data transmitted back on Earth?

Credits:

Directed and produced by Chilled Winston: https://chilledwinston.com/ and Emma de Cocker

Powered by ESA - European Space Agency

Music from Epidemic Sound

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      On December 25, 2024, NASA's Stereo Lasco C3 satellite captured an extraordinary phenomenon near the sun. In a split second, the satellite's imaging was disrupted by what appeared to be a swarm of spherical objects hurtling through space at incredible speeds. 

      Speculation surrounds the event, with some suggesting it could be a meteor debris field. However, the unusual appearance of the objects has raised questions. Could debris naturally form into such perfectly round shapes, each featuring a dark center that resembles donut-shaped UFOs? 

      This event might be a natural occurrence, however, with all the recent strange sightings of unknown drones, UFOs, and orbs combined with predictions from several specialists that something significant might happen soon in the realm of the UFO phenomena, one might wonder if these mysterious spheres are connected to something larger on the horizon?


      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Latha Balijepalle, a senior database administrator at NASA Ames, encourages others to take a risk and pursue challenges in their work, like trying something new that might open doors to a new opportunity.NASA/Brandon Torres Navarrete When Madhavi Latha Balijepalle noticed that her morning commute took her past NASA Ames Research Center in California’s Silicon Valley, she set a new career goal for herself: working for NASA. 
      “I started manifesting it, thinking about it every day as I drove by. When I started looking for a new job, I saw an opening and decided to apply,” said Balijepalle, a senior database administrator working at the Airspace Operations Laboratory (AOL) at NASA Ames.  
      Eight and a half years later, she supports the researchers and developers who research next-generation solutions to advance aircraft technology and air traffic management. 
      A journey into the unknown 
      Balijepalle’s journey to NASA started thousands of miles away. She grew up in a small town in southern India, studying electrical engineering in college and establishing a career in information technology, working in C++ and Python. 
      When her husband found a job opportunity in the United States, Balijepalle’s life took an unexpected turn. 
      “I never planned to move to America,” said Balijepalle. “It was not easy to come here, even though my husband had a job. I stayed in India for almost nine months, before he found a different job that would help us with my visa and documentation.” 
      After settling into her new country, growing her family, and developing in her new career, Balijepalle began to ponder her dream job at NASA. She and her younger daughter, a fellow space fan, enjoyed talking about the agency’s work in space, and when a Linux administrator position opened up, she jumped at the chance. 
      A dream job becomes reality 
      At the lab, Balijepalle was initially responsible for managing the lab’s Linux servers and applications. Today, she also supports researchers and developers with development, automation, and deployment of their work. 
      “Latha is the lifeblood of the lab,” said Jeff Homola, co-leader of the Airborne Operations Laboratory at NASA Ames. “Without her unwavering dedication to making sure our systems are safe, secure, up to date, and running smoothly, we would not be able to do what we do in the lab.” 
      One of Balijepalle’s proudest achievements during her NASA career is her language skills. Growing up, she spoke Telugu and Hindi, and learned English, but communication was still a challenge when she arrived at NASA. 
      “I spoke English when I came to America, but not as well, and not using the technical language we use at NASA,” said Balijepalle. “I’m proud that I’ve improved my communications skills.” 
      “Step outside your comfort zone” 
      Looking back on the commute that changed her life, Balijepalle says she owes it all to being up to the challenge. 
      “I wasn’t a risk taker, I didn’t think about stepping outside my comfort zone, but as I drove by NASA Ames each day, I started to think about astronauts. They step outside their comfort zone and leave the planet, so maybe I could take a risk, too.” 
      For those who also dream of working at NASA one day, Balijepalle has some advice: try doing it her way. 
      “Start thinking about it and manifesting your dream. Maybe it will come true, and maybe it won’t, but you might as well try.” 
      Share
      Details
      Last Updated Dec 23, 2024 Related Terms
      Ames Research Center General Explore More
      16 min read NASA Ames Astrogram – December 2024
      Article 3 days ago 5 min read NASA’s Ames Research Center Celebrates 85 Years of Innovation
      Article 3 days ago 3 min read NASA’s Webb Reveals Smallest Asteroids Yet Found in Main Asteroid Belt
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      In a world first, ESA and Telesat have successfully connected a Low Earth Orbit (LEO) satellite to the ground using 5G Non-Terrestrial Network (NTN) technology in the Ka-band frequency range, marking a crucial step towards making space-based connections as simple as using a mobile phone.
      View the full article
    • By NASA
      NASA Goddard MODIS Rapid Response Team During the morning of March 20, 2015, a total solar eclipse was visible from parts of Europe, and a partial solar eclipse from northern Africa and northern Asia. NASA’s Terra satellite passed over the Arctic Ocean on March 20 at 10:45 UTC (6:45 a.m. EDT) and captured the eclipse’s shadow over the clouds in the Arctic Ocean.
      Terra launched 25 years ago on Dec. 18, 1999. Approximately the size of a small school bus, the Terra satellite carries five instruments that take coincident measurements of the Earth system: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth’s Radiant Energy System (CERES), Multi-angle Imaging Spectroradiometer (MISR), Measurements of Pollution in the Troposphere (MOPITT), and Moderate Resolution Imaging Spectroradiometer (MODIS).
      On Nov. 28, 2024, one of Terra’s power-transmitting shunt units failed. A response team reviewed Terra’s status and discussed potential impacts and options.  Consequently, the team placed ASTER into Safe Mode.  As a result, ASTER data are not currently being collected. All other instruments continue uninterrupted.
      Image Credit: NASA Goddard MODIS Rapid Response Team
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Data from the SWOT satellite was used to calculate average water levels for lakes and reservoirs in the Ohio River Basin from July 2023 to November 2024. Yellow indicates values greater than 1,600 feet (500 meters) above sea level; dark purple represents water levels less than 330 feet (100 meters). Data from the U.S.-European Surface Water and Ocean Topography mission gives researchers a detailed look at lakes and reservoirs in a U.S. watershed.
      The Ohio River Basin stretches from Pennsylvania to Illinois and contains a system of reservoirs, lakes, and rivers that drains an area almost as large as France. Researchers with the SWOT (Surface Water and Ocean Topography) mission, a collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales), now have a new tool for measuring water levels not only in this area, which is home to more than 25 million people, but in other watersheds around the world as well.
      Since early 2023, SWOT has been measuring the height of nearly all water on Earth’s surface — including oceans, lakes, reservoirs, and rivers — covering nearly the entire globe at least once every 21 days. The SWOT satellite also measures the horizontal extent of water in freshwater bodies. Earlier this year, the mission started making validated data publicly available.
      “Having these two perspectives — water extent and levels — at the same time, along with detailed, frequent coverage over large areas, is unprecedented,” said Jida Wang, a hydrologist at the University of Illinois Urbana-Champaign and a member of the SWOT science team. “This is a groundbreaking, exciting aspect of SWOT.”
      Researchers can use the mission’s data on water level and extent to calculate how the amount of water stored in a lake or reservoir changes over time. This, in turn, can give hydrologists a more precise picture of river discharge — how much water moves through a particular stretch of river.
      The visualization above uses SWOT data from July 2023 to November 2024 to show the average water level above sea level in lakes and reservoirs in the Ohio River Basin, which drains into the Mississippi River. Yellow indicates values greater than 1,600 feet (500 meters), and dark purple represents water levels less than 330 feet (100 meters). Comparing how such levels change can help hydrologists measure water availability over time in a local area or across a watershed.
      Complementing a Patchwork of Data
      Historically, estimating freshwater availability for communities within a river basin has been challenging. Researchers gather information from gauges installed at certain lakes and reservoirs, from airborne surveys, and from other satellites that look at either water level or extent. But for ground-based and airborne instruments, the coverage can be limited in space and time. Hydrologists can piece together some of what they need from different satellites, but the data may or may not have been taken at the same time, or the researchers might still need to augment the information with measurements from ground-based sensors.
      Even then, calculating freshwater availability can be complicated. Much of the work relies on computer models. “Traditional water models often don’t work very well in highly regulated basins like the Ohio because they have trouble representing the unpredictable behavior of dam operations,” said George Allen, a freshwater researcher at Virginia Tech in Blacksburg and a member of the SWOT science team.
      Many river basins in the United States include dams and reservoirs managed by a patchwork of entities. While the people who manage a reservoir may know how their section of water behaves, planning for water availability down the entire length of a river can be a challenge. Since SWOT looks at both rivers and lakes, its data can help provide a more unified view.
      “The data lets water managers really know what other people in these freshwater systems are doing,” said SWOT science team member Colin Gleason, a hydrologist at the University of Massachusetts Amherst.
      While SWOT researchers are excited about the possibilities that the data is opening up, there is still much to be done. The satellite’s high-resolution view of water levels and extent means there is a vast ocean of data that researchers must wade through, and it will take some time to process and analyze the measurements.
      More About SWOT
       The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations.  The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
      To learn more about SWOT, visit:
      https://swot.jpl.nasa.gov
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-176
      Share
      Details
      Last Updated Dec 17, 2024 Related Terms
      SWOT (Surface Water and Ocean Topography) Jet Propulsion Laboratory Water on Earth Explore More
      5 min read NASA Mars Orbiter Spots Retired InSight Lander to Study Dust Movement
      Article 1 day ago 5 min read NASA’s Perseverance Rover Reaches Top of Jezero Crater Rim
      Article 5 days ago 5 min read NASA’s Juno Mission Uncovers Heart of Jovian Moon’s Volcanic Rage
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...