Members Can Post Anonymously On This Site
Sol 4225: Sliding Down Horsetail Falls
-
Similar Topics
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
Sol 4370-4371: All About the Polygons
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on Nov. 20, 2024 — sol 4369, or Martian day 4,369 of the Mars Science Laboratory mission — at 05:47:04 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Nov. 20, 2024
We planned two very full sols today! The sol 4369 drive completed successfully, and the rover was in a stable enough position that we could unstow the arm — something we don’t take for granted in the exceedingly rocky terrain of the sulfate unit! Today the team decided to investigate several rocks in our workspace that are covered in cracks, or fractures, that form polygonal patterns. We are interested to better characterize the geometry of these cracks and to see if they are associated with any compositional differences from the rock. Both pieces of information will give us clues about how they formed. Did they form when stresses pushed on the rock in just the right manner to fracture it into polygonal shapes? Or do the cracks record the rock expanding and contracting, either due to massive changes in temperatures on the Martian surface, or minerals within the rock gaining and losing water? Or perhaps it is something different?
We selected two contact science targets to investigate in our attempt to answer these questions. The target named “Buttermilk” is one of the skinny raised ridges associated with these cracks. We will be placing APXS at three different places over this feature to try to characterize its chemistry. Our second contact science target, “Lee Vining,” gives us a nice 3D view into these cracks. Here, we will collect two MAHLI mosaics, one on each side of the rock that’s close to the rover, to characterize the geometry of the fractures. ChemCam will also get in on the action with a LIBS observation on a fracture fill named “Crater Crest,” as well as an observation on a dark-toned, platy rock called “Lost Arrow.” Mastcam will collect observations of several more polygonally fractured rocks further away from Curiosity in “The Dardanelles” series of mosaics. Some environmental science observations will round out the plan before our drive will take us about 25 meters further (about 82 feet) to the southwest.
Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
Share
Details
Last Updated Nov 23, 2024 Related Terms
Blogs Explore More
3 min read Sols 4368-4369: The Colors of Fall – and Mars
Article
2 days ago
3 min read Sols 4366–4367: One of Those Days on Mars (Sulfate-Bearing Unit to the West of Upper Gediz Vallis)
Article
4 days ago
2 min read Sols 4362-4363: Plates and Polygons
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Francisco Rodriguez (aircraft mechanic) services liquid oxygen or LOX on the ER-2 during the Geological Earth Mapping Experiment (GEMx) research project. Experts like Rodriguez sustain a high standard of safety on airborne science aircraft like the ER-2 and science missions like GEMx. The ER-2 is based out of NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Steve Freeman Operating at altitudes above 99% of the Earth’s atmosphere, NASA’s ER-2 aircraft is the agency’s highest-flying airborne science platform. With its unique ability to observe from as high as 65,000 feet, the ER-2 aircraft is often a platform for Earth science that facilitates new and crucial information about our planet, especially when the plane is part of collaborative and multidisciplinary projects.
“We’re deploying instruments and people everywhere from dry lakebeds in the desert to coastal oceans and from the stratosphere to marine layer clouds just above the surface,” said Kirk Knobelspiesse, an atmospheric scientist at NASA’s Goddard Space Flight Center. “We live on a changing planet, and it is through collaborative projects that we can observe and understand those changes.”
One mission that recently benefitted from the ER-2’s unique capabilities is the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) project. The PACE-PAX mission uses the ER-2’s capabilities to confirm data collected from the PACE satellite, which launched in February 2024.
The PACE observatory is making novel measurements of the ocean, atmosphere, and land surfaces, noted Knobelspiesse, the mission scientist for PACE-PAX. This mission is all about checking the accuracy of those new satellite measurements.
Sam Habbal (quality inspector), Darick Alvarez (aircraft mechanic), and Juan Alvarez (crew chief) work on the network “canoe” on top of the ER-2 aircraft, which provides network communication with the pilot onboard. Experts like these sustain a high standard of safety while outfitting instruments onboard science aircraft like the ER-2 and science missions like the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) mission. The ER-2 is based out of NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Genaro Vavuris “The ER-2 is the ideal platform for PACE-PAX because it’s about the closest we can get to putting instruments in orbit without actually doing so,” Knobelspiesse said.
The collaborative project includes a diverse team of researchers from across NASA, plus the National Oceanic and Atmospheric Administration (NOAA), the Netherlands Institute for Space Research (SRON), the University of Maryland, Baltimore County, the Naval Postgraduate School, and other institutions.
Similarly, the Geological Earth Mapping eXperiment (GEMx) science mission is using the ER-2 over multiple years to collect observations of critical mineral resources across the Western United States.
“Flying at this altitude means the GEMx mission can acquire wide swaths of data with every overflight,” said Kevin Reath, NASA’s associate project manager for the GEMx mission, a collaboration between the United States Geological Survey (USGS) and NASA.
The ER-2 conducted over 80 flight hours in service of the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment (PACE-PAX) mission. The ER-2 is uniquely qualified to conduct the high-altitude scientific flights that this project required, and is based at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Genaro Vavuris The GEMx team collects visible, shortwave infrared, and thermal infrared data using instruments installed onboard the ER-2. Combining these instruments with the aircraft’s capability to fly at high altitudes bears promising results.
“The dataset being produced is the largest airborne surface mineralogy dataset captured in a single NASA campaign,” Reath said. “These data could help inform federal, tribal, state, and community leaders to make decisions that protect or develop our environment.”
Learn more about the ER-2 aircraft.
Learn more about the PACE-PAX mission.
Learn more about the GEMx mission.
Learn more about NASA’s Airborne Science Program.
Share
Details
Last Updated Oct 24, 2024 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Airborne Science Earth Science Earth's Atmosphere ER-2 PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Science Mission Directorate Explore More
2 min read Hubble Sees a Celestial Cannonball
The spiral galaxy in this NASA/ESA Hubble Space Telescope image is IC 3225. It looks…
Article 5 hours ago 1 min read PSI Database is Live with New Features to Improve User Experience
Since its launch in 2014, the Physical Sciences Informatics (PSI) system has served as NASA’s…
Article 22 hours ago 7 min read S-MODE, ASIA-AQ, and the Role of ESPO in Complex Airborne Campaigns
Article 7 days ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Armstrong Science Projects
Aircraft Flown at Armstrong
Earth Science
View the full article
-
By NASA
NASA’s SpaceX Crew-8 members, from left to right, Roscosmos cosmonaut Alexander Grebenkin and NASA astronauts Michael Barratt, Matthew Dominick, and Jeanette Epps, are seen inside the Dragon spacecraft shortly after having landed off the coast of Pensacola, Florida, on Oct. 25, 2024. Credit: NASA/Joel Kowsky NASA’s SpaceX Crew-8 mission successfully splashed down at 3:29 a.m. EDT Friday, off Pensacola, Florida, concluding a nearly eight-month science mission and the agency’s eighth commercial crew rotation mission to the International Space Station.
After launching March 3 on a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida, NASA astronauts Matthew Dominick, Michael Barratt, and Jeanette Epps, as well as Roscosmos cosmonaut Alexander Grebenkin, spent 232 days aboard the space station.
Recovery teams from NASA and SpaceX quickly secured the spacecraft and assisted the astronauts during exit. The crew now will head to NASA’s Johnson Space Center in Houston, while the Dragon spacecraft will return to SpaceX facilities at Cape Canaveral Space Force Station in Florida for inspection and refurbishment for future missions.
During their mission, crew members traveled nearly 100 million miles and completed 3,760 orbits around Earth. They conducted new scientific research to advance human exploration beyond low Earth orbit and benefit human life on Earth. Research and technology demonstrations included conducting stem cell research to develop organoid models for studying degenerative diseases, exploring how fuel temperature affects material flammability, and studying how spaceflight affects immune function in astronauts. Their work aims to improve astronaut health during long-duration spaceflights, contributing to critical advancements in space medicine and benefitting humanity.
Crew-8’s return follows the arrival of NASA’s SpaceX Crew-9 to the orbiting laboratory Sept. 29. These missions are part of NASA’s Commercial Crew Program, which provides reliable access to space, maximizing the use of the station for research and development and supporting future missions beyond low Earth orbit by partnering with private companies to transport astronauts to and from the space station.
Learn more about NASA’s Commercial Crew program at:
https://www.nasa.gov/commercialcrew
-end-
Josh Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
Leah Cheshier / Sandra Jones
Johnson Space Center, Houston
281-483-5111
leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov
Steve Siceloff / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
Share
Details
Last Updated Oct 25, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
Commercial Crew Humans in Space International Space Station (ISS) ISS Research View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
Sol 4294: Return to McDonald Pass
This image was taken by Front Hazard Avoidance Camera (Front Hazcam) aboard NASA’s Mars rover Curiosity on sol 4293 — Martian day 4,293 of the Mars Science Laboratory mission — Sept. 3, 2024 at 04:09:27 UTC. NASA/JPL-Caltech Earth planning date: Tuesday, Sept. 3, 2024
Curiosity has returned to “McDonald Pass,” a block within Gediz Vallis that we first spotted about a month ago (as seen in the above Front Hazcam image). The block shows some interesting zonation — the distribution of textures and colors into different areas, or zones. We’re hoping that by studying the well-exposed relationships between white, gray, and tan material at this location that we’ll be able to better understand similar relationships that we’ve observed elsewhere. The drive over the weekend got us back to McDonald Pass, but perhaps one step too far. We realized that the best spot to study these zones is directly beneath the rover, so today’s plan includes contact science and a short bump to position the rover for even more science tomorrow.
Today was a rare one-sol plan, to account for the U.S. holiday yesterday. I was on shift as the Long Term Planner and it was a fairly straightforward day once we established the best locations for contact science. The plan starts with a DRT and APXS on the central part of the slab, at a target named “Erin Lake.” Then we have a remote sensing block, which begins with some environmental monitoring to search for dust devils, measure atmospheric opacity, and monitor the movement of fines on the rover deck. The Geology Theme group planned ChemCam LIBS on the darker gray rim of this block at “Paris Lake,” along with a ChemCam passive observation on an interesting dark float block nearby. There’s also a long distance RMI mosaic to assess the yardang unit higher on Mount Sharp, and a Mastcam mosaic to evaluate the textures in a row of large clasts. Later in the afternoon, Curiosity will acquire MAHLI images of Erin Lake and another target, “Picture Puzzle,” which captures the white, gray, and tan zones. Then Curiosity will take a short drive back about 1 meter (about 3.3 feet) to position a white and gray clast in our workspace for even more contact science tomorrow.
Will McDonald Pass be the key to understanding the zonation observed in blocks throughout this region? Stay tuned!
Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center
Share
Details
Last Updated Sep 05, 2024 Related Terms
Blogs Explore More
3 min read Sols 4291-4293: Fairview Dome, the Sequel
Article
33 mins ago
3 min read Behind the Scenes at the 2024 Mars 2020 Science Team Meeting
The Mars 2020 Science Team meets in Pasadena for 3 days of science synthesis
Article
6 days ago
4 min read Sols 4289-4290: From Discovery Pinnacle to Kings Canyon and Back Again
Article
7 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.