Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Illustration of the main asteroid belt, orbiting the Sun between Mars and JupiterNASA NASA’s powerful James Webb Space Telescope includes asteroids on its list of objects studied and secrets revealed. 
      A team led by researchers at the Massachusetts Institute of Technology (MIT) in Cambridge repurposed Webb’s observations of a distant star to reveal a population of small asteroids — smaller than astronomers had ever detected orbiting the Sun in the main asteroid belt between Mars and Jupiter.
      The 138 new asteroids range from the size of a bus to the size of a stadium — a size range in the main belt that has not been observable with ground-based telescopes. Knowing how many main belt asteroids are in different size ranges can tell us something about how asteroids have been changed over time by collisions. That process is related to how some of them have escaped the main belt over the solar system’s history, and even how meteorites end up on Earth.  
      “We now understand more about how small objects in the asteroid belt are formed and how many there could be,” said Tom Greene, an astrophysicist at NASA’s Ames Research Center in California’s Silicon Valley and co-author on the paper presenting the results. “Asteroids this size likely formed from collisions between larger ones in the main belt and are likely to drift towards the vicinity of Earth and the Sun.”
      Insights from this research could inform the work of the Asteroid Threat Assessment Project at Ames. ATAP works across disciplines to support NASA’s Planetary Defense Coordination Office by studying what would happen in the case of an Earth impact and modeling the associated risks. 
      “It’s exciting that Webb’s capabilities can be used to glean insights into asteroids,” said Jessie Dotson, an astrophysicist at Ames and member of ATAP. “Understanding the sizes, numbers, and evolutionary history of smaller main belt asteroids provides important background about the near-Earth asteroids we study for planetary defense.”
      Illustration of the James Webb Space TelescopeNASA The team that made the asteroid detections, led by research scientist Artem Burdanov and professor of planetary science Julien de Wit, both of MIT, developed a method to analyze existing Webb images for the presence of asteroids that may have been inadvertently “caught on film” as they passed in front of the telescope. Using the new image processing technique, they studied more than 10,000 images of the star TRAPPIST-1, originally taken to search for atmospheres around planets orbiting the star, in the search for life beyond Earth. 
      Asteroids shine more brightly in infrared light, the wavelength Webb is tuned to detect, than in visible light, helping reveal the population of main belt asteroids that had gone unnoticed until now. NASA will also take advantage of that infrared glow with an upcoming mission, the Near-Earth Object (NEO) Surveyor. NEO Surveyor is the first space telescope specifically designed to hunt for near-Earth asteroids and comets that may be potential hazards to Earth.
      The paper presenting this research, “Detections of decameter main-belt asteroids with JWST,” was published Dec. 9 in Nature.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      View the full article
    • By European Space Agency
      Image: With the festive season approaching, even Earth-observing satellites are getting into the spirit, capturing a stunning compilation of European cities that resemble stars. View the full article
    • By NASA
      Caption: An artist’s concept of the International Space Station orbiting Earth. In the distance is the Moon, and a red star representing Mars.Credit: NASA As part of the agency’s efforts to enable broader use of space, NASA has released its final goals and objectives for low Earth orbit, defining the long-term approach toward advancing microgravity science, technology, and exploration for the benefit of all. Developed with input from a wide range of stakeholders, NASA’s Low Earth Orbit Microgravity Strategy will guide the agency toward the next generation of continuous human presence in orbit, enable greater economic growth, and maintain international partnerships.
      “As we near the retirement of the International Space Station in 2030, these objectives are a pivotal next step in solidifying U.S. leadership in space,” said NASA Deputy Administrator Pam Melroy. “Our consultation with industry, academia, and international partners has helped refine a visionary roadmap for our future in low Earth orbit, which will be enabled by a continuous human presence. Together, we are ensuring that the benefits of exploring space continue to grow – advancing science, innovation, and opportunities for all, while preparing for humanity’s next giant leap of exploring the Moon, Mars and beyond.”
      In early 2024, NASA initiated a planning process that included drafting an initial set of goals and objectives for the low Earth orbit microgravity environment and seeking feedback from its workforce, government partners, industry, academia, international space agencies, and the public. The agency reviewed more than 1,800 comments and hosted two workshops, resulting in essential adjustments to the goals and objectives to better align with its partners. The final framework includes 13 goals and 44 objectives across seven key areas: commercial low Earth orbit infrastructure, operations, science, research and technology development for exploration, international cooperation, workforce development and science, technology, engineering, and mathematics (STEM) engagement, and public engagement.
      The agency’s efforts in low Earth orbit are integral to its broader ambitions for deep space exploration. The microgravity environment in low Earth orbit provides a cost-effective, easily accessible proving ground for technologies and research necessary for human missions to explore the solar system. With most of the journey to Moon and Mars occurring in microgravity, the objectives give the opportunity to continue vital human research, test future exploration systems, and retain the critical skills needed to operate in the microgravity environment.
      “These finalized objectives represent a clear path forward as NASA transitions from the International Space Station to a new era of commercial space stations,” said Robyn Gatens, director of the International Space Station and acting director of commercial spaceflight. “Low Earth orbit will remain a hub for scientific discovery, technological advancement, and international cooperation, while making strategic investments in a commercial space ecosystem that benefits not just NASA, but the entire space community.”
      The low Earth orbit microgravity goals and objectives, combined with significant stakeholder engagement, drive NASA’s need to maintain an unbroken, continuous heartbeat of humans in the commercial low Earth orbit destinations era. NASA requires long-duration flights to mitigate risk for future trips to the Red Planet. To ensure reliable access to and use of low Earth orbit, a diversity of providers operating on a regular cadence is essential. The objectives will also guide the development of requirements for future commercial space stations that will support NASA’s missions, while reducing risk for human missions to Mars, preserving operational skills, advancing critical scientific research, and sustaining engagement with international and commercial partners.
      “Collaboration and consultation remain a cornerstone of our low Earth orbit strategy,” said John Keefe, director of cross-agency strategy integration at NASA. “The objectives we’ve established will help NASA craft a work plan that ensures NASA is positioned to meet current and future needs and prioritizes the development of critical capabilities for low Earth orbit.”
      The low Earth orbit microgravity goals and objectives are available online at:
      https://go.nasa.gov/3DsMtNI
      -end-
      Amber Jacobson
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov
      Share
      Details
      Last Updated Dec 16, 2024 LocationNASA Headquarters Related Terms
      Pamela A. Melroy View the full article
    • By European Space Agency
      Image: These summer images from the Copernicus Sentinel-2 and Sentinel-1 missions showcase different satellite views of Greenland’s west coast. View the full article
    • By NASA
      NASA/Joel Kowsky On Dec. 4, 2024, NASA astronauts Loral O’Hara, left, and Jasmin Moghbeli spent a moment in part of the Earth Information Center, an immersive experience combining live NASA data sets with innovative data visualization and storytelling at NASA Headquarters in Washington.
      O’Hara and Moghbeli spent six months in space as part of Expedition 70 aboard the International Space Station. On Nov. 1, 2023, they performed a spacewalk together that lasted 6 hours and 42 minutes.
      Image credit: NASA/Joel Kowsky
      View the full article
  • Check out these Videos

×
×
  • Create New...