Jump to content

Recommended Posts

  • Publishers
Posted

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A steel model of a hypersonic vehicle and sensor in front of a window in a wind tunnel labeled the 20 inch Mach 6 Tunnel.
A steel model of a hypersonic vehicle and sensor in front of a window in a wind tunnel labeled the 20 inch Mach 6 Tunnel.

Vehicles that travel at hypersonic speeds fly faster than five times the speed of sound. NASA studies the fundamental science of hypersonics to understand it better and applies this understanding to enable point-to-point and space access hypersonic vehicles. These vehicles would use airbreathing engines, which utilize oxygen in the atmosphere. In the long term, NASA envisions reusable hypersonic vehicles with efficient engines for routine flight across the globe.

Vision: Enable routine, reusable, airbreathing hypersonic flight 

Mission: Advance core capabilities and critical technologies underpinning the mastery of hypersonic flight to support U.S. supremacy in hypersonics 

Approach: Conduct fundamental and applied research to enable a broad spectrum of hypersonic systems and missions 

A pointed, narrow airplane flies above the clouds. The sun shines through many, tiny passenger windows.
Artist rendering of a high-speed point-to-point vehicle.
NASA Langley

In the coming decade, NASA envisions the development of enabling technologies for a first-generation reusable airbreathing vehicle capable of cruising at hypersonic speeds. This work supports potential emerging markets in high-speed flight.

By 2050, NASA envisions the development of a next-generation reusable hypersonic vehicle that could serve as the first stage in a two-stage space access vehicle.

Unique Hypersonics Facilities and Expertise

NASA maintains unique facilities, laboratories, and subject matter experts who investigate fundamental and applied research areas to solve the challenges of hypersonic flight. The Hypersonic Technology project coordinates closely with partners in industry, academia, and other government agencies to leverage relevant data sets to validate computational models. These partners also utilize NASA expertise, facilities, and computational tools. Partnerships are critical to advancing the state of the art in hypersonic flight.

Share

Details

Last Updated
Jun 21, 2024
Editor
Jim Banke
Contact

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Drones were a key part of testing new technology in support of a prescribed burn in Geneva State Forest, which is about 100 miles south of Montgomery, Alabama. The effort is part of the agency’s multi-year FireSense project, which is aimed at testing technologies that could eventually serve the U.S. Forest Service as well as local, state, and other federal wildland fire agencies. From left are Tim Wallace and Michael Filicchia of the Desert Research Institute in Nevada; Derek Abramson, Justin Hall, and Alexander Jaffe of NASA’s Armstrong Flight Research Center in Edwards California; and Alana Dachtler of International Met Systems of Kentwood, Michigan.NASA/Jackie Shuman Advancements in NASA’s airborne technology have made it possible to gather localized wind data and assess its impacts on smoke and fire behavior. This information could improve wildland fire decision making and enable operational agencies to better allocate firefighters and resources. A small team from NASA’s Armstrong Flight Research Center in Edwards, California, is demonstrating how some of these technologies work.
      Two instruments from NASA’s Langley Research Center in Hampton, Virginia – a sensor gathering 3D wind data and a radiosonde that measures temperature, barometric pressure, and humidity data – were installed on NASA Armstrong’s Alta X drone for a prescribed burn in Geneva State Forest, which is about 100 miles south of Montgomery, Alabama. The effort is part of the agency’s multi-year FireSense project, which is aimed at testing technologies that could eventually serve the U.S. Forest Service as well as local, state, and other federal wildland fire agencies.
      “The objectives for the Alta X portion of the multi-agency prescribed burn include a technical demonstration for wildland fire practitioners, and data collection at various altitudes for the Alabama Forestry Commission operations,” said Jennifer Fowler, FireSense project manager. “Information gathered at the different altitudes is essential to monitor the variables for a prescribed burn.”
      Those variables include the mixing height, which is the extent or depth to which smoke will be dispersed, a metric Fowler said is difficult to predict. Humidity must also be above 30% for a prescribed burn. The technology to collect these measurements locally is not readily available in wildland fire operations, making the Alta X and its instruments key in the demonstration of prescribed burn technology.
      A drone from NASA’s Armstrong Flight Research Center, Edwards, California, flies with a sensor to gather 3D wind data and a radiosonde that measures temperature, barometric pressure, and humidity data from NASA’s Langley Research Center in Hampton, Virginia. The drone and instruments supported a prescribed burn in Geneva State Forest, which is about 100 miles south of Montgomery, Alabama. The effort is part of the agency’s multi-year FireSense project, which is aimed at testing technologies that could eventually serve the U.S. Forest Service as well as local, state, and other federal wildland fire agencies.International Met Systems/Alana Dachtler In addition to the Alta X flights beginning March 25, NASA Armstrong’s B200 King Air will fly over actively burning fires at an altitude of about 6,500 feet. Sensors onboard other aircraft supporting the mission will fly at lower altitudes during the fire, and at higher altitudes before and after the fire for required data collection. The multi-agency mission will provide data to confirm and adjust the prescribed burn forecast model.
      Small, uncrewed aircraft system pilots from NASA Armstrong completed final preparations to travel to Alabama and set up for the research flights. The team – including Derek Abramson, chief engineer for the subscale flight research laboratory; Justin Hall, NASA Armstrong chief pilot of small, uncrewed aircraft systems; and Alexander Jaffe, a drone pilot – will set up, fly, observe airborne operations, all while keeping additional aircraft batteries charged. The launch and recovery of the Alta X is manual, the mission profile is flown autonomously to guarantee the same conditions for data collection.
      “The flight profile is vertical – straight up and straight back down from the surface to about 3,000 feet altitude,” Abramson said. “We will characterize the mixing height and changes in moisture, mapping out how they both change throughout the day in connection with the burn.”
      In August 2024, a team of NASA researchers used the NASA Langley Alta X and weather instruments in Missoula, Montana, for a FireSense project drone technology demonstration. These instruments were used to generate localized forecasting that provides precise and sustainable meteorological data to predict fire behavior and smoke impacts.
      Justin Link, left, pilot for small uncrewed aircraft systems, and Justin Hall, chief pilot for small uncrewed aircraft systems, install weather instruments on an Alta X drone at NASAs Armstrong Flight Research Center in Edwards, California. Members of the center’s Dale Reed Subscale Flight Research Laboratory used the Alta X to support the agency’s FireSense project in March 2025 for a prescribed burn in Geneva State Forest, which is about 100 miles south of Montgomery, Alabama.NASA/Steve Freeman Share
      Details
      Last Updated Apr 03, 2025 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Airborne Science B200 Drones & You Langley Research Center Science Mission Directorate Explore More
      5 min read NASA Langley’s Legacy of Landing
      Article 7 hours ago 4 min read NASA Makes Progress on Advanced Drone Safety Management System
      Article 23 hours ago 2 min read What Are the Dangers of Going to Space? We Asked a NASA Expert: Episode 55
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 2 min read
      The FireSense Project
      Expanded coverage of topics from “The Editor’s Corner” in The Earth Observer
      Wind is a major factor in fire. It controls how fires evolve and pose threats to the safety of communities. While weather balloons have traditionally produced vertical soundings to define changes in atmospheric dynamics, their use is restricted during aircraft operations to combat active wildfires. New technologies are needed to fill this critical measurement gap. The Uninhabited Aerial System (UAS) fits the bill, providing localized forecasting to help predict fire behavior.
      The NASA Earth Science Division FireSense project, together with agency, academic, and private partners, completed an airborne campaign in a wildfire smoke-impacted airshed in Missoula, MT on August 27–29, 2024. During the three-day campaign, a NASA UAS team conducted eight data-collection flights– see Figure. They partnered these launches with weather balloon launches.
      Using this real-time data, MITRE Corporation tested high-resolution “Score-based Data Assimilation” meteorological models and the National Oceanic and Atmospheric Administration (NOAA) High-Resolution Rapid Refresh (HRRR) operational atmospheric model against wind speed and temperature from local MesoNet weather stations. Environmental Systems Research Institute (ESRI) created comprehensive visualizations of flight paths, temperature, and wind.
      The Montana campaign evaluated the impact of real-time data on model fire weather forecasts commonly used for operational decision making. The UAS sounding data was validated against weather ballon data. In addition, the campaign evaluated data validity from in-situ UAS soundings in a smoke impacted environment as well as assessed payload portability and user experience with the systems. The campaign served as a trial for interagency coordination between NOAA incident meteorologists and U.S. Forest Service (USFS) trained UAS pilots conducting data collection flights.
      Figure. A composite image showing the NASA Alta X quadcopter taking off during one of eight flights conducted during the 2024 FireSense Uninhabited Aerial System technology demonstration in Missoula, MT. Image Credit: Milan Loiacono/NASA Steve Platnick
      EOS Senior Project Scientist
      Christine Mataya
      FireSense Program Coordinator
      Jacquelyn K. Shuman
      FireSense Project Scientist
      Michael Falkowski
      FireSense Program Lead
      Share








      Details
      Last Updated Mar 20, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      As part of NASA’s Advanced Capabilities for Emergency Response Operations flight tests in November 2024, Overwatch Aero flies a vertical takeoff and landing aircraft in Watsonville, California.Credit: NASA NASA will conduct a live flight test of aircraft performing simulated wildland fire response operations using a newly developed airspace management system at 9 a.m. PDT on Tuesday, March 25, in Salinas, California.
      NASA’s new portable airspace management system, part of the agency’s Advanced Capabilities for Emergency Response Operations (ACERO) project, aims to significantly expand the window of time crews have to respond to wildland fires. The system provides the air traffic awareness needed to safely send aircraft – including drones and remotely piloted helicopters – into wildland fire operations, even during low-visibility conditions. Current aerial firefighting operations are limited to times when pilots have clear visibility, which lowers the risk of flying into the surrounding terrain or colliding with other aircraft. This restriction grounds most aircraft at night and during periods of heavy smoke.
      During this inaugural flight test, researchers will use the airspace management system to coordinate the flight operations of two small drones, an electric vertical takeoff and landing aircraft, and a remotely piloted aircraft that will have a backup pilot aboard. The drones and aircraft will execute examples of critical tasks for wildland fire management, including weather data sharing, simulated aerial ignition flights, and communications relay.
      Media interested in viewing the ACERO flight testing must RSVP by 4 p.m. Friday, March 21, to the NASA Ames Office of Communications by email at: arc-dl-newsroom@mail.nasa.gov or by phone at 650-604-4789. NASA will release additional details, including address and arrival logistics, to media credentialed for the event. A copy of NASA’s media accreditation policy is online.
      NASA’s ACERO researchers will use data from the flight test to refine the airspace management system. The project aims to eventually provide this technology to wildland fire crews for use in the field, helping to save lives and property. This project is managed at NASA’s Ames Research Center in California’s Silicon Valley.
      For more information on ACERO, visit:
      https://go.nasa.gov/4bYEzsD
      -end-
      Rob Margetta
      Headquarters, Washington
      202-358-1600
      robert.j.margetta@nasa.gov
      Hillary Smith
      Ames Research Center, Silicon Valley
      650-604-4789
      hillary.smith@nasa.gov
      Share
      Details
      Last Updated Mar 18, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Ames Research Center Advanced Capabilities for Emergency Response Operations Aeronautics Aeronautics Research Mission Directorate Flight Innovation View the full article
    • By Space Force
      The Department of the Air Force announced effective immediately, administrative leave, travel, and transportation reimbursement for elective abortion will cease.
      View the full article
    • By NASA
      A chevron nozzle is installed on NASA’s Learjet for a mid-March 2001 flight test at Lorain Country Airport to verify that in an emergency, the aircraft could be flown using only the experimental engine. Credit: NASA/Marvin Smith
      Shortly after dawn on March 27, 2001, NASA pilot Bill Rieke took off from an airfield just outside of Phoenix in NASA’s blue-and-white Learjet 25 and flew low over a series of microphones for the first flight test of a groundbreaking NASA technology.
      On one of the plane’s engines was an experimental jagged-edged nozzle that researchers at Glenn Research Center in Cleveland had discovered made aircraft significantly quieter. These initial flight tests were an important step toward using these “chevron nozzles” on modern aircraft, lowering noise levels for communities.
      NASA Glenn has been exploring ways of reducing engine noise since the first jet airliners appeared in the 1950s. New turbofan engines in the 1960s were quieter, but the expansion of the overall airline industry meant that noise was still an issue. With the introduction of noise-limiting mandates in the 1970s, NASA and engine manufacturers embarked on a decades-long search for technologies to lower noise levels.
      NASA researchers discovered that the military’s use of rectangular notches, or tabs, along an engine nozzle’s exit – to help disguise a jet fighter’s infrared signature – could also reduce engine noise by helping mix the hot air from the engine core and the cooler air blowing through the engine fan. In the 1990s, Glenn researcher Dennis Huff and his colleagues discovered that a serrated, or sawtooth, shape, referred to as a chevron, offered more promise.
      Dennis Huff explains chevron nozzles, seen on a table, to U.S. Senator George Voinovich and other visitors inside the Aero-Acoustic Propulsion Laboratory facility in 2006. Huff was head of NASA Glenn Research Center’s Acoustics Branch at this point.Credit: NASA/Marvin Smith NASA contracted with General Electric and Pratt & Whitney to develop an array of tab and chevron designs to be analyzed in Glenn’s unique Aero-Acoustic Propulsion Laboratory (AAPL). Extensive testing in the spring of 1997 showed the possibilities for reducing noise with these types of nozzles.
      Engine manufacturers were impressed with the findings but wary of any technology that might impact performance. So, in 1998, NASA funded engine tests of the 14 most promising designs. The tests revealed the chevron nozzle had a negligible 0.25% reduction of thrust. It was a major development for jet noise research.
      In September 2000, Glenn’s Flight Operations Branch was contacted about the logistics of flight-testing chevron nozzles on the center’s Learjet 25 to verify the ground tests and improve computer modeling. Nothing further came of the request, however, until early the next year when Huff informed Rieke, chief of Flight Operations, that the researchers would like to conduct flight tests in late March—with just eight weeks to prepare. 
      Glenn’s Acoustics Branch worked with colleagues at NASA’s Langley Research Center in Hampton, Virginia, and the Arizona-based engine manufacturer Honeywell on the effort. They planned to conduct testing at Estrella Sailport just outside of Phoenix from March 26 to 28, 2001.

      Bill Rieke and Ellen Tom with the chevron nozzle installed on the Learjet. NASA Glenn Research Center’s small Flight Operations team was heavily involved with icing research and solar cell calibration flights during this period, so arrangements were made for Tom, a Federal Aviation Administration pilot, to assist with the chevron flights. Credit: Courtesy of Bill Rieke With the required safety and design reviews, the eight-week target date would be difficult to meet for any test flight, but this one was particularly challenging as it involved modifications to the engine nacelle. While the special nozzle engineers created for the flights would allow them to switch between a six- and a 12-chevron design during testing, it also got hot quickly. This necessitated the installation of new sensors, rewiring of fire alarm cables, and the presence of an onboard test engineer to monitor the temperatures. The short turnaround also required expedited efforts to obtain flight plan approvals, verify the plane’s airworthiness, and perform normal maintenance activities.
      Despite the challenges, Rieke and a small team delivered the Learjet to Estrella on March 25, as planned. The next day was spent coordinating with the large Langley and Honeywell team and acquiring baseline noise data. The pilots idled the unmodified engine as the Learjet flew over three perpendicular rows of microphones at an altitude of 500 feet and speed of 230 miles per hour.

      View from below as NASA Glenn Research Center’s Learjet 25 passes overhead at the Estrella airfield with the experimental chevron nozzle visible on the left wing.Credit: Courtesy of Bill Rieke The flight patterns were repeated over the next two days while alternately using the two variations of the chevron nozzle. The researchers anecdotally reported that there was no perceptible noise reduction as the aircraft approached, but significant reductions once it passed. Recordings supported these observations and showed that sideline noise was reduced, as well.
      The flights of the Learjet, which was powered by a variation of GE’s J-85 turbojet, were complemented by Honeywell’s turbofan-powered Falcon 20 aircraft. These flights ultimately confirmed the noise reduction found in earlier AAPL tests.
      Overall, the flight tests were so successful that just over a year later the FAA began certifying GE’s CF34–8, the first commercial aircraft engine to incorporate chevron technology. The engine was first flown on a Bombardier CRJ900 in 2003. Continued studies by both NASA and industry led to the improved designs and the incorporation of chevrons into larger engines, such as GE’s GEnx.
      According to Huff, the chevron’s three-decibel noise decrease was analogous to the difference between running two lawnmowers and one. Their comparatively easy integration into engine design and minimal effect on thrust made the chevron a breakthrough in noise-reduction technology. In 2002, NASA presented an innovation award to the Glenn, Langley, and Honeywell team that carried out the flights. Today, airliners such as the 737 MAX and 787 Dreamliner use chevron nozzles to lower noise levels for communities near airports.
      Explore More
      3 min read NASA Selects Three University Teams to Participate in Flight Research 
      Article 6 hours ago 2 min read NASA Marks 110 Years Since Founding of Predecessor Organization
      Article 1 week ago 3 min read NASA’s X-59 Completes Electromagnetic Testing
      Article 2 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...