Jump to content

NASA’s ELaNa 43 Prepares for Firefly Aerospace Launch


Recommended Posts

  • Publishers
Posted
KSC-20240606-PH-FRF01_0001~large.jpg?w=1
A Satellite for Optimal Control and Imaging (SOC-i) CubeSat awaits integration at Firefly’s Payload Processing Facility at Vandenberg Space Force Base, California on Thursday, June 6, 2024. SOC-i, along with several other CubeSats, will launch to space on an Alpha rocket during NASA’s Educational Launch of Nanosatellites (ELaNa) 43 mission as part of the agency’s CubeSat Launch Initiative and Firefly’s Venture-Class Launch Services Demonstration 2 contract.
NASA

NASA is readying for the launch of several small satellites to space, built with the help of students, educators, and researchers from across the country, as part of the agency’s CubeSat Launch Initiative.

The ELaNa 43 (Educational Launch of Nanosatellites 43) mission includes eight CubeSats flying on Firefly Aerospace’s Alpha rocket for its “Noise of Summer” launch from Space Launch Complex-2 at Vandenberg Space Force Base, California. The 30-minute launch window will open at 9 p.m. PDT Wednesday, June 26 (12 a.m. EDT Thursday, June 27).

NASA’s CubeSat Launch Initiative (CSLI) is an ongoing partnership between the agency, educational institutions, and nonprofits, providing a path to space for educational small satellite missions. For the ELaNa 43 mission, each satellite is stored in a CubeSat dispenser on the Firefly rocket and deployed once it reaches sun-synchronous or nearly polar orbit around Earth.

CubeSats are built using standardized units, with one unit, or 1U, measuring about 10 centimeters in length, width, and height. This standardization in size and form allows universities and other researchers to develop cost-effective science investigations and technology demonstrations.

Read more about the small satellites launching on ELaNa 43:

CatSat – University of Arizona, Tucson

CatSat, a 6U CubeSat with a deployable antenna inside a Mylar balloon, will test high-speed communications. Once the CatSat reaches orbit, it will inflate to transmit high-definition Earth photos to ground stations at 50 megabits per second, more than five times faster than typical home internet speeds.

The CatSat design inspiration came to Chris Walker after covering a pot of pudding with plastic wrap. The CatSat principal investigator and professor of Astronomy at University of Arizona noticed the image of an overhanging light bulb created by reflections off the concave plastic wrap on the pot.

“This observation eventually led to the Large Balloon Reflector, an inflatable technology that creates large collecting apertures that weigh a fraction of today’s deployable antennas,” said Walker. The Large Balloon Reflector was an early-stage study developed through NASA’s Innovative Advanced Concepts program.

KUbeSat-1 – University of Kansas, Lawrence

The KUbeSat-1, a 3U CubeSat, will use a new method to measure the energy and type of primary cosmic rays hitting the Earth, which is traditionally done on Earth. The second payload, the High-Altitude Calibration will measure very high frequency signals generated by cosmic interactions with the atmosphere. KUbeSat-1 is Kansas’ first small satellite to launch under NASA’s CSLI.

MESAT-1 – University of Maine, Orono

MESAT-1, a 3U CubeSat, will study local temperatures across city and rural areas to determine phytoplankton concentration in bodies of water to help predict algal blooms.  MESAT-1 is Maine’s first small satellite to launch under NASA’s CSLI.

R5-S4, R5-S2-2.0 ­­­­­- NASA’s Johnson Space Center

R5-S4 and R5-S2-2.0, both 6U CubeSats, will be the first R5 spacecraft launched to orbit to test a new, lean spacecraft build. The team will monitor how each part of the spacecraft performs, including the computer, software, radio, propulsion system, sensors, and cameras in low Earth orbit.

KSC-20240424-PH-FRF01_0007~large.jpg?w=1
NASA and Firefly Aerospace engineers review the integration plan for the agency’s CubeSat R5 Spacecraft 4 (R5-S4) at Firefly Aerospace’s Payload Processing Facility at Vandenberg Space Force Base, California on Wednesday, April 24, 2024.
NASA/Jacob Nunez-Kearny

“In the near term, R5 hopes to demonstrate new processes that allows for faster and cheaper development of high-performance CubeSats,” said Sam Pedrotty, R5 project manager at NASA’s Johnson Space Center in Houston. “The cost and schedule improvements will allow R5 to provide higher-risk ride options to low-Technology Readiness Levels payloads so more can be demonstrated on-orbit.”

Serenity Teachers in Space

Serenity, a 3U CubeSat equipped with data sensors and a camera, will communicate with students on Earth through amateur radio signals and send back images. Teachers in Space launches satellites as educational experiments to stimulate interest in space science, technology, engineering, and math among students in North America.

SOC-i University of Washington, Seattle

Satellite for Optimal Control and Imaging (SOC-i), a 2U CubeSat, is a technology demonstration mission of attitude control technology used to maintain its orientation in relation to the Earth, Sun, or other body. This mission will test an algorithm to support autonomous operations with constrained attitude guidance maneuvers computed in real-time aboard the spacecraft. SOC-i will autonomously rotate its camera to capture images.

TechEdSat-11 (TES-11) – NASA’s Ames Research Center, California’s Silicon Valley

TES-11, a 6U CubeSat, is a collaborative effort between NASA researchers and students to evaluate technologies for use in small satellites. It’s part of ongoing experiments to evaluate new technologies in communications, a radiation sensor suite, and experimental solar panels, as well as to find ways to reduce the time to de-orbit.

NASA awarded Firefly Aerospace a fixed-price contract to fly small satellites to space under a Venture-Class Launch Services Demonstration 2 contract in 2020. NASA certified Firefly Aerospace’s Alpha rocket as a Category 1 in May, which authorized its use during missions with high risk tolerance.

NASA’s Launch Services Program is responsible for launching rockets delivering spacecraft that observe Earth, visit other planets, and explore the universe.

Follow NASA’s small satellite missions blog for launch updates.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Astronaut Jonny Kim Soyuz MS-27 Launch
    • By NASA
      The Roscosmos Soyuz MS-27 spacecraft will launch from the Baikonur Cosmodrome in Kazakhstan to the International Space Station with (pictured left to right) NASA astronaut Jonny Kim and Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky.Credit: Gagarin Cosmonaut Training Center NASA astronaut Jonny Kim will launch aboard the Roscosmos Soyuz MS-27 spacecraft to the International Space Station, accompanied by cosmonauts Sergey Ryzhikov and Alexey Zubritsky, where they will join the Expedition 72/73 crew in advancing scientific research.
      Kim, Ryzhikov, and Zubritsky will lift off at 1:47 a.m. EDT Tuesday, April 8 (10:47 a.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
      Watch live launch and docking coverage on NASA+. Learn how to watch NASA content through a variety of platforms.
      After a two-orbit, three-hour trajectory to the station, the spacecraft will dock automatically to the station’s Prichal module at approximately 5:03 a.m. Shortly after, hatches will open between Soyuz and the space station.
      Once aboard, the trio will join NASA astronauts Nichole Ayers, Anne McClain, and Don Pettit, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonauts Alexey Ovchinin, Kirill Peskov, and Ivan Vagner.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Tuesday, April 8
      12:45 a.m. – Launch coverage begins on NASA+.
      1:47 a.m. – Launch
      4:15 a.m. – Rendezvous and docking coverage begins on NASA+.
      5:03 a.m. – Docking
      7 a.m. – Hatch opening and welcome remarks coverage begins on NASA+.
      7:20 a.m. – Hatch opening
      The trio will spend approximately eight months aboard the orbital laboratory as Expedition 72 and 73 crew members before returning to Earth in December. This will be the first flight for Kim and Zubritsky, and the third for Ryzhikov.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of the Artemis campaign in preparation for future human missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 02, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space ISS Research Johnson Space Center Space Operations Mission Directorate View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Crew Module Test Article (CMTA), a full scale mockup of the Orion spacecraft, is seen in the Pacific Ocean as teams practice Artemis recovery operations during Underway Recovery Test-12 onboard USS Somerset off the coast of California, Saturday, March 29, 2025. NASA/Bill Ingalls Preparations for NASA’s next Artemis flight recently took to the seas as a joint NASA and Department of Defense team, led by NASA’s Exploration Ground Systems Program, spent a week aboard the USS Somerset off the coast of California practicing procedures for recovering the Artemis II spacecraft and crew.
      Following successful completion of Underway Recovery Test-12 (URT-12) on Monday, NASA’s Landing and Recovery team and their Defense Department counterparts are certified to recover the Orion spacecraft as part of the upcoming Artemis II test flight that will send NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon.  
      “This will be NASA’s first crewed mission to the Moon under the Artemis program,” said Lili Villarreal, the landing and recovery director for Artemis II. “A lot of practice led up to this week’s event, and seeing everything come together at sea gives me great confidence that the air, water, ground, and medical support teams are ready to safely recover the spacecraft and the crew for this historic mission.”
      A wave breaks inside the well deck of USS Somerset as teams work to recover the Crew Module Test Article (CMTA), a full scale replica of the Orion spacecraft, as they practice Artemis recovery operations during Underway Recovery Test-12 off the coast of California, Thursday, March 27, 2025.NASA/Joel Kowsky Once Orion reenters Earth’s atmosphere, the capsule will keep the crew safe as it slows from nearly 25,000 mph to about 325 mph. Then its system of 11 parachutes will deploy in a precise sequence to slow the capsule and crew to a relatively gentle 20 mph for splashdown off the coast of California. From the time it enters Earth’s atmosphere, the Artemis II spacecraft will fly 1,775 nautical miles to its landing spot in the Pacific Ocean. This direct approach allows NASA to control the amount of time the spacecraft will spend in extremely high temperature ranges.
      The Artemis II astronauts trained during URT-11 in February 2024, when they donned Orion Crew Survival System suits and practiced a range of recovery operations at sea using the Crew Module Test Article, a stand -in for their spacecraft.
      For the 12th training exercise, NASA astronauts Deniz Burnham and Andre Douglas, along with ESA (European Space Agency) astronaut Luca Parmitano, did the same, moving from the simulated crew module to USS Somerset, with helicopters, a team of Navy divers in small boats, NASA’s open water lead – a technical expert and lead design engineer for all open water operations – as well as Navy and NASA medical teams rehearsing different recovery scenarios.
      Grant Bruner, left, and Gary Kirkendall, right, Orion suit technicians, are seen with ESA (European Space Agency) astronaut Luca Parmitano, second from left, and NASA astronauts Deniz Burnham, center, and Andre Douglas, as they prepare to take part in Artemis recovery operations as part of Underway Recovery Test-12 onboard USS Somerset off the coast of California, Thursday, March 27, 2025. NASA/Joel Kowsky “Allowing astronauts to participate when they are not directly involved in a mission gives them valuable experience by exposing them to a lot of different scenarios,” said Glover, who will pilot Artemis II. “Learning about different systems and working with ground control teams also broadens their skillsets and prepares them for future roles. It also allows astronauts like me who are assigned to the mission to experience other roles – in this case, I am serving in the role of Joe Acaba, Chief of the Astronaut Office.” 
      NASA astronaut and Artemis II pilot Victor Glover, right, speaks to NASA astronauts Andre Douglas and Deniz Burnham as they prepare to take part in practicing Artemis recovery procedures during Underway Recovery Test-12 onboard USS Somerset off the coast of California, Friday, March 28, 2025.NASA/Joel Kowsky NASA astronaut Deniz Burnham smiles after landing in a Navy helicopter onboard USS Somerset during Underway Recovery Test-12 off the coast of California, Thursday, March 27, 2025.NASA/Bill Ingalls As the astronauts arrive safely at the ship for medical checkouts, recovery teams focus on returning the spacecraft and its auxiliary ground support hardware to the amphibious transport dock.
      Navy divers attach a connection collar to the spacecraft and an additional line to a pneumatic winch inside the USS Somerset’s well deck, allowing joint NASA and Navy teams to tow Orion toward the ship. A team of sailors and NASA recovery personnel inside the ship manually pull some of the lines to help align Orion with its stand, which will secure the spacecraft for its trip to the shore. Following a safe and precise recovery, sailors will drain the well deck of water, and the ship will make its way back to Naval Base San Diego.
      The Artemis II test flight will confirm the foundational systems and hardware needed for human deep space exploration, taking another step toward missions on the lunar surface and helping the agency prepare for human missions to Mars.
      About the Author
      Allison Tankersley
      Public Affairs Specialist
      Share
      Details
      Last Updated Mar 31, 2025 Related Terms
      Missions Artemis 2 Exploration Ground Systems Exploration Systems Development Mission Directorate Orion Multi-Purpose Crew Vehicle Explore More
      5 min read Old Missions, New Discoveries: NASA’s Data Archives Accelerate Science
      Every NASA mission represents a leap into the unknown, collecting data that pushes the boundaries…
      Article 2 hours ago 5 min read 20-Year Hubble Study of Uranus Yields New Atmospheric Insights
      The ice-giant planet Uranus, which travels around the Sun tipped on its side, is a…
      Article 5 hours ago 6 min read She Speaks for the Samples: Meet Dr. Juliane Gross, Artemis Campaign Sample Curation Lead 
      Article 8 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA logo. NASA has awarded SpaceX of Starbase, Texas, a modification under the NASA Launch Services (NLS) II contract to add Starship to their existing Falcon 9 and Falcon Heavy launch service offerings.
      The NLS II contracts provide a broad range of commercial launch services for NASA’s planetary, Earth-observing, exploration, and scientific satellites. These high-priority, low and medium risk tolerant missions have full NASA technical oversight and mission assurance, resulting in the highest probability of launch success.
      The NLS II contracts are multiple award, indefinite-delivery/indefinite-quantity, with an ordering period through June 2030 and an overall period of performance through December 2032. The contracts include an on-ramp provision that provides an opportunity annually for new launch service providers to add their launch service on an NLS II contract and compete for future missions and allows existing contractors to introduce launch services not currently on their NLS II contracts.
      The contracts support the goals and objectives of the agency’s Science Mission Directorate, Space Operations Mission Directorate, Explorations Systems Development Mission Directorate, and the Space Technology Mission Directorate. Under the contracts, NASA also can provide launch services to other federal government agencies.
      NASA’s Launch Services Program Office at the agency’s Kennedy Space Center in Florida manages the NLS II contracts. For more information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle / Joshua Finch
      Headquarters, Washington
      202-358-1600 / 202-358-1100
      tiernan.doyle@.nasa.gov / joshua.a.finch@nasa.gov
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      Share
      Details
      Last Updated Mar 28, 2025 LocationNASA Headquarters Related Terms
      NASA Directorates Space Operations Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...