Members Can Post Anonymously On This Site
Saharan dust over the Strait of Messina
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Regolith Adherence Characterization, or RAC, is one of 10 science and technology instruments flying on NASA’s next Commercial Lunar Payload Services (CLPS) flight as part of the Blue Ghost Misison-1. Developed by Aegis Aerospace of Webster, Texas, RAC is designed to study how lunar dust reacts to more than a dozen different types of material samples, located on the payload’s wheels. Photo courtesy Firefly Aerospace The Moon may look like barren rock, but it’s actually covered in a layer of gravel, pebbles, and dust collectively known as “lunar regolith.” During the Apollo Moon missions, astronauts learned firsthand that the fine, powdery dust – electromagnetically charged due to constant bombardment by solar and cosmic particles – is extremely abrasive and clings to everything: gloves, boots, vehicles, and mechanical equipment. What challenges does that dust pose to future Artemis-era missions to establish long-term outposts on the lunar surface?
That’s the task of an innovative science instrument called RAC-1 (Regolith Adherence Characterization), one of 10 NASA payloads flying aboard the next delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative and set to be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
Developed by Aegis Aerospace of Webster, Texas, RAC will expose 15 sample materials – fabrics, paint coatings, optical systems, sensors, solar cells, and more – to the lunar environment to determine how tenaciously the lunar dust sticks to each one. The instrument will measure accumulation rates during landing and subsequent routine lander operations, aiding identification of those materials which best repel or shed dust. The data will help NASA and its industry partners more effectively test, upgrade, and protect spacecraft, spacesuits, habitats, and equipment in preparation for continued exploration of the Moon under the Artemis campaign.
“Lunar regolith is a sticky challenge for long-duration expeditions to the surface,” said Dennis Harris, who manages the RAC payload for NASA’s CLPS initiative at the agency’s Marshall Space Flight Center in Huntsville, Alabama. “Dust gets into gears, sticks to spacesuits, and can block optical properties. RAC will help determine the best materials and fabrics with which to build, delivering more robust, durable hardware, products, and equipment.”
Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
Learn more about. CLPS and Artemis at:
https://www.nasa.gov/clps
Alise Fisher
Headquarters, Washington
202-358-2546
Alise.m.fisher@nasa.gov
Headquarters, Washington
202-358-2546
Alise.m.fisher@nasa.gov
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
corinne.m.beckinger@nasa.gov
Share
Details
Last Updated Dec 20, 2024 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
3 min read NASA Payload Aims to Probe Moon’s Depths to Study Heat Flow
Article 2 days ago 4 min read NASA Technology Helps Guard Against Lunar Dust
Article 8 months ago 4 min read NASA Collects First Surface Science in Decades via Commercial Moon Mission
Article 10 months ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
2 min read
Jovian Vortex Hunters Spun Up Over New Paper
Jumping Jupiter! The results are in, storm chasers! Thanks to your help over the last two years the Jovian Vortex Hunter project has published a catalog of 7222 vortices, which you can download here. Each vortex is an enormous swirling windstorm in Jupiter’s atmosphere–terrifying yet beautiful to behold.
The vortices are labeled by color (“white” is most common, then “dark”, then “red”).
The catalog reveals distributions of vortex sizes, aspect ratios, and locations on the planet. For example, your work showed that white and dark vortices are preferentially found near the poles. These distributions help researchers derive general parameters about Jupiter’s atmosphere that can give us insights about its internal processes and the atmospheres of other planets.
Over 5,000 of you helped build this catalog by performing over a million classifications of images of Jupiter from the JunoCam instrument on NASA’s Juno mission. The details of the catalog are now published in this paper in the Planetary Science Journal. You can also learn more about this amazing volunteer effort in a video you can find on the Jovian Vortex Hunter Results webpage.Thanks to your efforts, The Jovian Vortex Hunter project is out of data. But you can work with JunoCam data in a different way by participating in NASA’s JunoCam citizen science project.
A set of really cool vortices–spinning storms–found by Jovian Vortex Hunters. Data from the JunoCam instrument on NASA’s Juno mission.
Facebook logo @DoNASAScience @DoNASAScience Share
Details
Last Updated Dec 17, 2024 Editor Bill Keeter Related Terms
Citizen Science Planetary Science Division View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Seen at the center of this image, NASA’s retired InSight Mars lander was captured by the agency’s Mars Reconnaissance Orbiter using its High-Resolution Imagine Science Experiment (HiRISE) camera on Oct. 23, 2024.NASA/JPL-Caltech/University of Arizona New images taken from space show how dust on and around InSight is changing over time — information that can help scientists learn more about the Red Planet.
NASA’s Mars Reconnaissance Orbiter (MRO) caught a glimpse of the agency’s retired InSight lander recently, documenting the accumulation of dust on the spacecraft’s solar panels. In the new image taken Oct. 23 by MRO’s High-Resolution Imaging Science Experiment (HiRISE) camera, InSight’s solar panels have acquired the same reddish-brown hue as the rest of the planet.
After touching down in November 2018, the lander was the first to detect the Red Planet’s marsquakes, revealing details of the crust, mantle, and core in the process. Over the four years that the spacecraft collected science, engineers at NASA’s Jet Propulsion Laboratory in Southern California, which led the mission, used images from InSight’s cameras and MRO’s HiRISE to estimate how much dust was settling on the stationary lander’s solar panels, since dust affected its ability to generate power.
NASA retired InSight in December 2022, after the lander ran out of power and stopped communicating with Earth during its extended mission. But engineers continued listening for radio signals from the lander in case wind cleared enough dust from the spacecraft’s solar panels for its batteries to recharge. Having detected no changes over the past two years, NASA will stop listening for InSight at the end of this year.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
NASA’s InSight Mars lander acquires the same reddish-brown hue as the rest of the planet in a set of images from 2018 to 2024 that were captured by the agency’s Mars Reconnaissance Orbiter using its High-Resolution Imagine Science Experiment (HiRISE) camera.NASA/JPL-Caltech/University of Arizona Scientists requested the recent HiRISE image as a farewell to InSight, as well as to monitor how its landing site has changed over time.
“Even though we’re no longer hearing from InSight, it’s still teaching us about Mars,” said science team member Ingrid Daubar of Brown University in Providence, Rhode Island. “By monitoring how much dust collects on the surface — and how much gets vacuumed away by wind and dust devils — we learn more about the wind, dust cycle, and other processes that shape the planet.”
Dust Devils and Craters
Dust is a driving force across Mars, shaping both the atmosphere and landscape. Studying it helps scientists understand the planet and engineers prepare for future missions (solar-powered and otherwise), since dust can get into sensitive mechanical parts.
When InSight was still active, scientists matched MRO images of dust devil tracks winding across the landscape with data from the lander’s wind sensors, finding these whirling weather phenomena subside in the winter and pick up again in the summer.
The imagery also helped with the study of meteoroid impacts on the Martian surface. The more craters a region has, the older the surface there is. (This isn’t the case with Earth’s surface, which is constantly recycled as tectonic plates slide over one another.) The marks around these craters fade with time. Understanding how fast dust covers them helps to ascertain a crater’s age.
Another way to estimate how quickly craters fade has been studying the ring of blast marks left by InSight’s retrorocket thrusters during landing. Much more prominent in 2018, those dark marks are now returning to the red-brown color of the surrounding terrain.
HiRISE has captured many other spacecraft images, including those of NASA’s Perseverance and Curiosity rovers, which are still exploring Mars, as well as inactive missions, like the Spirit and Opportunity rovers and the Phoenix lander.
“It feels a little bittersweet to look at InSight now. It was a successful mission that produced lots of great science. Of course, it would have been nice if it kept going forever, but we knew that wouldn’t happen,” Daubar said.
More About MRO and InSight
The University of Arizona, in Tucson, operates HiRISE, which was built by Ball Aerospace & Technologies Corp., in Boulder, Colorado. A division of Caltech in Pasadena, California, JPL manages the MRO project and managed InSight for NASA’s Science Mission Directorate, Washington.
The InSight mission was part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supported spacecraft operations for the mission.
A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), supported the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors.
For more about the missions:
https://science.nasa.gov/mission/insight
science.nasa.gov/mission/mars-reconnaissance-orbiter
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2024-175
Share
Details
Last Updated Dec 16, 2024 Related Terms
InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Jet Propulsion Laboratory Mars Mars Reconnaissance Orbiter (MRO) Radioisotope Power Systems (RPS) Explore More
5 min read NASA’s Perseverance Rover Reaches Top of Jezero Crater Rim
Article 4 days ago 5 min read NASA’s Juno Mission Uncovers Heart of Jovian Moon’s Volcanic Rage
Article 4 days ago 5 min read NASA-DOD Study: Saltwater to Widely Taint Coastal Groundwater by 2100
Article 5 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 Min Read NASA Technologies Aim to Solve Housekeeping’s Biggest Issue – Dust
This artist rendering of Electrostatic Dust Lofting (EDL) examines the lofting of lunar dust when electrostatic charging occurs after exposure to ultraviolet light. If you thought the dust bunnies under your sofa were an issue, imagine trying to combat dust on the Moon. Dust is a significant challenge for astronauts living and working on the lunar surface. So, NASA is developing technologies that mitigate dust buildup enabling a safer, sustainable presence on the Moon.
A flight test aboard a suborbital rocket system that will simulate lunar gravity is the next step in understanding how dust mitigation technologies can successfully address this challenge. During the flight test with Blue Origin, seven technologies developed by NASA’s Game Changing Development program within the agency’s Space Technology Mission Directorate will study regolith mechanics and lunar dust transport in a simulated lunar gravity environment.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
The technologies featured in this animation are Electrostatic Dust Lofting (EDL), Electrodynamic Regolith Conveyor (ERC), Hermes Lunar-G, ISRU Pilot Excavator (IPEx), Clothbot, Duneflow, and Vertical Lunar Regolith Conveyor (VLRC). Each of these technology payloads will advance our understanding of regolith mechanics and lunar dust transport through flight testing in space with simulated lunar gravity.NASA / Advanced Concepts Lab Why Is Lunar Dust a Problem?
With essentially no atmosphere, dust gets lofted, or lifted by the surface, by a spacecraft’s plumes as it lands on the lunar surface. But it can also be lofted through electrostatic charges. Lunar dust is electrostatic and ferromagnetic, meaning it adheres to anything that carries a charge.
Kristen John, NASA’s Lunar Surface Innovation Initiative technical integration lead at Johnson Space Center said, “The fine grain nature of dust contains particles that are smaller than the human eye can see, which can make a contaminated surface appear to look clean.”
Although lunar dust can appear smooth with a powder like finish, its particles actually have a jagged shape. Lunar dust can scratch everything from a spacesuit to human lungs. Dust can also prevent hardware from surviving the lunar night when it accumulates on solar panels causing a reduction in available power. A buildup of dust coats thermal radiators, increasing the temperature of the equipment. Lunar dust can also accumulate on windows, camera lenses, and visors leading to obscured vision.
Dirty Moon? Clean It Up.
The projects being tested on the lunar gravity flight with Blue Origin include ClothBot, Electrostatic Dust Lofting (EDL), and Hermes Lunar-G.
ClothBot
When future astronauts perform extra-vehicular activities on the lunar surface they could bring dust into pressurized, habitable areas. The goal of the ClothBot experiment is to mimic and measure the transport of lunar dust as releases from a small patch of spacesuit fabric. When agitated by pre-programmed motions, the compact robot can simulate “doffing,” the movement that occurs when removing a spacesuit. A laser-illuminated imaging system will capture the dust flow in real-time, while sensors record the size and number of particles traveling through the space. This data will be used to understand dust generation rates inside a lander or airlock from extra-vehicular activity and refine models of lunar dust transport for future lunar and potential Martian missions.
Electrostatic Dust Lofting
This technology will examine the lofting of lunar dust when electrostatic charging occurs after exposure to ultraviolet light. The EDL’s camera with associated lights will record and illuminate for the duration of the flight. During the lunar gravity phase of the flight, a vacuum door containing the dust sample will release and the ultraviolet light source will illuminate the substance, charging the grains until they electrostatically repel one another and become lofted. The lofted dust will pass through a sheet laser as it rises up from the surface. When the lunar gravity phase ends, the ultraviolet light source disables, and the camera will continue recording until the end of the flight. This data will inform dust mitigation modeling efforts for future Moon missions.
Hermes Lunar-G
NASA partnered with Texas A&M and Texas Space Technology Applications and Research (T STAR) to develop Hermes Lunar-G, technology that utilizes flight-proven hardware to conduct experiments with regolith simulants. Hermes was previously a facility on the International Space Station. Hermes Lunar-G repurposed Hermes hardware to study lunar regolith simulants. The Hermes Lunar-G technology uses four canisters to compress the simulants during flight, takeoff, and landing. When the technology is in lunar gravity, it will decompress the contents of the canisters while high-speed imagery and sensors capture data. Results of this experiment will provide information on regolith mechanics that can be used in a variety of computational models. The results of Hermes Lunar-G will be compared to microgravity data from the space station as well as similar data acquired from parabolic flights for lunar and microgravity flight profiles.
The Future of Dust Mitigation
As a primary challenge of lunar exploration, dust mitigation influences several NASA technology developments. Capabilities from In-Situ Resource Utilization to surface power and mobility, rely on some form of dust mitigation, making it a cross-cutting area.
Learning some of the fundamental properties of how lunar dust behaves and how lunar dust impacts systems has implications far beyond dust mitigation and environments. Advancing our understanding of the behavior of lunar dust and advancing our dust mitigation technologies benefits most capabilities planned for use on the lunar surface."
Kristen John
NASA’s Lunar Surface Innovation Initiative Technical Integration Lead
Engineering teams perform a variety of tests to mitigate dust, ensuring it doesn’t cause damage to hardware that goes to the Moon. NASA’s Game Changing Development program, created a reference guide for lunar dust mitigation to help engineers build hardware destined for the lunar surface.
NASA’s Flight Opportunities program funded the Blue Origin flight test as well as the vehicle capability enhancements to enable the simulation of lunar gravity during suborbital rocket flight for the first time. The payloads are managed under NASA’s Game Changing Development program within the agency’s Space Technology Mission Directorate.
To learn more visit: https://www.nasa.gov/stmd-game-changing-development/
View the Flight Summary Page Share
Details
Last Updated Dec 13, 2024 Related Terms
Space Technology Mission Directorate Flight Opportunities Program Game Changing Development Program Explore More
3 min read NASA Gives The World a Brake
Article 1 day ago 3 min read Atmospheric Probe Shows Promise in Test Flight
Article 2 days ago 1 min read NASA TechLeap Prize: Space Technology Payload Challenge
Article 3 days ago Keep Exploring Discover More Topics From NASA
Space Technology Mission Directorate
Game Changing Development
Flight Opportunities
NASA’s Lunar Surface Innovation Initiative
View the full article
-
By USH
Since late November 2024 there is something is going on and no one has the answer to why there are ongoing incursions of unidentified drones over U.S. and U.K. military bases, nuclear installations and areas such as New Jersey and Manchester Airport.
For example, over the past 72 hours, again there have been numerous reports of large, car-sized drones or UFOs seen in the US (New Jersey, Arizona, North Carolina, Texas) and the UK too.
These drones often flying in formations displaying advanced capabilities such as coordination, range, endurance, and the ability to evade detection and interception. Despite multiple sightings, none have been recovered or identified, and no physical descriptions or origins have been confirmed.
Key details:
Activity: The drones have penetrated restricted airspace repeatedly, often in swarms of a dozen or more.
Capabilities: The drones exhibit advanced coordination and endurance, suggesting sophisticated technology.
Response: The U.S. Air Force acknowledges the incursions but states that they have not disrupted operations. Investigations are ongoing in collaboration with U.K. authorities.
Speculation: Potential origins range from Russia or China to commercial or recreational sources. However, their behavior and capabilities seem to exceed typical drone technology. Even there is speculation about an upcoming false flag alien/UFO invasion.
Government Inaction: Criticism is directed at the Pentagon and other authorities for not addressing the issue or taking action to remove the objects, especially given their proximity to critical infrastructure.
The FBI and other authorities are reportedly focused on potential UFO or drone activities, particularly on or around December 3rd, which some claim was predicted to be significant by an individual known for accurately forecasting the 2003 Indonesian tsunami.
Media Suppression: Reports indicate that some footage and discussions about the sightings have been censored or removed.
Historical Context: The events resemble past UFO sightings at military installations, such as the 1975 U.S. military base incursions, where objects displayed extraordinary flight capabilities and eluded interception.
The situation remains unresolved, raising questions about the drones' origins, purpose, and implications for military security.
Whether they are advanced foreign drones or something more extraordinary, the lack of evidence and official explanations fuels speculation whether these sightings represent a security threat.
More information is awaited from ongoing investigations and official responses.
Several links/discussions of reported drone/UFO sightings:
Manchester Airport UFO sighting from inside the cockpit plus Clear shot of Airport UAP https://www.youtube.com/watch?v=6zkZ3x1T0QU
Drones? UFOs? What's flying over the UK Bases? https://www.youtube.com/watch?v=Zy4feLBNQq8
UFO Invasion?! "They're the size of cars spotted over New Jersey https://www.youtube.com/watch?v=iBLa6lUi5fg
Drone/ UFO sighting over the Duke Nuclear Power Plant https://x.com/digijordan/status/1862721088544772434View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.