Jump to content

Recommended Posts

  • Publishers
Posted

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A blue background has NASA in the Park on it with Orange and White letters. The SLS Rocket graphic and stars appear as well.
Downtown Huntsville Inc.

Media are invited to attend a celebration of space and the Rocket City during NASA in the Park on Saturday, June 22, 10 a.m. to 2 p.m. CDT at Big Spring Park East in Huntsville, Alabama.

NASA and partners will pack the park with exhibits, music, food vendors, and hands-on activities for all ages. This event is free and open to the public.

Joseph Pelfrey, director of NASA’s Marshall Space Flight Center, and local leaders will kick off the program of activities at 10:15 a.m. at the central stage on the south side of the park.

Pelfrey and other NASA team members will be available to speak with reporters between 10:30 and 11 a.m. near the stage.

Reporters interested in interviews should contact Molly Porter, molly.a.porter@nasa.gov or 256-424-5158.

For more information about Marshall, visit:

https://www.nasa.gov/marshall

Molly Porter
Marshall Space Flight Center
256-424-5158
molly.a.porter@nasa.gov

Share

Details

Last Updated
Jun 20, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA has selected seven companies to assist the agency with architectural and engineering services at multiple agency centers and facilities.
      The Western Regional Architect-Engineer Services is an indefinite-delivery/indefinite-quantity multiple award contract has a total estimated value not to exceed $75 million. The contract was awarded on July 14 with a five-year period of performance with the possibility of a six-month extension.
      The selected contractors are:
      DYNOTEC-KZF JV LLC of Columbus, Ohio Merrick-IMEG JV LLP of Greenwood Village, Colorado G Squared Design of Lakewood, Colorado Kal Architects Inc. of Irvine, California AECOM Technical Services Inc. of Los Angeles Stell SIA Sala O’Brien LLC DBA S3, LLC (S3) of Mountlake Terrace, Washington Jacobs Engineering Group Inc. of Arlington, Virginia Under the contract, the awarded companies will support general construction, alteration, modification, maintenance and repair, new construction of buildings, facilities, and real property for NASA’s Ames Research Center in California’s Silicon Valley and Armstrong Flight Research Center in Edwards, California. Support also includes optional back-up capacity in support of other NASA centers and federal tenants at agency facilities, including NASA’s Jet Propulsion Laboratory in Southern California, Goldstone Deep Space Communications Complex in Fort Irwin, California, and the NASA launch alliance at Vandenberg Space Force Base in California.
      For information about NASA and other agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Share
      Details
      Last Updated Jul 15, 2025 LocationNASA Headquarters Related Terms
      Ames Research Center Armstrong Flight Research Center Jet Propulsion Laboratory View the full article
    • By NASA
      Explore This Section Science Uncategorized NASA SCoPE Summer Symposium… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      NASA SCoPE Summer Symposium Celebrates Early Career Scientists and Cross-Team Collaboration
      From June 16–18, 2025, the NASA Science Mission Directorate Community of Practice for Education (SCoPE) Summer Symposium brought together a community of scientists, educators, and outreach professionals to celebrate and strengthen NASA’s commitment to developing its workforce and broadening participation in science.
      NASA SCoPE is a NASA-funded initiative at Arizona State University that connects early career scientists with NASA Science Activation (SciAct) program teams to build capacity in science communication, community engagement, and educational outreach. Through targeted support like Seed Grants, Travel Grants, and Mission Liaison opportunities, SCoPE equips scientists with the skills and networks needed to meaningfully engage the public with NASA science.
      Held in collaboration with key SciAct teams—including Infiniscope, Co-creating with Communities, NASA’s Community College Network, and NASA’s Universe of Learning—the 2025 symposium highlighted the incredible impact of SCoPE over the past four and a half years. The program has financially supported more than 100 early career scientists across a growing network of nearly 1,000 participants.
      Over the course of the three-day event, 23 awardees of SCoPE Seed Grants, Travel Grants, and Mission Liaison Grants came together to share their work, connect across disciplines, and explore new avenues for collaboration. Twelve Seed Grant awardees presented their projects, illustrating the transformative power of partnerships with SciAct teams. Highlights included learning how to write for young audiences through mentorship from NASA eClips in support of the children’s book ‘Blai and Zorg Explore the Moon’, designed for elementary learners; a collaborative effort between ‘Lost City, Icy Worlds’ and OpenSpace that evolved into long-term networking and visualization opportunities; and an Antarctic research project that, through collaboration with the Ocean Community Engagement and Awareness using NASA Earth Observations and Science (OCEANOS) project and Infiniscope, both expanded training opportunities for expedition guides and brought polar science to Puerto Rican high school summer interns.
      Beyond formal sessions, the symposium embraced community building through shared meals, informal networking, and hands-on experiences like a 3D planetarium show using OpenSpace software, a telescope demonstration with 30 high school students, and a screening of NASA’s Planetary Defenders documentary. Workshop topics addressed the real-world needs of early career professionals, including grant writing, logic model development, and communicating with the media.
      Survey responses revealed that 95% of attendees left with a stronger sense of belonging to a community of scientists engaged in outreach. Participants reported making valuable new connections—with peers, mentors, and potential collaborators—and left inspired to try new approaches in their own work, from social media storytelling to designing outreach for hospital patients or other specialized audiences.
      As one participant put it, “Seeing others so passionate about Science Communication inspired me to continue doing it in different ways… it feels like the start of a new wave.” Another attendee remarked, “I want to thank the entire team for SCoPE to even exist. It is an incredible team/program/resource and I can’t even imagine the amount of work, dedication and pure passion that has gone into this entire project over the years. Although I only found SCoPE very recently, I feel like it has been incredibly helpful in my scientific journey and I only wish I had learned of the program sooner. Thank you to the entire team for what was a truly educational and inspirational workshop, and the wonderful community that SCoPE has fostered.”
      This successful event was made possible through the dedication of NASA SciAct collaborators and the leadership of SciAct Program Manager Lin Chambers, whose continued support of early career engagement through SCoPE has created a growing, connected community of science communicators. The SCoPE Summer Symposium exemplifies how cross-team collaboration and community-centered design can effectively amplify the reach of NASA science.
      Learn more about how NASA’s Science Activation program connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      SCoPE-funded scientists and collaborators gather at the 2025 SCoPE Summer Symposium to celebrate program success, share ideas, build partnerships, and advance science communication and education efforts across NASA’s Science Activation program. Share








      Details
      Last Updated Jul 15, 2025 Editor NASA Science Editorial Team Related Terms
      Opportunities For Educators to Get Involved Science Activation Science Mission Directorate Explore More
      4 min read Linking Satellite Data and Community Knowledge to Advance Alaskan Snow Science


      Article


      1 day ago
      2 min read Hubble Snaps Galaxy Cluster’s Portrait


      Article


      4 days ago
      7 min read NASA’s Parker Solar Probe Snaps Closest-Ever Images to Sun
      On its record-breaking pass by the Sun late last year, NASA’s Parker Solar Probe captured…


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      A host of scientific investigations await the crew of NASA’s SpaceX Crew-11 mission during their long-duration expedition aboard the International Space Station. NASA astronauts Zena Cardman and Mike Fincke, and JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, are set to study plant cell division and microgravity’s effects on bacteria-killing viruses, as well as perform experiments to produce a higher volume of human stem cells and generate on-demand nutrients.
      Here are details on some of the research scheduled during the Crew-11 mission:
      Making more stem cells
      Cultures of stem cells grown in 2D on Earth, left, and as 3D spheres in simulated microgravity on Earth.BioServe A stem cell investigation called StemCellEx-IP1 evaluates using microgravity to produce large numbers of induced pluripotent stem cells. Made by reprogramming skin or blood cells, these stem cells can transform into any type of cell in the body and are used in regenerative medicine therapies for many diseases. However, producing enough cells on the ground is a challenge.
      Researchers plan to use the microgravity environment aboard the space station to demonstrate whether generating 1,000 times more cells is possible and whether these cells are of higher quality and better for clinical use than those made on Earth. If proven, this could significantly improve future patient outcomes.
      “This type of stem cell research is a chance to find treatments and maybe even cures for diseases that currently have none,” said Tobias Niederwieser of BioServe Space Technologies, which developed the investigation. “This represents an incredible potential to make life here on Earth better for all of us. We can take skin or blood cells from a patient, convert them into stem cells, and produce custom cell-therapy with little risk for rejection, as they are the person’s own cells.”
      Alternative to antibiotics
      Genes in Space-12 student investigators Isabella Chuang, left, and Julia Gross, middle, with mentor Kayleigh Ingersoll Omdahl.Genes in Space Genes in Space is a series of competitions in which students in grades 7 through 12 design DNA experiments that are flown to the space station. Genes in Space-12 examines the effects of microgravity on interactions between certain bacteria and bacteriophages, which are viruses that infect and kill bacteria. Bacteriophages already are used to treat bacterial infections on Earth.
      “Boeing and miniPCR bio co-founded this competition to bring real-world scientific experiences to the classroom and promote molecular biology investigations on the space station,” said Scott Copeland of Boeing, and co-founder of Genes in Space. “This
      investigation could establish a foundation for using these viruses to treat bacterial infections in space, potentially decreasing the dependence on antibiotics.”
      “Previous studies indicate that bacteria may display increased growth rates and virulence in space, while the antibiotics used to combat them may be less effective,” said Dr. Ally Huang, staff scientist at miniPCR bio. “Phages produced in space could have profound implications for human health, microbial control, and the sustainability of long-duration remote missions. Phage therapy tools also could revolutionize how we manage bacterial infections and microbial ecosystems on Earth.”
      Edible organisms
      A purple, pre-incubation BioNutrients-3 bag, left, and a pink bag, right, which has completed incubation, on a purple and pink board used for comparison.NASA Some vitamins and nutrients in foods and supplements lose their potency during prolonged storage, and insufficient intake of even a single nutrient can lead to serious diseases, such as a vitamin C deficiency, causing scurvy. The BioNutrients-3 experiment builds on previous investigations looking at ways to produce on-demand nutrients in space using genetically engineered organisms that remain viable for years. These include yogurt and a yeast-based beverage made from yeast strains previously tested aboard station, as well as a new, engineered co-culture that produces multiple nutrients in one sample bag.
      “BioNutrients-3 includes multiple food safety features, including pasteurization to kill microorganisms in the sample and a demonstration of the feasibility of using a sensor called E-Nose that simulates an ultra-sensitive nose to detect pathogens,” said Kevin Sims, project manager at NASA’s Ames Research Center in California’s Silicon Valley.
      Another food safety feature is a food-grade pH indicator to track bacterial growth.
      “These pH indicators help the crew visualize the progress of the yogurt and kefir samples,” Sims said. “As the organisms grow, they generate lactic acid, which lowers the pH and turns the indicator pink.”
      The research also features an investigation of yogurt passage, which seeds new cultures using a bit of yogurt from a finished bag, much like maintaining a sourdough bread starter. This method could sustain a culture over multiple generations, eliminating concerns about yogurt’s shelf life during a mission to the Moon or Mars while reducing launch mass.
      Understanding cell division
      Cells of green algae dividing.University of Toyama The JAXA Plant Cell Division investigation examines how microgravity affects cell division in green algae and a strain of cultured tobacco cells. Cell division is a fundamental element of plant growth, but few studies have examined it in microgravity.
      “The tobacco cells divide frequently, making the process easy to observe,” said Junya Kirima of JAXA. “We are excited to reveal the effects of the space environment on plant cell division and look forward to performing time-lapse live imaging of it aboard the space station.”
      Understanding this process could support the development of better methods for growing plants for food in space, including on the Moon and Mars. This investigation also could provide insight to help make plant production systems on Earth more efficient.
      For nearly 25 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and conducting critical research for the benefit of humanity and our home planet. Space station research supports the future of human spaceflight as NASA looks toward deep space missions to the Moon under the Artemis campaign and in preparation for future human missions to Mars, as well as expanding commercial opportunities in low Earth orbit and beyond.
      Learn more about the International Space Station at:
      https://www.nasa.gov/station
      Keep Exploring Discover More Topics From NASA
      Latest News from Space Station Research
      Space Station Research and Technology
      Humans In Space
      Station Benefits for Humanity
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An international team of astronomers has uncovered new evidence to explain how pulsing remnants of exploded stars interact with surrounding matter deep in the cosmos, using observations from NASA’s IXPE (Imaging X-ray Polarimetry Explorer) and other telescopes. 
      Scientists based in the U.S., Italy, and Spain, set their sights on a mysterious cosmic duo called PSR J1023+0038, or J1023 for short. The J1023 system is comprised of a rapidly rotating neutron star feeding off of its low-mass companion star, which has created an accretion disk around the neutron star. This neutron star is also a pulsar, emitting powerful twin beams of light from its opposing magnetic poles as it rotates, spinning like a lighthouse beacon.
      The J1023 system is rare and valuable to study because the pulsar transitions clearly between its active state, in which it feeds off its companion star, and a more dormant state, when it emits detectable pulsations as radio waves. This makes it a “transitional millisecond pulsar.” 
      An artist’s illustration depicting the central regions of the binary system PSR J1023+0038, including the pulsar, the inner accretion disc and the pulsar wind. Credit: Marco Maria Messa, University of Milan/INAF-OAB; Maria Cristina Baglio, INAF-OAB “Transitional millisecond pulsars are cosmic laboratories, helping us understand how neutron stars evolve in binary systems,” said researcher Maria Cristina Baglio of the Italian National Institute of Astrophysics (INAF) Brera Observatory in Merate, Italy, and lead author of a paper in The Astrophysical Journal Letters illustrating the new findings. 
      The big question for scientists about this pulsar system was: Where do the X-rays originate? The answer would inform broader theories about particle acceleration, accretion physics, and the environments surrounding neutron stars across the universe.
      The source surprised them: The X-rays came from the pulsar wind, a chaotic stew of gases, shock waves, magnetic fields, and particles accelerated near the speed of light, that hits the accretion disk.  
      To determine this, astronomers needed to measure the angle of polarization in both X-ray and optical light. Polarization is a measure of how organized light waves are. They looked at X-ray polarization with IXPE, the only telescope capable of making this measurement in space, and comparing it with optical polarization from the European Southern Observatory’s Very Large Telescope in Chile. IXPE launched in Dec. 2021 and has made many observations of pulsars, but J1023 was the first system of its kind that it explored. 
      NASA’s NICER (Neutron star Interior Composition Explorer) and Neil Gehrels Swift Observatory provided valuable observations of the system in high-energy light. Other telescopes contributing data included the Karl G. Jansky Very Large Array in Magdalena, New Mexico. 
      The result: scientists found the same angle of polarization across the different wavelengths.
      “That finding is compelling evidence that a single, coherent physical mechanism underpins the light we observe,” said Francesco Coti Zelati of the Institute of Space Sciences in Barcelona, Spain, co-lead author of the findings. 
      This interpretation challenges the conventional wisdom about neutron star emissions of radiation in binary systems, the researchers said. Previous models had indicated that the X-rays come from the accretion disk, but this new study shows they originate with the pulsar wind. 
      “IXPE has observed many isolated pulsars and found that the pulsar wind powers the X-rays,” said NASA Marshall astrophysicist Philip Kaaret, principal investigator for IXPE at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These new observations show that the pulsar wind powers most of the energy output of the system.”
      Astronomers continue to study transitional millisecond pulsars, assessing how observed physical mechanisms compare with those of other pulsars and pulsar wind nebulae. Insights from these observations could help refine theoretical models describing how pulsar winds generate radiation – and bring researchers one step closer, Baglio and Coti Zelati agreed, to fully understanding the physical mechanisms at work in these extraordinary cosmic systems.
      More about IXPE
      IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder. Learn more about IXPE’s ongoing mission here:
      https://www.nasa.gov/ixpe
      Share
      Details
      Last Updated Jul 15, 2025 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      IXPE (Imaging X-ray Polarimetry Explorer) Marshall Astrophysics Marshall Science Research & Projects Marshall Space Flight Center Explore More
      6 min read Smarter Searching: NASA AI Makes Science Data Easier to Find
      Imagine shopping for a new pair of running shoes online. If each seller described them…
      Article 6 days ago 2 min read NASA Announces Winners of 2025 Human Lander Challenge
      Article 3 weeks ago 4 min read I Am Artemis: Patrick Junen
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore This Section Science Uncategorized Helio Highlights: June… Home Framework for Heliophysics Education About Helio Big Idea 1.1 Helio Big Idea 1.2 Helio Big Idea 1.3 Helio Big Idea 2.1 Helio Big Idea 2.2 Helio Big Idea 2.3 Helio Big Idea 3.1 Helio Big Idea 3.2 Helio Big Idea 3.3 Helio Missions Helio Topics Resource Database About NASA HEAT More Highlights Space Math   4 min read
      Helio Highlights: June 2025
      4 Min Read Helio Highlights: June 2025
      An artist’s interpretation of the Parker Solar Probe flying through the corona. Credits:
      NASA Two Stars in Solar Science
      It takes a lot of work to make space missions happen. Hundreds or even thousands of experts work as a team to put together the spacecraft. Then it has to be tested in conditions similar to space, to be sure that it can survive out there once it is launched. Fixing big issues that pop up after launch is either impossible or very difficult, so it is important that everything works before the mission gets to space.
      The Parker Solar Probe and Solar Orbiter missions study the Sun from different points of view. Parker is led by NASA and was built to fly into the upper atmosphere of the Sun, called the corona. Solar Orbiter is led by the European Space Agency (ESA) and has gotten our first peek at the Sun’s poles. Together, they both provide a deeper understanding of the Sun and how it affects the rest of the solar system.
      A New Way of Seeing
      It takes a lot of teamwork to build and launch any space mission, and Solar Orbiter was no different. It also had to go through a lot of testing in conditions similar to outer space before it made its final journey to the launch site.
      The Solar Orbiter mission has taken the highest-ever-resolution images of the Sun and recently sent back the first ever close-up images of the Sun’s poles. It has also studied the solar wind to see what it is made of and helped scientists find out where on the Sun the solar wind comes from. Working hand-in-hand with Parker, it has also shown how the solar wind gets a magnetic “push” that increases its total speed.
      An infographic showing the ten scientific instruments carried aboard Solar Orbiter European Space Agency To get all of this done, the spacecraft carries ten different scientific instruments on its voyage around the Sun. These instruments work together to provide a total overview of our star. Six of them are remote-sensing instruments (above in gold), which “see” the Sun and return imagery to Earth. The other four are what’s called in-situ instruments (above in pink), which measure the environment all  around the spacecraft. This includes the solar wind, and the electric and magnetic fields embedded within it.
      Faster and Closer Than Ever Before
      The Parker Solar Probe was named for Dr. Eugene N. Parker, who pioneered our modern understanding of the Sun. In the mid-1950s, Parker developed a theory that predicted the solar wind. The probe named after him is designed to swoop within 4 million miles (6.5 million kilometers) of the Sun’s surface to trace its energy flow, to study the heating of the corona, and to explore what accelerates the solar wind.
      To get all this done, the probe has to survive the blazing hot corona. It can get up to about 2 million °F (1.1 million °C)!  Parker uses high-tech thermal engineering to protect itself, including an eight-foot diameter heat shield called the Thermal Protection System (TPS). The TPS is made of two panels of carbon composite with a lightweight 4.5-inch-thick carbon foam core. This heat shield sandwich keeps things about 85 °F (29 °C) in its shadow, even though the Sun-facing side reaches about 2,500 °F (1,377 °C)!
      In 2018, the Parker Solar Probe became the fastest spacecraft ever built, at about 430,000 miles per hour (700,000 kilometers per hour). It also got seven times closer to the Sun than any other spacecraft, getting within 3.8 million miles (6.2 million kilometers). It made this record-breaking close encounter on Christmas Eve of 2024.
      From Yesterday to Tomorrow
      The Parker Solar Probe was launched on August 12, 2018, and Solar Orbiter was launched on February 10, 2020. Both of them took off from Cape Canaveral Air Station in Florida. Some pieces of Solar Orbiter were transported in trucks, but the completed spacecraft made the journey from Europe to the U.S. on a gigantic Antonov cargo plane designed especially for transporting spacecraft.
      Together, these spacecraft have done a lot to improve our knowledge of the Sun. Both missions are currently in their main operational phase, with projected end-of-mission sometime in 2026, and could continue returning data for a few years to come.
      Here are more resources about these missions
      Lesson Plans & Educator Guides
      NASA Helio Club
      Lesson Plan
      A collection of six lessons created for a middle-school audience that introduce basic heliophysics concepts.


      Interactive Resources
      Build A Model Solar
      Probe Activity
      A hands-on guide showing students how to construct a homemade model of the Parker Solar Probe.


      Webinars & Slide Decks
      Parker’s Perihelion
      The Parker Solar Probe mission is the first spacecraft to “touch” the Sun, and made its closest approach in late 2024.


      How will Parker Solar Probe study the Sun?
      A slide deck with resources explaining how the Parker Solar Probe can study the Sun and survive.


      Exploring the Sun with Solar Orbiter Video
      A video conversation about the Solar Orbiter mission with NASA scientist Dr. Teresa Nieves-Chinchilla.


      View the full article
  • Check out these Videos

×
×
  • Create New...