Jump to content

NASA Invites Media to ‘NASA in the Park’ June 22


NASA

Recommended Posts

  • Publishers

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A blue background has NASA in the Park on it with Orange and White letters. The SLS Rocket graphic and stars appear as well.
Downtown Huntsville Inc.

Media are invited to attend a celebration of space and the Rocket City during NASA in the Park on Saturday, June 22, 10 a.m. to 2 p.m. CDT at Big Spring Park East in Huntsville, Alabama.

NASA and partners will pack the park with exhibits, music, food vendors, and hands-on activities for all ages. This event is free and open to the public.

Joseph Pelfrey, director of NASA’s Marshall Space Flight Center, and local leaders will kick off the program of activities at 10:15 a.m. at the central stage on the south side of the park.

Pelfrey and other NASA team members will be available to speak with reporters between 10:30 and 11 a.m. near the stage.

Reporters interested in interviews should contact Molly Porter, molly.a.porter@nasa.gov or 256-424-5158.

For more information about Marshall, visit:

https://www.nasa.gov/marshall

Molly Porter
Marshall Space Flight Center
256-424-5158
molly.a.porter@nasa.gov

Share

Details

Last Updated
Jun 20, 2024

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA logo Chile will sign the Artemis Accords during a ceremony at 3 p.m. EDT on Friday, Oct. 25, at NASA’s Headquarters in Washington.
      NASA Administrator Bill Nelson will host Aisén Etcheverry, Chile’s minister of science, technology, knowledge and innovation, and Juan Gabriel Valdés, ambassador of Chile to the United States, along with other officials from Chile and the U.S. Department of State.
      This event is in-person only. U.S. media and U.S. citizens representing international media organizations interested in attending must RSVP no later than 5 p.m. on Thursday, Oct. 24, to hq-media@mail.nasa.gov. NASA’s media accreditation policy is online.
      The signing ceremony will take place at the agency’s Glennan Assembly Room inside NASA Headquarters located at 300 E St. SW Washington.
      NASA, in coordination with the U.S. Department of State and seven other initial signatory nations, established the Artemis Accords in 2020. With many countries and private companies conducting missions and operations around the Moon, the Artemis Accords provide a common set of principles to enhance the governance of the civil exploration and use of outer space.
      The Artemis Accords reinforce the commitment by signatory nations to the Outer Space Treaty, the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior for civil space exploration and use.
      Learn more about the Artemis Accords at:
      https://www.nasa.gov/artemis-accords
      -end-
      Meira Bernstein / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated Oct 21, 2024 LocationNASA Headquarters Related Terms
      Office of International and Interagency Relations (OIIR) artemis accords View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Researchers think meltwater beneath Martian ice could support microbial life.
      The white material seen within this Martian gully is believed to be dusty water ice. Scientists believe this kind of ice could be an excellent place to look for microbial life on Mars today. This image, showing part of a region called Dao Vallis, was captured by NASA’s Mars Reconnaissance Orbiter in 2009.NASA/JPL-Caltech/University of Arizona These holes, captured on Alaska’s Matanuska Glacier in 2012, are formed by cryoconite — dust particles that melt into the ice over time, eventually forming small pockets of water below the glacier’s surface. Scientists believe similar pockets of water could form within dusty water ice on Mars.Kimberly Casey CC BY-NC-SA 4.0 While actual evidence for life on Mars has never been found, a new NASA study proposes microbes could find a potential home beneath frozen water on the planet’s surface.
      Through computer modeling, the study’s authors have shown that the amount of sunlight that can shine through water ice would be enough for photosynthesis to occur in shallow pools of meltwater below the surface of that ice. Similar pools of water that form within ice on Earth have been found to teem with life, including algae, fungi, and microscopic cyanobacteria, all of which derive energy from photosynthesis.
      “If we’re trying to find life anywhere in the universe today, Martian ice exposures are probably one of the most accessible places we should be looking,” said the paper’s lead author, Aditya Khuller of NASA’s Jet Propulsion Laboratory in Southern California.
      Mars has two kinds of ice: frozen water and frozen carbon dioxide. For their paper, published in Nature Communications Earth & Environment, Khuller and colleagues looked at water ice, large amounts of which formed from snow mixed with dust that fell on the surface during a series of Martian ice ages in the past million years. That ancient snow has since solidified into ice, still peppered with specks of dust.  
      Although dust particles may obscure light in deeper layers of the ice, they are key to explaining how subsurface pools of water could form within ice when exposed to the Sun: Dark dust absorbs more sunlight than the surrounding ice, potentially causing the ice to warm up and melt up to a few feet below the surface.
      The white edges along these gullies in Mars’ Terra Sirenum are believed to be dusty water ice. Scientists think meltwater could form beneath the surface of this kind of ice, providing a place for possible photosynthesis. This is an enhanced-color image; the blue color would not actually be perceptible to the human eye.NASA/JPL-Caltech/University of Arizona Mars scientists are divided about whether ice can actually melt when exposed to the Martian surface. That’s due to the planet’s thin, dry atmosphere, where water ice is believed to sublimate — turn directly into gas — the way dry ice does on Earth. But the atmospheric effects that make melting difficult on the Martian surface wouldn’t apply below the surface of a dusty snowpack or glacier.
      Thriving Microcosms
      On Earth, dust within ice can create what are called cryoconite holes — small cavities that form in ice when particles of windblown dust (called cryoconite) land there, absorb sunlight, and melt farther into the ice each summer. Eventually, as these dust particles travel farther from the Sun’s rays, they stop sinking, but they still generate enough warmth to create a pocket of meltwater around them. The pockets can nourish a thriving ecosystem for simple lifeforms..
      “This is a common phenomenon on Earth,” said co-author Phil Christensen of Arizona State University in Tempe, referring to ice melting from within. “Dense snow and ice can melt from the inside out, letting in sunlight that warms it like a greenhouse, rather than melting from the top down.”
      Christensen has studied ice on Mars for decades. He leads operations for a heat-sensitive camera called THEMIS (Thermal Emission Imaging System) aboard NASA’s 2001 Mars Odyssey orbiter. In past research, Christensen and Gary Clow of the University of Colorado Boulder used modeling to demonstrate how liquid water could form within dusty snowpack on the Red Planet. That work, in turn, provided a foundation for the new paper focused on whether photosynthesis could be possible on Mars.
      In 2021, Christensen and Khuller co-authored a paper on the discovery of dusty water ice exposed within gullies on Mars, proposing that many Martian gullies form by erosion caused by the ice melting to form liquid water.
      This new paper suggests that dusty ice lets in enough light for photosynthesis to occur as deep as 9 feet (3 meters) below the surface. In this scenario, the upper layers of ice prevent the shallow subsurface pools of water from evaporating while also providing protection from harmful radiation. That’s important, because unlike Earth, Mars lacks a protective magnetic field to shield it from both the Sun and radioactive cosmic ray particles zipping around space.
      The study authors say the water ice that would be most likely to form subsurface pools would exist in Mars’ tropics, between 30 degrees and 60 degrees latitude, in both the northern and southern hemispheres.
      Khuller next hopes to re-create some of Mars’ dusty ice in a lab to study it up close. Meanwhile, he and other scientists are beginning to map out the most likely spots on Mars to look for shallow meltwater — locations that could be scientific targets for possible human and robotic missions in the future.
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-142
      Share
      Details
      Last Updated Oct 17, 2024 Related Terms
      Mars Astrobiology Jet Propulsion Laboratory Explore More
      4 min read New Team to Assess NASA’s Mars Sample Return Architecture Proposals
      NASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the…
      Article 20 hours ago 6 min read Christine Knudson Uses Earthly Experience to Study Martian Geology
      Geologist Christine Knudson works with the Curiosity rover to explore Mars — from about 250…
      Article 1 day ago 5 min read Snippet of Euclid Mission’s Cosmic Atlas Released by ESA
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA astronaut and Expedition 72 Flight Engineer Nick Hague in the space station cupola. (Credit: NASA) Students from Iowa will have the opportunity to hear NASA astronaut Nick Hague answer their prerecorded questions while he’s serving an expedition aboard the International Space Station on Monday, Oct. 21.
      Watch the 20-minute space-to-Earth call at 11:40 a.m. EDT on NASA+. Students from Iowa State University in Ames, First Robotics Clubs, World Food Prize Global Youth Institute, and Plant the Moon teams will focus on food production in space. Learn how to watch NASA content on various platforms, including social media.
      Media interested in covering the event must contact Angie Hunt by 5 p.m., Friday, Oct.18 at amhunt@iastate.edu or 515-294-8986.
      For more than 23 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Sandra Jones 
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Sees a… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   3 Min Read NASA’s Hubble Sees a Stellar Volcano
      NASA’s Hubble Space Telescope captures a spectacular view the star R Aquarii. Credits:
      NASA, ESA, Matthias Stute , Margarita Karovska , Davide De Martin (ESA/Hubble), Mahdi Zamani (ESA/Hubble) NASA’s Hubble Space Telescope has provided a dramatic and colorful close-up look at one of the most rambunctious stars in our galaxy, weaving a huge spiral pattern among the stars.
      Located approximately 700 light-years away, a binary star system called R Aquarii undergoes violent eruptions that blast out huge filaments of glowing gas. The twisted stellar outflows make the region look like a lawn sprinkler gone berserk. This dramatically demonstrates how the universe redistributes the products of nuclear energy that form deep inside stars and jet back into space.
      R Aquarii belongs to a class of double stars called symbiotic stars. The primary star is an aging red giant and its companion is a compact burned-out star known as a white dwarf. The red giant primary star is classified as a Mira variable that is over 400 times larger than our Sun. The bloated monster star pulsates, changes temperature, and varies in brightness by a factor of 750 times over a roughly 390-day period. At its peak the star is blinding at nearly 5,000 times our Sun’s brightness.
      This NASA Hubble Space Telescope image features the binary star system R Aquarii. NASA, ESA, Matthias Stute , Margarita Karovska , Davide De Martin (ESA/Hubble), Mahdi Zamani (ESA/Hubble) When the white dwarf star swings closest to the red giant along its 44-year orbital period, it gravitationally siphons off hydrogen gas. This material accumulates on the dwarf star’s surface until it undergoes spontaneous nuclear fusion, making that surface explode like a gigantic hydrogen bomb. After the outburst, the fueling cycle begins again.
      This outburst ejects geyser-like filaments shooting out from the core, forming weird loops and trails as the plasma emerges in streamers. The plasma is twisted by the force of the explosion and channeled upwards and outwards by strong magnetic fields. The outflow appears to bend back on itself into a spiral pattern. The plasma is shooting into space over 1 million miles per hour – fast enough to travel from Earth to the Moon in 15 minutes! The filaments are glowing in visible light because they are energized by blistering radiation from the stellar duo.
      Hubble first observed the star in 1990. R Aquarii was resolved into two very bright stars separated by about 1.6 billion miles. The ESA/Hubble team now has made a unique timelapse of R Aquarii’s dynamic behavior, from observations spanning from 2014 to 2023. Across the five images, the rapid and dramatic evolution of the binary star and its surrounding nebula can be seen. The binary star dims and brightens due to strong pulsations in the red giant star.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This video features five frames spanning from 2014 to 2023 of R Aquarii. These frames show the brightness of the central binary changing over time due to strong pulsations in the red giant star. The central structures spiral outward due to their interaction with material previously ejected by the binary. This timelapse highlights the value of Hubble’s high resolution optical observations in the changing universe, known as time-domain astronomy. NASA, ESA, Matthias Stute , Margarita Karovska , Davide De Martin , Mahdi Zamani , N. Bartmann (ESA/Hubble) The scale of the event is extraordinary even in astronomical terms. Space-blasted material can be traced out to at least 248 billion miles from the stars, or 24 times our solar system’s diameter. Images like these and more from Hubble are expected to revolutionize our ideas about such unique stellar “volcanoes” as R Aquarii.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Bethany Downer
      ESA/Hubble
      Share








      Details
      Last Updated Oct 16, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Binary Stars Goddard Space Flight Center Hubble Space Telescope Science Mission Directorate Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      The Death Throes of Stars


      From colliding neutron stars to exploding supernovae, Hubble reveals new details of  some of the mysteries surrounding the deaths of…


      Exploring the Birth of Stars



      Hubble Focus: The Lives of Stars


      NASA’s Hubble Space Telescope team has released a new e-book called “Hubble Focus: The Lives of Stars.” This e-book highlights…

      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A natural color view from Cassini of Saturn with its Titan moon in the foreground in August 2012. Titan’s diameter is 50% larger than Earth’s moon.Credit: NASA NASA’s ambitious Cassini mission to Saturn in the late 1990s was one of the agency’s greatest accomplishments, providing unprecedented revelations about the esoteric outer planet and its moons. The complex undertaking was also a tremendous, yet bittersweet, achievement for the Lewis Research Center (today, NASA’s Glenn Research Center in Cleveland), which oversaw the rockets that propelled Cassini to Saturn. Cassini brought a close to over 35 years of Lewis’ management of NASA’s launch vehicles.
      Cassini Mission: 5 Things to Know About NASA Lewis’ Last Launch
      1. NASA Lewis Launched the Largest and Most Complex Deep-Space Mission to Date
      In the early 1980s, NASA began planning the first-ever in-depth study of the planet Saturn. The mission would use the Cassini orbiter designed by NASA’s Jet Propulsion Laboratory in Southern California and the European Space Agency’s Huygens lander. It was one of the heaviest and most complex interplanetary spacecraft ever assembled. Cassini’s plutonium power system and intricate flight path further complicated the mission.
      NASA Lewis was responsible for managing the launches of government missions involving the Centaur upper stage and the Atlas and Titan boosters. Cassini’s 6-ton payload forced Lewis to use the U.S. Air Force’s three-stage Titan IV, the most powerful vehicle available, and pair it with the most advanced version of the Centaur, referred to as G-prime.
      The Titan IV shroud in the Space Power Facility in October 1990. It was only the second test since the world-class facility had been brought back online after over a decade in standby conditions.Credit: NASA/Quentin Schwinn 2. Lewis Performed Hardware Testing for the Cassini Launch
      One of NASA Lewis’ primary launch responsibilities was integrating the payload and upper stages with the booster. This involved balancing weight requirements, providing adequate insulation for Centaur’s cryogenic propellants, determining correct firing times for the stages, and ensuring that that the large shroud, which encapsulated both the upper stage and payload, jettisoned cleanly after launch.
      By the time of Cassini, the center had been testing shrouds (including the Titan III fairing) in simulated space conditions for over 25 years. NASA’s Space Power Facility possesses the world’s largest vacuum chamber and was large enough to accommodate the Titan IV’s 86-foot-tall, 16-foot-diameter fairing. In the fall of 1990, the shroud was installed in the chamber, loaded with weights that simulated the payload, and subjected to atmospheric pressures found at an altitude of 72 miles.
      The system was successfully separated in less than half a second. Using simulated Cassini and Centaur vehicles, NASA engineers also redesigned a thicker thermal blanket that would protect Cassini’s power system from acoustic vibrations during liftoff.


      Members of NASA Lewis’ Launch Vehicle Directorate pose with a Centaur model in May 1979 to mark the 50th successful launch of the Atlas/Centaur.Credit: NASA/Martin Brown 3. Lewis Personnel Assisted with the Launch
      In late August 1997, a group of NASA Lewis engineers traveled to NASA’s Kennedy Space Center in Florida to make final preparations for the Cassini launch, working with Air Force range safety personnel at Patrick Air Force Base to ensure a safe launch under all circumstances.
      After an aborted launch two days earlier, the vehicle was readied for another attempt in the evening of October 14. Lewis personnel took stations in the Launch Vehicle Data Center inside Hangar AE to monitor the launch vehicle’s temperature, pressure, speed, trajectory, and vibration during the launch. The weather was mild, and the countdown proceeded into the morning hours of October 15 without any major issues.
      At 4:43 a.m. EDT, Titan’s first stage and the two massive solid rocket motors roared to life, and the vehicle rose into the dark skies over Florida. The Lewis launch team monitored the flight as the vehicle exited Earth’s atmosphere, Titan burned through its stages, and Centaur sent Cassini out of Earth orbit and on its 2-billion-mile journey to Saturn. After a successful spacecraft separation, Lewis’ responsibilities were complete. The launch had gone exceedingly well. 

      This illustration depicts the Cassini orbiter with the Huygens lander descending to the Titan moon (left) and Saturn in the background.Credit: NASA 4. Cassini-Huygens Brought a Close to Decades of Lewis Launch Operations
      Cassini-Huygens was NASA Lewis’ 119th and final launch, and it brought to a close the center’s decades of launch operations. The center had been responsible for NASA’s upper-stage vehicles since the fall of 1962. The primary stages were the Agena, which had 28 successful launches, and Centaur, which has an even more impressive track record and remains in service today.
      While Lewis continued to handle vehicle integration and other technical issues for launches of NASA payloads, in the 1980s, NASA began transferring launch responsibilities to commercial entities. In the mid-1990s, NASA underwent a major realignment that consolidated all launch vehicle responsibilities at NASA Kennedy.
      So it was with mixed emotions that around 20 Lewis employees and retirees gathered at the Cleveland center in the early morning hours of Oct. 15, 1997, to watch the Cassini launch. The group held its cheers for 40 minutes after liftoff until Lewis’ responsibilities concluded for the last time with the safe separation of Cassini from Centaur. “In many ways, this is the end of an era, across the agency and, in particular, here at Lewis,” noted one engineer from the Launch Vehicle and Transportation Office.

      The Titan IV/Centaur lifts off from Launch Complex 40 at Cape Canaveral on Oct. 15, 1997. NASA Lewis engineers were monitoring the launch from Hangar AE, roughly 3.5 miles to the south. Credit: NASA 5. Cassini Made Groundbreaking Discoveries That Inform Today’s NASA Missions
      Cassini’s seven-year voyage to Saturn included flybys of Venus (twice), Earth, and Jupiter so that the planets’ gravitational forces could accelerate the spacecraft. Cassini entered Saturn’s orbit in June 2004 and began relaying data and nearly half a million images back to Earth. Huygens separated from the spacecraft and descended to the surface of the Saturn’s largest moon, Titan, in January 2005. It was the first time a vehicle ever landed on a celestial body in the outer solar system.
      Cassini went on to make plunges into the planet’s upper atmosphere and through Saturn’s rings.  Scientific information on the mysterious planet, its moons, and rings led to the publication of nearly 4,000 technical papers. After over 13 years and nearly 300 orbits, on Sept. 15, 2017, NASA intentionally sent Cassini plummeting into the atmosphere where it burned up, ending its remarkable mission.
      NASA engineers used their experiences from the Cassini mission to help design the Europa Clipper, which is intended to perform flybys of Jupiter’s moon Europa. Europa Clipper launched on Oct. 14.

      Keep Exploring
      Read the “Sending Cassini to Saturn” Series from NASA Glenn Visit NASA’s Cassini-Huygens Website Visit the European Space Agency’s Cassini-Huygens Website Watch NASA Coverage of the Cassini Launch See NASA Glenn’s Historic Centaur Rocket Display
      Explore More
      24 min read NASA Celebrates Hispanic Heritage Month 2024
      Article 4 days ago 3 min read Pioneering NASA Astronaut Health Tech Thwarts Heart Failure
      Article 4 days ago 8 min read Kathryn Sullivan: The First American Woman to Walk in Space
      Article 5 days ago View the full article
  • Check out these Videos

×
×
  • Create New...