Jump to content

Why Scientists Are Intrigued by Air in NASA’s Mars Sample Tubes


Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA’s Perseverance rover viewed these dust devils
NASA’s Perseverance rover viewed these dust devils swirling across the surface of Mars on July 20, 2021. Scientists want to study the air trapped in samples being collected in metal tubes by Perseverance. Those air samples could help them better understand the Martian atmosphere.
NASA/JPL-Caltech

Tucked away with each rock and soil sample collected by the agency’s Perseverance rover is a potential boon for atmospheric scientists.

Atmospheric scientists get a little more excited with every rock core NASA’s Perseverance Mars rover seals in its titanium sample tubes, which are being gathered for eventual delivery to Earth as part of the Mars Sample Return campaign. Twenty-four have been taken so far.

Most of those samples consist of rock cores or regolith (broken rock and dust) that might reveal important information about the history of the planet and whether microbial life was present billions of years ago. But some scientists are just as thrilled at the prospect of studying the “headspace,” or air in the extra room around the rocky material, in the tubes.

They want to learn more about the Martian atmosphere, which is composed mostly of carbon dioxide but could also include trace amounts of other gases that may have been around since the planet’s formation.

“The air samples from Mars would tell us not just about the current climate and atmosphere, but how it’s changed over time,” said Brandi Carrier, a planetary scientist at NASA’s Jet Propulsion Laboratory in Southern California. “It will help us understand how climates different from our own evolve.”

The Value of Headspace

Among the samples that could be brought to Earth is one tube filled solely with gas deposited on the Martian surface as part of a sample depot. But far more of the gas in the rover’s collection is within the headspace of rock samples. These are unique because the gas will be interacting with rocky material inside the tubes for years before the samples can be opened and analyzed in laboratories on Earth. What scientists glean from them will lend insight into how much water vapor hovers near the Martian surface, one factor that determines why ice forms where it does on the planet and how Mars’ water cycle has evolved over time.

Scientists also want a better understanding of trace gases in the air at Mars. Most scientifically tantalizing would be the detection of noble gases (such as neon, argon, and xenon), which are so nonreactive that they may have been around, unchanged in the atmosphere, since forming billions of years ago. If captured, those gases could reveal whether Mars started with an atmosphere. (Ancient Mars had a much thicker atmosphere than it does today, but scientists aren’t sure whether it was always there or whether it developed later). There are also big questions about how the planet’s ancient atmosphere compared with early Earth’s.

The headspace would additionally provide a chance to assess the size and toxicity of dust particles — information that will help future astronauts on Mars.

“The gas samples have a lot to offer Mars scientists,” said Justin Simon, a geochemist at NASA’s Johnson Space Center in Houston, who is part of a group of over a dozen international experts that helps decide which samples the rover should collect. “Even scientists who don’t study Mars would be interested because it will shed light on how planets form and evolve.”

Apollo’s Air Samples

In 2021, a group of planetary researchers, including scientists from NASA, studied the air brought back from the Moon in a steel container by Apollo 17 astronauts some 50 years earlier.

“People think of the Moon as airless, but it has a very tenuous atmosphere that interacts with the lunar surface rocks over time,” said Simon, who studies a variety of planetary samples at Johnson. “That includes noble gases leaking out of the Moon’s interior and collecting at the lunar surface.”

The way Simon’s team extracted the gas for study is similar to what could be done with Perseverance’s air samples. First, they put the previously unopened container into an airtight enclosure. Then they pierced the steel with a needle to extract the gas into a cold trap — essentially a U-shaped pipe that extends into a liquid, like nitrogen, with a low freezing point. By changing the temperature of the liquid, scientists captured some of the gases with lower freezing points at the bottom of the cold trap.

“There’s maybe 25 labs in the world that manipulate gas in this way,” Simon said. Besides being used to study the origin of planetary materials, this approach can be applied to gases from hot springs and those emitted from the walls of active volcanoes, he added.

Of course, those sources provide much more gas than Perseverance has in its sample tubes. But if a single tube doesn’t carry enough gas for a particular experiment, Mars scientists could combine gases from multiple tubes to get a larger aggregate sample — one more way the headspace offers a bonus opportunity for science.

More About the Mission

A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover is also characterizing the planet’s geology and past climate, which paves the way for human exploration of the Red Planet. JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.

For more about Perseverance:

mars.nasa.gov/mars2020/

News Media Contacts

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov

Karen Fox / Charles Blue
NASA Headquarters, Washington
202-285-1600 / 202-802-5345
karen.c.fox@nasa.gov / charles.e.blue@nasa.gov

2024-087

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      An Update From the 2025 Mars 2020 Science Team Meeting
      A behind-the-scenes look at the annual Mars 2020 Science Team Meeting
      Members of the Mars 2020 Science Team examine post-impact sediments within the Gardnos impact structure, northwest of Oslo, Norway, as part of the June 2025 Science Team Meeting. NASA/Katie Stack Morgan Written by Katie Stack Morgan, Mars 2020 Acting Project Scientist 
      The Mars 2020 Science Team gathered for a week in June to discuss recent science results, synthesize earlier mission observations, and discuss future plans for continued exploration of Jezero’s crater rim. It was also an opportunity to celebrate what makes this mission so special: one of the most capable and sophisticated science missions ever sent to Mars, an experienced and expert Science Team, and the rover’s many science accomplishments this past year.  
      We kicked off the meeting, which was hosted by our colleagues on the RIMFAX team at the University of Oslo, with a focus on our most recent discoveries on the Jezero crater rim. A highlight was the team’s in-depth discussion of spherules observed at Witch Hazel Hill, features which likely provide us the best chance of determining the origin of the crater rim rock sequence.   
      On the second day, we heard status updates from each of the science instrument teams. We then transitioned to a session devoted to “traverse-scale” syntheses. After 4.5 years of Perseverance on Mars and more than 37 kilometers of driving (more than 23 miles), we’re now able to analyze and integrate science datasets across the entire surface mission, looking for trends through space and time within the Jezero rock record. Our team also held a poster session, which was a great opportunity for in-person and informal scientific discussion.  
      The team’s modern atmospheric and environmental investigations were front and center on Day 3. We then rewound the clock, hearing new and updated analyses of data acquired during Perseverance’s earlier campaigns in Jezero’s Margin unit, crater floor, and western fan. The last day of the meeting was focused entirely on future plans for the Perseverance rover, including a discussion of our exploration and sampling strategy during the Crater Rim Campaign. We also looked further afield, considering where the rover might explore over the next few years.  
      Following the meeting, the Science Team took a one-day field trip to visit Gardnos crater, a heavily eroded impact crater with excellent examples of impact melt breccia and post-impact sediment fill. The team’s visit to Gardnos offered a unique opportunity to see and study impact-generated rock units like those expected on the Jezero crater rim and to discuss the challenges we have recognizing similar units with the rover on Mars. Recapping our Perseverance team meetings has been one of my favorite yearly traditions (see summaries from our 2022, 2023, and 2024 meetings) and I look forward to reporting back a year from now. As the Perseverance team tackles challenges in the year to come, we can seek inspiration from one of Norway’s greatest polar explorers, Fridtjof Nansen, who said while delivering his Nobel lecture, “The difficult is that which can be done at once; the impossible is that which takes a little longer.”
      Share








      Details
      Last Updated Jul 01, 2025 Related Terms
      Blogs Explore More
      2 min read Curiosity Blog, Sols 4584–4585: Just a Small Bump


      Article


      1 hour ago
      4 min read Curiosity Blog, Sols 4582-4583: A Rock and a Sand Patch


      Article


      3 days ago
      2 min read Curiosity Blog, Sols 4580-4581: Something in the Air…


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By Space Force
      The Department of the Air Force achieved 100% of its annual recruitment goal three months ahead of schedule, a testament to the enduring appeal of service and the effectiveness of modernized recruiting strategies.

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Curiosity Blog, Sols 4580-4581: Something in the Air…
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on June 23, 2025 — Sol 4578, or Martian day 4,578 of the Mars Science Laboratory mission — at 02:38:50 UTC. NASA/JPL-Caltech Written by Scott VanBommel, Planetary Scientist at Washington University in St. Louis
      Earth planning date: Monday, June 23, 2025
      Curiosity was back at work on Monday, with a full slate of activities planned. While summer has officially arrived for much of Curiosity’s team back on Earth, Mars’ eldest active rover is recently through the depths of southern Mars winter and trending toward warmer temperatures itself. Warmer temperatures mean less component heating is required and therefore more power is freed up for science and driving. However, the current cooler temperatures do present an opportunity to acquire quality short-duration APXS measurements first thing in the morning, which is what Curiosity elected to do once again.
      Curiosity’s plan commenced by brushing a rock target with potential cross-cutting veins, “Hornitos,” and subsequently analyzing it with APXS. A sequence of Mastcam images followed on targets such as “Volcán Peña Blanca,” “La Pacana,” “Iglesia de Jarinilla de Umatia,” and “Ayparavi.” ChemCam, returning to action after a brief and understood hiatus, rounded out the morning’s chemical analysis activities with a 5-point analysis of Ayparavi. After some images of the brush, and a handful of MAHLI snaps of Hornitos, Curiosity was on its way with a planned drive of about 37 meters (about 121 feet).Curiosity’s night would not be spent entirely dreaming of whatever rovers dream, but rather conducting a lengthy APXS analysis of the atmosphere. These analyses enable Curiosity’s team to assess the abundance of argon in the atmosphere — from a volume about the size of a pop can (or soda can, depending on your unit of preference) — which can be used to trace global circulation patterns and better understand modern Mars. Recently, Curiosity has been increasing the frequency of these measurements and pairing them with ChemCam “Passive Sky” observations. These ChemCam activities do not utilize the instrument’s laser, but instead use its other components to characterize the air above the rover. By combining APXS and ChemCam observations of the atmosphere, Curiosity’s team is able to better assess daily and seasonal trends in gases around Gale crater. A ChemCam “Passive Sky” was the primary observation in the second sol of the plan, with Curiosity spending much of the remaining time recharging and eagerly awaiting commands from Wednesday’s team.

      For more Curiosity blog posts, visit MSL Mission Updates


      Learn more about Curiosity’s science instruments

      Share








      Details
      Last Updated Jun 26, 2025 Related Terms
      Blogs Explore More
      2 min read Clay Minerals From Mars’ Most Ancient Past?


      Article


      3 days ago
      4 min read Curiosity Blog, Sols 4577-4579: Watch the Skies


      Article


      6 days ago
      2 min read Curiosity Blog, Sols 4575-4576: Perfect Parking Spot


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Ames research scientist Kristina Pistone monitors instrument data while onboard the Twin Otter aircraft, flying over Monterey Bay during the October 2024 deployment of the AirSHARP campaign. NASA/Samuel Leblanc In autumn 2024, California’s Monterey Bay experienced an outsized phytoplankton bloom that attracted fish, dolphins, whales, seabirds, and – for a few weeks in October – scientists. A team from NASA’s Ames Research Center in Silicon Valley, with partners at the University of California, Santa Cruz (UCSC), and the Naval Postgraduate School, spent two weeks on the California coast gathering data on the atmosphere and the ocean to verify what satellites see from above. In spring 2025, the team returned to gather data under different environmental conditions.

      Scientists call this process validation.

      Setting up the Campaign

      The PACE mission, which stands for Plankton, Aerosol, Cloud, ocean Ecosystem, was launched in February  2024 and designed to transform our understanding of ocean and atmospheric environments. Specifically, the satellite will give scientists a finely detailed look at life near the ocean surface and the composition and abundance of aerosol particles in the atmosphere.

      Whenever NASA launches a new satellite, it sends validation science teams around the world to confirm that the data from instruments in space match what traditional instruments can see at the surface. AirSHARP (Airborne aSsessment of Hyperspectral Aerosol optical depth and water-leaving Reflectance Product Performance for PACE) is one of these teams, specifically deployed to validate products from the satellite’s Ocean Color Instrument (OCI).

      The OCI spectrometer works by measuring reflected sunlight. As sunlight bounces off of the ocean’s surface, it creates specific shades of color that researchers use to determine what is in the water column below. To validate the OCI data, research teams need to confirm that measurements directly at the surface match those from the satellite. They also need to understand how the atmosphere is changing the color of the ocean as the reflected light is traveling back to the satellite.

      In October 2024 and May 2025, the AirSHARP team ran simultaneous airborne and seaborne campaigns. Going into the field during different seasons allows the team to collect data under different environmental conditions, validating as much of the instrument’s range as possible.

      Over 13 days of flights on a Twin Otter aircraft, the NASA-led team used instruments called 4STAR-B (Spectrometer for sky-scanning sun Tracking Atmospheric Research B), and the C-AIR (Coastal Airborne In-situ Radiometer) to gather data from the air. At the same time, partners from UCSC used a host of matching instruments onboard the research vessel R/V Shana Rae to gather data from the water’s surface.

      Ocean Color and Water Leaving Reflectance

      The Ocean Color Instrument measures something called water leaving reflectance, which provides information on the microscopic composition of the water column, including water molecules, phytoplankton, and particulates like sand, inorganic materials, and even bubbles. Ocean color varies based on how these materials absorb and scatter sunlight. This is especially useful for determining the abundance and types of phytoplankton.

      Photographs taken out the window of the Twin Otter aircraft during the October 2024 AirSHARP deployment showcase the variation in ocean color, which indicates different molecular composition of the water column beneath. The red color in several of these photos is due to a phytoplankton bloom – in this case a growth of red algae. NASA/Samuel Leblanc
      The AirSHARP team used radiometers with matching technology – C-AIR from the air and C-OPS (Compact Optical Profiling System) from the water – to gather water leaving reflectance data.

      “The C-AIR instrument is modified from an instrument that goes on research vessels and takes measurements of the water’s surface from very close range,” said NASA Ames research scientist Samuel LeBlanc. “The issue there is that you’re very local to one area at a time. What our team has done successfully is put it on an aircraft, which enables us to span the entire Monterey Bay.”

      The larger PACE validation team will compare OCI measurements with observations made by the sensors much closer to the ocean to ensure that they match, and make adjustments when they don’t. 

      Aerosol Interference

      One factor that can impact OCI data is the presence of manmade and natural aerosols, which interact with sunlight as it moves through the atmosphere. An aerosol refers to any solid or liquid suspended in the air, such as smoke from fires, salt from sea spray, particulates from fossil fuel emissions, desert dust, and pollen.

      Imagine a 420 mile-long tube, with the PACE satellite at one end and the ocean at the other. Everything inside the tube is what scientists refer to as the atmospheric column, and it is full of tiny particulates that interact with sunlight. Scientists quantify this aerosol interaction with a measurement called aerosol optical depth.

      “During AirSHARP, we were essentially measuring, at different wavelengths, how light is changed by the particles present in the atmosphere,” said NASA Ames research scientist Kristina Pistone. “The aerosol optical depth is a measure of light extinction, or how much light is either scattered away or absorbed by aerosol particulates.” 

      The team measured aerosol optical depth using the 4STAR-B spectrometer, which was engineered at NASA Ames and  enables scientists to identify which aerosols are present and how they interact with sunlight.

      Twin Otter Aircraft

      AirSHARP principal investigator Liane Guild walks towards a Twin Otter aircraft owned and operated by the Naval Postgraduate School. The aircraft’s ability to perform complex, low-altitude flights made it the ideal platform to fly multiple instruments over Monterey Bay during the AirSHARP campaign. NASA/Samuel Leblanc
      Flying these instruments required use of a Twin Otter plane, operated by the Naval Postgraduate School (NPS). The Twin Otter is unique for its ability to perform extremely low-altitude flights, making passes down to 100 feet above the water in clear conditions.

      “It’s an intense way to fly. At that low height, the pilots continually watch for and avoid birds, tall ships, and even wildlife like breaching whales,” said Anthony Bucholtz, director of the Airborne Research Facility at NPS.

      With the phytoplankton bloom attracting so much wildlife in a bay already full of ships, this is no small feat. “The pilots keep a close eye on the radar, and fly by hand,” Bucholtz said, “all while following careful flight plans crisscrossing Monterey Bay and performing tight spirals over the Research Vessel Shana Rae.”

      Campaign Data

      Data gathered from the 2024 phase of this campaign is available on two data archive systems. Data from the 4STAR instrument is available in the PACE data archive  and data from C-AIR is housed in the SeaBASS data archive.

      Other data from the NASA PACE Validation Science Team is available through the PACE website: https://pace.oceansciences.org/pvstdoi.htm#
      Samuel LeBlanc and Kristina Pistone are funded via the Bay Area Environmental Research Institute (BAERI), which  is a scientist-founded nonprofit focused on supporting Earth and space sciences.
      About the Author
      Milan Loiacono
      Science Communication SpecialistMilan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.
      Share
      Details
      Last Updated Jun 26, 2025 Related Terms
      Ames Research Center's Science Directorate Ames Research Center Earth Earth Science Earth Science Division PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Science Mission Directorate Explore More
      2 min read NASA Citizen Scientists Find New Eclipsing Binary Stars
      When two stars orbit one another in such a way that one blocks the other’s…
      Article 32 minutes ago 4 min read NASA-Assisted Scientists Get Bird’s-Eye View of Population Status
      NASA satellite data and citizen science observations combine for new findings on bird populations.
      Article 22 hours ago 2 min read Live or Fly a Plane in California? Help NASA Measure Ozone Pollution!
      Ozone high in the stratosphere protects us from the Sun’s ultraviolet light. But ozone near…
      Article 2 days ago View the full article
    • By European Space Agency
      The European Space Agency’s Mars Express has captured a swirl of colour on the Red Planet, with yellows and rust-oranges meeting deep reds and browns. Lurking within this martian palette are not one but four dust devils, each snaking their way across the surface.
      View the full article
  • Check out these Videos

×
×
  • Create New...