Jump to content

Why Scientists Are Intrigued by Air in NASA’s Mars Sample Tubes


NASA

Recommended Posts

  • Publishers

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA’s Perseverance rover viewed these dust devils
NASA’s Perseverance rover viewed these dust devils swirling across the surface of Mars on July 20, 2021. Scientists want to study the air trapped in samples being collected in metal tubes by Perseverance. Those air samples could help them better understand the Martian atmosphere.
NASA/JPL-Caltech

Tucked away with each rock and soil sample collected by the agency’s Perseverance rover is a potential boon for atmospheric scientists.

Atmospheric scientists get a little more excited with every rock core NASA’s Perseverance Mars rover seals in its titanium sample tubes, which are being gathered for eventual delivery to Earth as part of the Mars Sample Return campaign. Twenty-four have been taken so far.

Most of those samples consist of rock cores or regolith (broken rock and dust) that might reveal important information about the history of the planet and whether microbial life was present billions of years ago. But some scientists are just as thrilled at the prospect of studying the “headspace,” or air in the extra room around the rocky material, in the tubes.

They want to learn more about the Martian atmosphere, which is composed mostly of carbon dioxide but could also include trace amounts of other gases that may have been around since the planet’s formation.

“The air samples from Mars would tell us not just about the current climate and atmosphere, but how it’s changed over time,” said Brandi Carrier, a planetary scientist at NASA’s Jet Propulsion Laboratory in Southern California. “It will help us understand how climates different from our own evolve.”

The Value of Headspace

Among the samples that could be brought to Earth is one tube filled solely with gas deposited on the Martian surface as part of a sample depot. But far more of the gas in the rover’s collection is within the headspace of rock samples. These are unique because the gas will be interacting with rocky material inside the tubes for years before the samples can be opened and analyzed in laboratories on Earth. What scientists glean from them will lend insight into how much water vapor hovers near the Martian surface, one factor that determines why ice forms where it does on the planet and how Mars’ water cycle has evolved over time.

Scientists also want a better understanding of trace gases in the air at Mars. Most scientifically tantalizing would be the detection of noble gases (such as neon, argon, and xenon), which are so nonreactive that they may have been around, unchanged in the atmosphere, since forming billions of years ago. If captured, those gases could reveal whether Mars started with an atmosphere. (Ancient Mars had a much thicker atmosphere than it does today, but scientists aren’t sure whether it was always there or whether it developed later). There are also big questions about how the planet’s ancient atmosphere compared with early Earth’s.

The headspace would additionally provide a chance to assess the size and toxicity of dust particles — information that will help future astronauts on Mars.

“The gas samples have a lot to offer Mars scientists,” said Justin Simon, a geochemist at NASA’s Johnson Space Center in Houston, who is part of a group of over a dozen international experts that helps decide which samples the rover should collect. “Even scientists who don’t study Mars would be interested because it will shed light on how planets form and evolve.”

Apollo’s Air Samples

In 2021, a group of planetary researchers, including scientists from NASA, studied the air brought back from the Moon in a steel container by Apollo 17 astronauts some 50 years earlier.

“People think of the Moon as airless, but it has a very tenuous atmosphere that interacts with the lunar surface rocks over time,” said Simon, who studies a variety of planetary samples at Johnson. “That includes noble gases leaking out of the Moon’s interior and collecting at the lunar surface.”

The way Simon’s team extracted the gas for study is similar to what could be done with Perseverance’s air samples. First, they put the previously unopened container into an airtight enclosure. Then they pierced the steel with a needle to extract the gas into a cold trap — essentially a U-shaped pipe that extends into a liquid, like nitrogen, with a low freezing point. By changing the temperature of the liquid, scientists captured some of the gases with lower freezing points at the bottom of the cold trap.

“There’s maybe 25 labs in the world that manipulate gas in this way,” Simon said. Besides being used to study the origin of planetary materials, this approach can be applied to gases from hot springs and those emitted from the walls of active volcanoes, he added.

Of course, those sources provide much more gas than Perseverance has in its sample tubes. But if a single tube doesn’t carry enough gas for a particular experiment, Mars scientists could combine gases from multiple tubes to get a larger aggregate sample — one more way the headspace offers a bonus opportunity for science.

More About the Mission

A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover is also characterizing the planet’s geology and past climate, which paves the way for human exploration of the Red Planet. JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.

For more about Perseverance:

mars.nasa.gov/mars2020/

News Media Contacts

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov

Karen Fox / Charles Blue
NASA Headquarters, Washington
202-285-1600 / 202-802-5345
karen.c.fox@nasa.gov / charles.e.blue@nasa.gov

2024-087

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:01:00 Rover trials in a quarry in the UK showing a four-wheeled rover, known as Codi, using its robotic arm and a powerful computer vision system to pick up sample tubes. 
      The rover drives to the samples with an accuracy of 10cm, constantly mapping the terrain. Codi uses its arm and four cameras to locate the sample tube, retrieve it and safely store it on the rover – all of it without human intervention. At every stop, the rover uses stereo cameras to build up a 180-degree map of the surroundings and plan its next maneouvres. Once parked, the camera on top of the mast detects the tube and estimates its position with respect to the rover. The robotic arm initiates a complex choreography to move closer to the sample, fetch it and store it. 
      The sample tubes are a replica of the hermetically sealed samples inside which NASA’s Perseverance rover is collecting precious martian soil inside. To most people on Earth, they resemble lightsabres.
      The reddish terrain, although not fully representative of Mars in terms of soil composition, has plenty of slopes and rocks of different sizes, similar to what a rover might encounter on the martian surface. Quarry testing is an essential next step in the development process, providing a unique and dynamic landscape that cannot be replicated indoors. 
      ESA continues to run further research using the rover to maintain and develop rover capabilities in Europe.
      Read the full article: Rovers, lightsabres and a piglet.
      View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble, MAVEN… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   6 min read
      NASA’s Hubble, MAVEN Help Solve the Mystery of Mars’ Escaping Water
      NASA, ESA, STScI, John T. Clarke (Boston University); Processing: Joseph DePasquale (STScI) Mars was once a very wet planet as is evident in its surface geological features. Scientists know that over the last 3 billion years, at least some water went deep underground, but what happened to the rest? Now, NASA’s Hubble Space Telescope and MAVEN (Mars Atmosphere and Volatile Evolution) missions are helping unlock that mystery.
      “There are only two places water can go. It can freeze into the ground, or the water molecule can break into atoms, and the atoms can escape from the top of the atmosphere into space,” explained study leader John Clarke of the Center for Space Physics at Boston University in Massachusetts. “To understand how much water there was and what happened to it, we need to understand how the atoms escape into space.”
      Clarke and his team combined data from Hubble and MAVEN to measure the number and current escape rate of the hydrogen atoms escaping into space. This information allowed them to extrapolate the escape rate backwards through time to understand the history of water on the Red Planet.
      Escaping Hydrogen and “Heavy Hydrogen”
      Water molecules in the Martian atmosphere are broken apart by sunlight into hydrogen and oxygen atoms. Specifically, the team measured hydrogen and deuterium, which is a hydrogen atom with a neutron in its nucleus. This neutron gives deuterium twice the mass of hydrogen. Because its mass is higher, deuterium escapes into space much more slowly than regular hydrogen.
      Over time, as more hydrogen was lost than deuterium, the ratio of deuterium to hydrogen built up in the atmosphere. Measuring the ratio today gives scientists a clue to how much water was present during the warm, wet period on Mars. By studying how these atoms currently escape, they can understand the processes that determined the escape rates over the last four billion years and thereby extrapolate back in time.
      Although most of the study’s data comes from the MAVEN spacecraft, MAVEN is not sensitive enough to see the deuterium emission at all times of the Martian year. Unlike the Earth, Mars swings far from the Sun in its elliptical orbit during the long Martian winter, and the deuterium emissions become faint. Clarke and his team needed the Hubble data to “fill in the blanks” and complete an annual cycle for three Martian years (each of which is 687 Earth days). Hubble also provided additional data going back to 1991 – prior to MAVEN’s arrival at Mars in 2014.
      The combination of data between these missions provided the first holistic view of hydrogen atoms escaping Mars into space.
      These are far-ultraviolet Hubble images of Mars near its farthest point from the Sun, called aphelion, on December 31, 2017 (top), and near its closest approach to the Sun, called perihelion, on December 19, 2016 (bottom). The atmosphere is clearly brighter and more extended when Mars is close to the Sun.
      Reflected sunlight from Mars at these wavelengths shows scattering by atmospheric molecules and haze, while the polar ice caps and some surface features are also visible. Hubble and MAVEN showed that Martian atmospheric conditions change very quickly. When Mars is close to the Sun, water molecules rise very rapidly through the atmosphere, breaking apart and releasing atoms at high altitudes. NASA, ESA, STScI, John T. Clarke (Boston University); Processing: Joseph DePasquale (STScI)
      Download this image

      A Dynamic and Turbulent Martian Atmosphere
      “In recent years scientists have found that Mars has an annual cycle that is much more dynamic than people expected 10 or 15 years ago,” explained Clarke. “The whole atmosphere is very turbulent, heating up and cooling down on short timescales, even down to hours. The atmosphere expands and contracts as the brightness of the Sun at Mars varies by 40 percent over the course of a Martian year.”
      The team discovered that the escape rates of hydrogen and deuterium change rapidly when Mars is close to the Sun. In the classical picture that scientists previously had, these atoms were thought to slowly diffuse upward through the atmosphere to a height where they could escape.
      But that picture no longer accurately reflects the whole story, because now scientists know that atmospheric conditions change very quickly. When Mars is close to the Sun, the water molecules, which are the source of the hydrogen and deuterium, rise through the atmosphere very rapidly releasing atoms at high altitudes.
      The second finding is that the changes in hydrogen and deuterium are so rapid that the atomic escape needs added energy to explain them. At the temperature of the upper atmosphere only a small fraction of the atoms have enough speed to escape the gravity of Mars. Faster (super-thermal) atoms are produced when something gives the atom a kick of extra energy. These events include collisions from solar wind protons entering the atmosphere or sunlight that drives chemical reactions in the upper atmosphere.
      Mars was once a very wet planet. Scientists know that over the last 3 billion years, some of the water went underground, but what happened to the rest? Credit: NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris; Mars Animations Producer: Dan Gallagher Serving as a Proxy
      Studying the history of water on Mars is fundamental not only to understanding planets in our own solar system but also the evolution of Earth-size planets around other stars. Astronomers are finding more and more of these planets, but they’re difficult to study in detail. Mars, Earth and Venus all sit in or near our solar system’s habitable zone, the region around a star where liquid water could pool on a rocky planet; yet all three planets have dramatically different present-day conditions. Along with its sister planets, Mars can help scientists grasp the nature of far-flung worlds across our galaxy.
      These results appear in the July 26 edition of Science Advances, published by the American Association for the Advancement of Science.
      About the Missions
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      MAVEN’s principal investigator is based at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder. LASP is also responsible for managing science operations and public outreach and communications. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN mission. Lockheed Martin Space built the spacecraft and is responsible for MAVEN mission operations at Goddard. NASA’s Jet Propulsion Laboratory in Southern California provides navigation and Deep Space Network support. The MAVEN team is preparing to celebrate the spacecraft’s 10th year at Mars in September 2024.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ann Jenkins and Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contact:
      John T. Clarke
      Boston University, Boston, MA
      Share








      Details
      Last Updated Sep 05, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Mars MAVEN (Mars Atmosphere and Volatile EvolutioN) Missions Planetary Science Planets Science Mission Directorate The Solar System Keep Exploring Discover More Topics From Hubble and Maven
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      MAVEN


      The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is the first mission devoted to understanding the Martian upper atmosphere.


      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…

      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      More than 100 scientists will participate in a field campaign involving a research vessel and two aircraft this month to verify the accuracy of data collected by NASA’s new PACE satellite: the Plankton, Aerosol, Cloud, ocean Ecosystem mission. The process of data validation includes researchers comparing PACE data with data collected by similar, Earth-based instruments to ensure the measurements match up. Since the mission’s Feb. 8, 2024 launch, scientists around the world have successfully completed several data validation campaigns; the September deployment — PACE-PAX — is its largest. From sea to sky to orbit, a range of vantage points allow NASA Earth scientists to collect different types of data to better understand our changing planet. Collecting them together, at the same place and the same time, is an important step used to verify the accuracy of satellite data.
      NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite launched in February 2024 and is collecting observations of the ocean and measuring atmospheric particle and cloud properties. This data will help inform scientists and decision makers about the health of Earth’s ocean, land surfaces, and atmosphere and the interactions between them.
      Technicians work to process the NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) observatory on a spacecraft dolly in a high bay at the Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida on Monday, Dec. 4, 2023. Credit: NASA/Kim Shiflett To make sure the data from PACE’s instruments accurately represent the ocean and the atmosphere, scientists compare (or “validate”) the data collected from orbit with measurements they collect at or near Earth’s surface. The mission’s biggest validation campaign, called PACE Postlaunch Airborne eXperiment (PACE-PAX), began on Sept. 3, 2024, and will last the entire month.
      “If we want to have confidence in the observations from PACE, we need to validate those observations,” said Kirk Knobelspiesse, mission scientist for PACE-PAX and an atmospheric scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This field campaign is focused on doing just that.”
      Scientists will make measurements both from aircraft and ships. Based out of three locations across California — Marina, Santa Barbara, and NASA’s Armstrong Flight Research Center in Edwards — the campaign includes more than 100 people working in the field and several dozen instruments.
      “This campaign allows us to validate data for both the atmosphere and the ocean, all in one campaign,” said Brian Cairns, deputy mission scientist for PACE-PAX and an atmospheric scientist at NASA’s Goddard Institute for Space Studies in New York City.
      On the ocean, ships, including the National Oceanic and Atmospheric Administration (NOAA) research vessel Shearwater, will gather data on ocean biology and the optical properties of the water. Scientists onboard will gather water samples to help define the types of phytoplankton at different locations and their relative abundance, something that PACE’s hyperspectral Ocean Color Instrument measures from orbit.
      Members of the PACE-PAX team – from left to right, Cecile Carlson, Adam Ahern (NOAA), Dennis Hamaker (NPS), Luke Ziemba, and Michael Shook (NASA Langley Research Center) – in front of the Twin Otter aircraft as they prep for the start of the campaign. Credit: Judy Alfter/NASA Overhead, a Twin Otter research aircraft operated by the Naval Postgraduate School in Monterey, California, will collect data on the atmosphere. At altitudes of up to 10,000 feet, the aircraft will sample and measure cloud droplet sizes, aerosol sizes, and the amount of light that those particles scatter and absorb. These are the atmospheric properties that PACE observes with its two polarimeters, SPEXOne and HARP2.
      At a higher altitude — approximately 70,000 feet up — NASA’s ER-2 aircraft will provide a complementary view from above clouds, looking down on the atmosphere and ocean in finer detail than the satellite, but with a narrower view.
      The NASA ER-2 high-altitude aircraft preparing for flight on Jan. 29, 2023. The aircraft is based at NASA’s Armstrong Flight Research Center Building 703 in Palmdale, California.Credit: NASA/Carla Thomas The plane will carry several instruments that are similar to those on PACE, including two prototypes of PACE’s polarimeters, called SPEXAirborne and AirHARP. In addition, two instruments called the Portable Remote Imaging SpectroMeter and Pushbroom Imager for Cloud and Aerosol Research and Development — from NASA’s Jet Propulsion Laboratory in Pasedena, California, and NASA’s Ames Research Center in California’s Silicon Valley, respectively — will measure essentially all the wavelengths of visible light (color). The remote sensing measurements are key for scientists who want to test the methods they use to analyze PACE satellite data.
      Together, the instruments on the ER-2 approximate the data that PACE gathers and complement the in situ measurements from the ocean research vessel and the Twin Otter.
      As the field campaign team gathers data, PACE will be observing the same areas of the ocean surface and atmosphere. Once the campaign is over, scientists will look at the data PACE returned and compare them to the measurements they took from the other three vantage points.
      “Once you launch the satellite, there’s no more tinkering you can do,” said Ivona Cetinic, deputy mission scientist for PACE-PAX and an ocean scientist at NASA Goddard.
      Though the scientists cannot alter the satellite anymore, the algorithms designed to interpret PACE data can be adjusted to make the measurements more accurate. Validation checks from campaigns like PACE-PAX help scientists ensure that PACE will be able to return accurate data about our oceans and atmosphere — critical to better understand our changing planet and its interconnected systems — for years to come.
      “The ocean and atmosphere are such changing environments that it’s really important to validate what we see,” Cetinic said. “Understanding the accuracy of the view from the satellite is important, so we can use the data to answer important questions about climate change.”
      By Erica McNamee
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Sep 04, 2024 EditorKate D. RamsayerContactErica McNameeerica.s.mcnamee@nasa.govLocationGoddard Space Flight Center Related Terms
      Earth Airborne Science Goddard Space Flight Center PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Explore More
      5 min read New NASA Satellite To Unravel Mysteries About Clouds, Aerosols
      Article 9 months ago 6 min read NASA Wants to Identify Phytoplankton Species from Space. Here’s Why.
      Article 1 year ago 4 min read NASA’s PACE Data on Ocean, Atmosphere, Climate Now Available
      Article 5 months ago View the full article
    • By NASA
      Lunar geologist Zachary Morse scrabbles over Earth’s rocky landscapes to test equipment for future missions to the Moon and Mars.
      Name: Zachary Morse
      Title: Assistant Research Scientist in Planetary Geology
      Organization: The Planetary Geology, Geophysics and Geochemistry Laboratory, Science Directorate (Code 698)
      Zachary Morse is an assistant research scientist in planetary geology at NASA’s Goddard Space Flight Center in Greenbelt, Md. Photo courtesy of Zachary Morse What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
      I work with teams that integrate field instrumentation into future lunar and Mars exploration missions. We go to analog field sites, places on Earth that are geologically similar to the Moon or Mars, to test field instruments. I also support the development of science operations for crewed exploration of the lunar surface.
      Why did you become a geologist? What is your educational background?
      I always knew that I wanted to study space. In college I started in engineering, but switched to geology because much of the science NASA does on the Moon or Mars involves studying the rocks.
      In 2013, I got a B.S. in geology from West Virginia University. In 2018, I got a Ph.D. in planetary science from Western University in London, Ontario.
      “I work with teams that integrate field instrumentation into future lunar and Mars exploration missions,” said Zachary. “We go to analog field sites, places on Earth that are geologically similar to the Moon or Mars, to test field instruments.”Photo courtesy of Zachary Morse What brought you to Goddard?
      In January 2020, I came to Goddard to do a post-doctoral fellowship because I wanted to work on the Remote, In Situ, and Synchrotron Studies for Science and Exploration 2 (Rise2) project. We go into the field to test handheld geologic instruments that could later be incorporated into missions.
      What have been some of your favorite trips into the field?
      Iceland, Hawaii, and the New Mexico desert, which is our primary field site for Rise2. These were organized as part of the Goddard Instrument Field Team, a group that hosts trips each year to different analog field sites.
      The Iceland trip was my favorite because the place we got to explore looked almost exactly like pictures of the Moon’s surface. It was beautiful and the right setting to learn about the Earth and the Moon. Our team was about 40 people. We were there for two weeks. We mostly camped.
      It was definitely a unique experience, one hard to put in words. On Earth, you would normally go camping in a lush forest. But there were no trees, just rock and dust. It was absolutely beautiful in its own way.
      The Hawaii trip was also unique. Our team of about 30 people spent almost the entire 10 days in the lava tubes. Not many people get to go into lava tubes. It was very exciting. The biggest part of the lava tube was about 20 feet high and about 10 feet wide. The smallest was so small we had to crawl through.
      How do you document field work?
      In addition to scientific data, we always take pictures of the rocks and outcrops. It is important to document what a site is like before people interact with it. Sometimes we collect rock samples to bring back to the lab, but we leave the place as we found it.
      “I always knew that I wanted to study space,” said Zachary. “In college I started in engineering, but switched to geology because much of the science NASA does on the Moon or Mars involves studying the rocks.”Photo courtesy of Zachary Morse Where do you see yourself in five years?
      I hope to remain at Goddard; I love it. The team is great and the science is fascinating and important. I want to keep pursuing opportunities for field work. My main goal is to get involved in a lunar mission and support Artemis lunar exploration.
      What do you do for fun?
      I love the outdoors. I love kayaking on lakes, rivers, and streams. My favorite place is in the Adirondacks. I also love hiking, which I do all over, especially in West Virginia.
      Who is your mentor and what did your mentor teach you?
      Kelsey Young is my supervisor and mentor. She has taught me so many things including how missions will function and how we can best test equipment in the field for future missions. She taught me how to be organized and focused.
      Kelsey Young Dives Into Fieldwork With Aplomb Who inspires you?
      Jack Schmitt is an Apollo 17 astronaut who inspired me because he is a geologist. He was the first and only professional geologist who walked on the surface of the Moon during the Apollo missions. I have heard him speak many times and have personally met him.
      I would jump at the chance to be the next geologist-astronaut!
      What rock formations in the world would you like to explore?
      Top of my list would be to explore Acadia National Park in Maine. There is a ton of diverse geology in a small area and the pictures all look stunning. I would also love to visit Glacier National Park to experience the glacier before it melts.
      What is your “six-word memoir”? A six-word memoir describes something in just six words.
      Exploring Earth to prepare lunar missions.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Sep 03, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Goddard Space Flight Center People of NASA Explore More
      5 min read Aaron Vigil Helps Give SASS to Roman Space Telescope
      Article 5 days ago 7 min read Tyler Parsotan Takes a Long Look at the Transient Universe with NASA’s Swift
      Article 2 weeks ago 7 min read Xiaoyi Li Engineers Instruments and the Teams that Get Them Done
      Instrument Systems Engineer Xiaoyi Li leads technical teams united by a common vision to achieve…
      Article 3 weeks ago View the full article
    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Behind the Scenes at the 2024 Mars 2020 Science Team Meeting
      The Mars 2020 Perseverance Rover Science Team meets in person and online during the July 2024 team meeting in Pasadena, CA. Credits: R. Hogg and J. Maki. The Mars 2020 Science Team meets in Pasadena for 3 days of science synthesis
      It has become a fun tradition for me to write a summary of our yearly in-person Science Team Meetings (2022 meeting and 2023 meeting). I’ve been particularly looking forward to this year’s update given the recent excitement on the team and in the public about Perseverance’s discovery of a potential biosignature, a feature that may have a biological origin but needs more data or further study before reaching a conclusion about the absence or presence of life.
      This past July, ~160 members of the Mars 2020 Science Team met in-person in Pasadena—with another ~50 team members dialed in on-line—for three days of presentations, meetings, and team discussion. For a team that spends most of the year working remotely from around the world, we make the most of these rare opportunities for in-person discussion and synthesis of the rover’s latest science results.
      We spent time discussing Perseverance’s most recent science campaign in the Margin unit, an exposure of carbonate-bearing rocks that occurs along the inner rim of Jezero crater. As part of an effort to synthesize what we’ve learned about the Margin unit over the past year, we heard presentations describing surface and subsurface observations collected from the rover’s entire payload. This was followed by a thought-provoking series of presentations that tackled the three hypotheses we’re carrying for the origin of this unit: sedimentary, volcanic (pyroclastic), or crystalline igneous.
      Some of our liveliest discussion occurred during presentations about Neretva Vallis, Jezero’s inlet valley that once fed the sedimentary fan and lake system within the crater. Data from the RIMFAX instrument took center stage as we debated the origin and age relationship of the Bright Angel outcrop to other units we’ve studied in the crater.
      This context is especially important because the Bright Angel outcrop is home to the Cheyava Falls rock, which contains intriguing features we’ve been calling “leopard spots,” small white spots with dark rims observed in red bedrock of Bright Angel. On the last day of the team meeting, data from our recent “Apollo Temple” abrasion at Cheyava Falls was just starting to arrive on Earth, and team members from the PIXL and SHERLOC teams were huddled in the hallway and at the back of the conference room trying to digest these new results in real time. We had special “pop-up” presentations during which SHERLOC reported compelling evidence for organics in the new abrasion, and PIXL showed interesting new data about the light-toned veins that crosscut this rock.
      Between debates about the Margin unit, updates on recently published studies of the Jezero sedimentary fan sequence, and discussion of the newest rocks at Bright Angel, this team meeting was one of our most exciting yet. It also marked an important transition for the Mars 2020 science mission as we prepare to ascend the Jezero crater rim, leaving behind—at least for now—the rocks inside the crater. I can only imagine the interesting new discoveries we’ll make during the upcoming year, and I can’t wait to report back next summer!
      Written by Katie Stack Morgan, Mars 2020 Deputy Project Scientist at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Aug 30, 2024 Related Terms
      Blogs Explore More
      4 min read Sols 4289-4290: From Discovery Pinnacle to Kings Canyon and Back Again


      Article


      1 day ago
      3 min read Sols 4287-4288: Back on the Road


      Article


      2 days ago
      3 min read Perseverance Kicks off the Crater Rim Campaign!
      Perseverance is officially headed into a new phase of scientific investigation on the Jezero Crater…


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...