Jump to content

Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A woman wearing glasses and a blue patterned shirt and green sweater smiles at the camera as she stands in front of a green banner that says, “Girl Scouts of North East Ohio.”
Danielle Koch, an aerospace engineer at NASA’s Glenn Research Center in Cleveland, was honored by the Girl Scouts of North East Ohio as a 2024 Woman of Distinction. She accepted the award during a ceremony on May 16.
Credit: Girl Scouts of North East Ohio/Andrew Jordan

You’d think a NASA aerospace engineer who spends her days inside a giant dome researching how to make plane engines quieter and spacecraft systems more efficient would have a pretty booked schedule. Still, advocacy and mentoring, especially for women and girls in STEM, is something Danielle Koch always tries to say yes to.

For decades, Koch has tutored students, volunteered as a mentor for engineering challenges, and engaged Pre-K through Ph.D. classes with stories from her career at NASA’s Glenn Research Center in Cleveland. Koch also works to recruit women and others from underrepresented groups to the field and find ways to remove barriers to their advancement.

For her efforts, Koch was recently recognized by the Girl Scouts of North East Ohio as a 2024 Woman of Distinction. The award, presented to Koch during a ceremony on May 16, celebrates women whose leadership contributes to the community, providing girls with positive role models. Koch says that diverse people and programs have similarly shaped her own career path.

“None of this is anything I’ve done myself; there are huge groups of people who are making change and making things better for all of us,” Koch said. “Every story I tell about me being a woman at NASA is really a story about them.”

: A man and a woman wearing masks work on equipment inside a NASA acoustic facility. Large tan fiberglass wedges line the walls of the facility.
Danielle Koch (right) is an aerospace engineer in the Acoustics Branch at NASA’s Glenn Research Center in Cleveland, where she works to make flight quieter and spacecraft systems more efficient.
Credit: NASA/Jef Janis

A Pittsburgh native and graduate of Case Western Reserve University, Koch began her career as a test engineer at NASA Glenn in 1990 as the only woman in her work group. While there were women around her, Koch says she did not see many senior-level female engineers or scientists “working ahead of her.” With determination and the “rock-solid” support of colleagues, family, and friends, Koch forged ahead, becoming a research aerospace engineer in NASA Glenn’s Acoustics Branch in 1998.

“She’s somebody that goes above and beyond almost all of the time, while using her knowledge and career to bring others up to her level,” said John Lucero, Koch’s supervisor and the chief of the Acoustics Branch at NASA Glenn.

Koch realized the landscape around her was evolving in 2016 when she sat down in one of NASA Glenn’s biggest conference rooms for the center’s annual Women Ignite workshop. It was the first time she’d seen the space entirely filled with women.

“It was striking,” Koch said. “Learning from each other and being visible to each other, it’s so huge.”

Koch points to insights gleaned from these workshops — which are focused on networking, skill-building, and empowerment — as propelling her forward, along with the center’s Women in STEM Leadership Development Program, launched to help the women of NASA Glenn connect and grow as leaders.

microsoftteams-image-11.jpg?w=2048
NASA Glenn Research Center aerospace engineer Danielle Koch gives a tour of the Aero-Acoustic Propulsion Laboratory to a group of students in 2017.
Credit: NASA/Marvin Smith

Koch also spotlights the value of the Women at Glenn employee resource group, which organizes events and panels, shares job and volunteer opportunities, and provides a platform for addressing issues in the workplace.

“The employee resource group offers a great sense of community for women at the center,” said Women at Glenn co-chair and aerospace engineer Christine Pastor-Barsi. “When you feel like you’re unique, it’s good to know that there are others out there like you, even if you don’t always see them in the room.”

Koch says she’ll continue working as a mentor in the community and advocating for the diverse range of people who choose to take the leap into the STEM fields.

“It’s difficult to be the only one that’s visibly different in a room; it changes the way you communicate, the way you’re perceived,” Koch said. “It’s really important to reach out to people who are different from us and invite them to consider engineering as a career. We all benefit when we work with someone who’s different from ourselves.”

Get Involved + More Resources

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Latha Balijepalle, a senior database administrator at NASA Ames, encourages others to take a risk and pursue challenges in their work, like trying something new that might open doors to a new opportunity.NASA/Brandon Torres Navarrete When Madhavi Latha Balijepalle noticed that her morning commute took her past NASA Ames Research Center in California’s Silicon Valley, she set a new career goal for herself: working for NASA. 
      “I started manifesting it, thinking about it every day as I drove by. When I started looking for a new job, I saw an opening and decided to apply,” said Balijepalle, a senior database administrator working at the Airspace Operations Laboratory (AOL) at NASA Ames.  
      Eight and a half years later, she supports the researchers and developers who research next-generation solutions to advance aircraft technology and air traffic management. 
      A journey into the unknown 
      Balijepalle’s journey to NASA started thousands of miles away. She grew up in a small town in southern India, studying electrical engineering in college and establishing a career in information technology, working in C++ and Python. 
      When her husband found a job opportunity in the United States, Balijepalle’s life took an unexpected turn. 
      “I never planned to move to America,” said Balijepalle. “It was not easy to come here, even though my husband had a job. I stayed in India for almost nine months, before he found a different job that would help us with my visa and documentation.” 
      After settling into her new country, growing her family, and developing in her new career, Balijepalle began to ponder her dream job at NASA. She and her younger daughter, a fellow space fan, enjoyed talking about the agency’s work in space, and when a Linux administrator position opened up, she jumped at the chance. 
      A dream job becomes reality 
      At the lab, Balijepalle was initially responsible for managing the lab’s Linux servers and applications. Today, she also supports researchers and developers with development, automation, and deployment of their work. 
      “Latha is the lifeblood of the lab,” said Jeff Homola, co-leader of the Airborne Operations Laboratory at NASA Ames. “Without her unwavering dedication to making sure our systems are safe, secure, up to date, and running smoothly, we would not be able to do what we do in the lab.” 
      One of Balijepalle’s proudest achievements during her NASA career is her language skills. Growing up, she spoke Telugu and Hindi, and learned English, but communication was still a challenge when she arrived at NASA. 
      “I spoke English when I came to America, but not as well, and not using the technical language we use at NASA,” said Balijepalle. “I’m proud that I’ve improved my communications skills.” 
      “Step outside your comfort zone” 
      Looking back on the commute that changed her life, Balijepalle says she owes it all to being up to the challenge. 
      “I wasn’t a risk taker, I didn’t think about stepping outside my comfort zone, but as I drove by NASA Ames each day, I started to think about astronauts. They step outside their comfort zone and leave the planet, so maybe I could take a risk, too.” 
      For those who also dream of working at NASA one day, Balijepalle has some advice: try doing it her way. 
      “Start thinking about it and manifesting your dream. Maybe it will come true, and maybe it won’t, but you might as well try.” 
      Share
      Details
      Last Updated Dec 23, 2024 Related Terms
      Ames Research Center General Explore More
      16 min read NASA Ames Astrogram – December 2024
      Article 3 days ago 5 min read NASA’s Ames Research Center Celebrates 85 Years of Innovation
      Article 3 days ago 3 min read NASA’s Webb Reveals Smallest Asteroids Yet Found in Main Asteroid Belt
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is helping the Artemis Generation learn how to power space dreams with an interactive exhibit at INFINITY Science Center.
      The engine test simulator exhibit at the official visitor center of NASA Stennis provides the chance to experience the thrill of being a NASA test engineer by guiding an RS-25 engine through a simulated hot fire test.
      “It is an exhilarating opportunity to feel what it is like to be a NASA engineer, responsible for making sure the engine is safely tested for launch,” said Chris Barnett-Woods, a NASA engineer that helped develop the software for the exhibit.
      Sitting at a console mirroring the actual NASA Stennis Test Control Center, users are immersed in the complex process of engine testing. The exhibit uses cutting-edge software and visual displays to teach participants how to manage liquid oxygen and liquid hydrogen propellants, and other essential elements during a hot fire.
      A pair of young visitors to INFINITY Science Center carry out the steps of a simulated RS-25 engine hot fire on Dec. 19. The updated engine test simulator exhibit provided by NASA’s Stennis Space Center takes users through the hot fire process just as real engineers do at NASA Stennis.NASA/Danny Nowlin INFINITY Science Center, the official visitor center for NASA’s Stennis Space Center, has unveiled a new interactive simulator exhibit that allows visitors to become the test conductor for an RS-25 engine hot fire. NASA/Danny Nowlin Users follow step-by-step instructions that include pressing buttons, managing propellant tanks, and even closing the flare stack, just as real engineers do at NASA Stennis. Once the test is complete, they are congratulated for successfully conducting their own rocket engine hot fire.
      The interactive exhibit is not just about pushing buttons. It is packed with interesting facts about the RS-25 engine, which helps power NASA’s Artemis missions as the agency explores secrets of the universe for the benefit of all. Visitors also can view real hot fires conducted at NASA Stennis from multiple angles, deepening their understanding of rocket propulsion testing and NASA’s journey back to the Moon and beyond.
      NASA is currently preparing for the Artemis II mission, the first crewed flight test of the agency’s powerful SLS (Space Launch System) rocket and the Orion spacecraft around the Moon.
      The first four Artemis missions are using modified space shuttle main engines tested at NASA Stennis. The center also achieved a testing milestone last April for engines to power future Artemis missions. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power NASA’s SLS rocket, producing more than 8.8 million pounds of total combined thrust at liftoff.
      The revitalized exhibit, previously used when the visitor center was located onsite, represents a collaborative effort. It started as an intern project in the summer of 2023 before evolving into a full-scale experience. Engineers built on the initial concept, integrating carpentry, audio, and video to create the seamless experience to educate and inspire.
      The best part might be that visitors to INFINITY Science Center can repeat the simulation as many times as they like, gaining confidence and learning more with each attempt.
      “This exhibit was a favorite in the past, and with its new upgrades, the engine test simulator is poised to capture the imaginations of the Artemis Generation at INFINITY Science Center,” said NASA Public Affairs Specialist Samone Wilson. “This is one exhibit you will not want to miss.” INFINITY Science Center is located at 1 Discovery Circle, Pearlington, Mississippi. For hours of operation and admission information, please visit www.visitinfinity.com.

      Share
      Details
      Last Updated Dec 20, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A crane lowers the steel reflector framework for Deep Space Station 23 into position Dec. 18 on a 65-foot-high (20-meter) platform above the antenna’s pedestal that will steer the reflector. Panels will be affixed to the structure create a curved surface to collect radio frequency signals.NASA/JPL-Caltech After the steel framework of the Deep Space Station 23 reflector dish was lowered into place on Dec. 18, a crew installed the quadripod, a four-legged support structure that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s receiver.NASA/JPL-Caltech Deep Space Station 23’s 133-ton reflector dish was recently installed, marking a key step in strengthening NASA’s Deep Space Network.
      NASA’s Deep Space Network, an array of giant radio antennas, allows agency missions to track, send commands to, and receive scientific data from spacecraft venturing to the Moon and beyond. NASA is adding a new antenna, bringing the total to 15, to support increased demand for the world’s largest and most sensitive radio frequency telecommunication system.
      Installation of the latest antenna took place on Dec. 18, when teams at NASA’s Goldstone Deep Space Communications Complex near Barstow, California, installed the metal reflector framework for Deep Space Station 23, a multifrequency beam-waveguide antenna. When operational in 2026, Deep Space Station 23 will receive transmissions from missions such as Perseverance, Psyche, Europa Clipper, Voyager 1, and a growing fleet of future human and robotic spacecraft in deep space.
      “This addition to the Deep Space Network represents a crucial communication upgrade for the agency,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) program. “The communications infrastructure has been in continuous operation since its creation in 1963, and with this upgrade we are ensuring NASA is ready to support the growing number of missions exploring the Moon, Mars, and beyond.”
      This time-lapse video shows the entire day of construction activities for the Deep Space Station 23 antenna at the NASA Deep Space Network’s Goldstone Space Communications Complex near Barstow, California, on Dec. 18. NASA/JPL-Caltech Construction of the new antenna has been under way for more than four years, and during the installation, teams used a crawler crane to lower the 133-ton metal skeleton of the 112-foot-wide (34-meter-wide) parabolic reflector before it was bolted to a 65-foot-high (20-meter-high) alidade, a platform above the antenna’s pedestal that will steer the reflector during operations.
      “One of the biggest challenges facing us during the lift was to ensure that 40 bolt-holes were perfectly aligned between the structure and alidade,” said Germaine Aziz, systems engineer, Deep Space Network Aperture Enhancement Program of NASA’s Jet Propulsion Laboratory in Southern California. “This required a meticulous emphasis on alignment prior to the lift to guarantee everything went smoothly on the day.”
      Following the main lift, engineers carried out a lighter lift to place a quadripod, a four-legged support structure weighing 16 1/2 tons, onto the center of the upward-facing reflector. The quadripod features a curved subreflector that will direct radio frequency signals from deep space that bounce off the main reflector into the antenna’s pedestal, where the antenna’s receivers are housed.
      In the early morning of Dec. 18, a crane looms over the 112-foot-wide (34-meter-wide) steel framework for Deep Space Station 23 reflector dish, which will soon be lowered into position on the antenna’s base structure.NASA/JPL-Caltech Engineers will now work to fit panels onto the steel skeleton to create a curved surface to reflect radio frequency signals. Once complete, Deep Space Station 23 will be the fifth of six new beam-waveguide antennas to join the network, following Deep Space Station 53, which was added at the Deep Space Network’s Madrid complex in 2022.
      “With the Deep Space Network, we are able to explore the Martian landscape with our rovers, see the James Webb Space Telescope’s stunning cosmic observations, and so much more,” said Laurie Leshin, director of JPL. “The network enables over 40 deep space missions, including the farthest human-made objects in the universe, Voyager 1 and 2. With upgrades like these, the network will continue to support humanity’s exploration of our solar system and beyond, enabling groundbreaking science and discovery far into the future.”
      NASA’s Deep Space Network is managed by JPL, with the oversight of NASA’s SCaN Program. More than 100 NASA and non-NASA missions rely on the Deep Space Network and Near Space Network, including supporting astronauts aboard the International Space Station and future Artemis missions, monitoring Earth’s weather and the effects of climate change, supporting lunar exploration, and uncovering the solar system and beyond. 
      For more information about the Deep Space Network, visit:
      https://www.nasa.gov/communicating-with-missions/dsn
      News Media Contact
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      2024-179
      Share
      Details
      Last Updated Dec 20, 2024 Related Terms
      Deep Space Network Jet Propulsion Laboratory Space Communications & Navigation Program Space Operations Mission Directorate Explore More
      4 min read Lab Work Digs Into Gullies Seen on Giant Asteroid Vesta by NASA’s Dawn
      Article 8 hours ago 5 min read Avalanches, Icy Explosions, and Dunes: NASA Is Tracking New Year on Mars
      Article 9 hours ago 8 min read NASA’s Kennedy Space Center Looks to Thrive in 2025
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      When it comes to building spaceflight missions, the software is at least as important as the hardware. For computer engineer Nargess Memarsadeghi, having a hand in the programming is like getting to go along for the ride.
      Name: Nargess Memarsadeghi
      Title: Associate Branch Head, Software Systems Engineering Branch
      Formal Job Classification: Supervisory Computer Engineer
      Organization: Software Systems Engineering Branch, Software Engineering Division, Engineering Directorate (Code 581)
      Nargess Memarsadeghi is the associate branch head of the Software Systems Engineering branch at NASA’s Goddard Space Flight Center in Greenbelt, Md.Courtesy of Nargess Memarsadeghi What do you do and what is most interesting about your role here at Goddard?
      As associate branch head for the Software Systems Engineering Branch, I spend half of my time supporting the branch head on internal functions, different planning activities, and supervising our employees who are senior software systems engineers and often team leads themselves.
      For the other half of my time, I work on a technical project. Currently, I am supporting the Human Landing Systems (HLS) project. I am a member of NASA HLS Software Insight Team working with NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Johnson Space Center in Houston, and industry partners SpaceX and Blue Origin to meet software requirements and milestones, and to ensure the Artemis campaign succeeds in taking astronauts to the Moon.
      I enjoy learning about various NASA missions and being part of them either by supporting our branch employees who work on these missions or by being a project team member and making technical contributions directly.
      Why did you become a software engineer?
      I always loved math and sciences. Software engineering seemed like a good and practical way to apply math to different scientific and engineering applications.
      What is your educational background?
      I got my bachelor’s (2001), master’s (2004), and doctorate (2007) degrees in computer science from the University of Maryland at College Park.
      How did you come to Goddard?
      I joined Goddard in 2001 right after college. The university had a recruitment event at its career center. I signed up for an interview with NASA, which went well.  I then got an invitation for an onsite interview, and then an offer to join Goddard as a computer engineer.
      What is your supervisory style?
      I have been supervising on average 10 employees. We have tag-ups every two weeks to learn about their work and see if they have any issues or need anything from management. We keep in constant communication which goes both ways. I have an open-door policy. I try to match an employee’s interests and expertise to their work. I am willing to hear their concerns and address them to the best of my ability or putting them in contact with those who can. I enjoy learning about their work and celebrating the achievements.
      What are some of the most exciting projects and missions that the Software Systems Engineering Branch is involved with?
      We provide end-to-end software systems engineering support to many high-impact missions, like the upcoming flagship astrophysics Roman Space Telescope mission. We support Roman’s software systems, as well as its testing and assembly with one of our software products, the Goddard Dynamic Simulator.
      Our team also supports a variety of Earth science missions, such as the Joint Polar Satellite Systems (JPSS), GOES-R, and GOES-U, all of which NASA supports on behalf of the National Oceanic and Atmospheric Administration (NOAA). We also develop and manage different ground segment software systems for different missions including PACE, TSIS-II, and others.
      What are some of your career highlights so far?
      One was being part of the James Webb Space Telescope team and working on stability testing of microshutters. Webb is a huge, multinational observatory  making many scientific discoveries.
      Another is being part of the Dawn mission’s satellite working group searching for moons of the asteroid Vesta and dwarf planet Ceres. I worked on this from prelaunch through launch and operations. We were some of the first to see the scientific images soon after being downlinked. It felt like going on a ride with the spacecraft itself.
      I would add my more recent work on the Roman Space Telescope.
      In general, I really enjoyed working on various missions during their different stages of their life cycle. I got to see the whole picture of how software is used for missions, from technology development to post-launch.
      What advice do you give your graduate students and interns as a mentor?
      I emphasize that they also need to work on their communication skills, leadership skills, and team building. I tell them to focus not just on their technical skills but also on their interpersonal skills both written and oral. NASA has a lot of collaborative projects and being able to effectively communicate across different levels is crucial for mission success.
      Whom do you wish to thank?
      I would like to thank my family for their support. I would also like to thank my past teachers and mentors who made a big difference in me and positively impacted my life.
      What do you do to relax?
      I like going for long walks, spending time with family and friends, and doing activities with my son including attending his piano recitals.
      Who is your favorite author?
      As a young reader, I enjoyed reading Jules Verne. I also enjoy reading poetry. My favorites are Robert Frost, Emily Dickinson, and Persian poets Sohrab Sepehri and Saadi Shirazi.
      What motto do you live by?
      Be the change you want to see in the world.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Dec 19, 2024 Related Terms
      Goddard Space Flight Center People of Goddard People of NASA Explore More
      7 min read Very Cold Detectors Reveal the Very Hot Universe and Kick Off a New Era in X-ray Astronomy
      X-rays are radiated by matter hotter than one million Kelvin, and high-resolution X-ray spectroscopy can…
      Article 2 days ago 7 min read NASA’s Webb Finds Planet-Forming Disks Lived Longer in Early Universe
      NASA’s James Webb Space Telescope just solved a conundrum by proving a controversial finding made…
      Article 3 days ago 5 min read NASA DAVINCI Mission’s Many ‘Firsts’ to Unlock Venus’ Hidden Secrets
      NASA’s DAVINCI probe will be first in the 21st century to brave Venus’ atmosphere as…
      Article 3 days ago View the full article
    • By NASA
      Official portrait of Carlos Garcia-Galan, deputy manager for the Gateway Program.NASA/Bridget Caswell NASA has selected Carlos Garcia-Galan as deputy manager for the Gateway Program. Garcia-Galan previously served as manager of the Orion Program’s European Service Module Integration Office at Glenn Research Center.

      “I am tremendously excited to take on this new role and help lead development of humanity’s first outpost in deep space,” Garcia-Galan said. “I’m honored to join a top-class Gateway team around the world, as the first elements of the complex move toward completion.”

      Garcia-Galan brings more than 27 years of human spaceflight experience to the role. A native of Malaga, Spain, his career includes supporting assembly of the International Space Station as a flight controller in Houston and Korolev, Russia, during multiple Space Shuttle-International Space Station assembly flights. He joined the Orion program in 2010, serving in a variety of key technical and management roles, including management of integrated spacecraft design and performance, mission analysis, cross-program integration, and launch and flight operations support.

      “Carlos is an outstanding manager and engineer, and I am extremely pleased to announce his selection for this position,” said Vanessa Wyche, director of NASA’s Johnson Space Center. “His wealth of experience in human spaceflight, international partnerships, and the development and operations of deep-space spacecraft will be a huge asset to Gateway.”

      While with the Orion Program, Garcia-Galan had a key role preparing the Orion team for the Artemis I mission by establishing the Orion Mission Evaluation Room (MER) concept of operations and leading the team through the Artemis I flight preparations until he transitioned into his role managing ESM integration. He later served as one of the Artemis I MER Leads supporting real-time flight operations during the successful Artemis I mission.

      “Carlos brings a tremendous technical background and extensive leadership experience that will greatly benefit our program, augmenting our strong team as we progress towards deploying the lunar Gateway,” said Gateway Program Manager Jon Olansen.

      Throughout his career, Garcia-Galan has been recognized for his achievements, including receiving, the Honeywell Space Systems Engineer of the Year (Houston) award, the NASA Silver Achievement Medal, the Exceptional Achievement Medal, the Johnson Space Center Director’s Commendation, the Orion Program Manager’s Commendation, and the Silver Snoopy Award.

      Learn More About Gateway

      @NASAGateway
      @NASA_Gateway
      @nasaartemis
      View the full article
  • Check out these Videos

×
×
  • Create New...