Members Can Post Anonymously On This Site
The Secret Lives of Galaxies Unveiled in Deep Survey
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Psyche spacecraft is depicted receiving a laser signal from the Deep Space Optical Communications uplink ground station at JPL’s Table Mountain Facility in this artist’s concept. The DSOC experiment consists of an uplink and downlink station, plus a flight laser transceiver flying with Psyche.NASA/JPL-Caltech The Deep Space Optical Communications tech demo has completed several key milestones, culminating in sending a signal to Mars’ farthest distance from Earth.
NASA’s Deep Space Optical Communications technology demonstration broke yet another record for laser communications this summer by sending a laser signal from Earth to NASA’s Psyche spacecraft about 290 million miles (460 million kilometers) away. That’s the same distance between our planet and Mars when the two planets are farthest apart.
Soon after reaching that milestone on July 29, the technology demonstration concluded the first phase of its operations since launching aboard Psyche on Oct. 13, 2023.
“The milestone is significant. Laser communication requires a very high level of precision, and before we launched with Psyche, we didn’t know how much performance degradation we would see at our farthest distances,” said Meera Srinivasan, the project’s operations lead at NASA’s Jet Propulsion Laboratory in Southern California. “Now the techniques we use to track and point have been verified, confirming that optical communications can be a robust and transformative way to explore the solar system.”
Managed by JPL, the Deep Space Optical Communications experiment consists of a flight laser transceiver and two ground stations. Caltech’s historic 200-inch (5-meter) aperture Hale Telescope at Caltech’s Palomar Observatory in San Diego County, California, acts as the downlink station to which the laser transceiver sends its data from deep space. The Optical Communications Telescope Laboratory at JPL’s Table Mountain facility near Wrightwood, California, acts as the uplink station, capable of transmitting 7 kilowatts of laser power to send data to the transceiver.
This visualization shows Psyche’s position on July 29 when the uplink station for NASA’s Deep Space Optical Communications sent a laser signal about 290 million miles to the spacecraft. See an interactive version of the Psyche spacecraft in NASA’s Eyes on the Solar System.NASA/JPL-Caltech By transporting data at rates up to 100 times higher than radio frequencies, lasers can enable the transmission of complex scientific information as well as high-definition imagery and video, which are needed to support humanity’s next giant leap when astronauts travel to Mars and beyond.
As for the spacecraft, Psyche remains healthy and stable, using ion propulsion to accelerate toward a metal-rich asteroid in the main asteroid belt between Mars and Jupiter.
Exceeding Goals
The technology demonstration’s data is sent to and from Psyche as bits encoded in near-infrared light, which has a higher frequency than radio waves. That higher frequency enables more data to be packed into a transmission, allowing far higher rates of data transfer.
Even when Psyche was about 33 million miles (53 million kilometers) away — comparable to Mars’ closest approach to Earth — the technology demonstration could transmit data at the system’s maximum rate of 267 megabits per second. That bit rate is similar to broadband internet download speeds. As the spacecraft travels farther away, the rate at which it can send and receive data is reduced, as expected.
On June 24, when Psyche was about 240 million miles (390 million kilometers) from Earth — more than 2½ times the distance between our planet and the Sun — the project achieved a sustained downlink data rate of 6.25 megabits per second, with a maximum rate of 8.3 megabits per second. While this rate is significantly lower than the experiment’s maximum, it is far higher than what a radio frequency communications system using comparable power can achieve over that distance.
This Is a Test
The goal of Deep Space Optical Communications is to demonstrate technology that can reliably transmit data at higher speeds than other space communication technologies like radio frequency systems. In seeking to achieve this goal, the project had an opportunity to test unique data sets like art and high-definition video along with engineering data from the Psyche spacecraft. For example, one downlink included digital versions of Arizona State University’s “Psyche Inspired” artwork, images of the team’s pets, and a 45-second ultra-high-definition video that spoofs television test patterns from the previous century and depicts scenes from Earth and space.
This 45-second ultra-high-definition video was streamed via laser from deep space by NASA’s Deep Space Optical Communications technology demonstration on June 24, when the Psyche spacecraft was 240 million miles from Earth. NASA/JPL-Caltech The technology demonstration beamed the first ultra-high-definition video from space, featuring a cat named Taters, from the Psyche spacecraft to Earth on Dec. 11, 2023, from 19 million miles away. (Artwork, images, and videos were uploaded to Psyche and stored in its memory before launch.)
“A key goal for the system was to prove that the data-rate reduction was proportional to the inverse square of distance,” said Abi Biswas, the technology demonstration’s project technologist at JPL. “We met that goal and transferred huge quantities of test data to and from the Psyche spacecraft via laser.” Almost 11 terabits of data have been downlinked during the first phase of the demo.
The flight transceiver is powered down and will be powered back up on Nov. 4. That activity will prove that the flight hardware can operate for at least a year.
“We’ll power on the flight laser transceiver and do a short checkout of its functionality,” said Ken Andrews, project flight operations lead at JPL. “Once that’s achieved, we can look forward to operating the transceiver at its full design capabilities during our post-conjunction phase that starts later in the year.”
More About Deep Space Optical Communications
This demonstration is the latest in a series of optical communication experiments funded by the Space Technology Mission Directorate’s Technology Demonstration Missions Program managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and the agency’s SCaN (Space Communications and Navigation) program within the Space Operations Mission Directorate. Development of the flight laser transceiver is supported by MIT Lincoln Laboratory, L3 Harris, CACI, First Mode, and Controlled Dynamics Inc. Fibertek, Coherent, Caltech Optical Observatories, and Dotfast support the ground systems. Some of the technology was developed through NASA’s Small Business Innovation Research program.
For more information about the laser communications demo, visit:
https://www.jpl.nasa.gov/missions/dsoc
NASA’s Optical Comms Demo Transmits Data Over 140 Million Miles The NASA Cat Video Explained 5 Things to Know About NASA’s Deep Space Optical Communications News Media Contacts
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
2024-130
Share
Details
Last Updated Oct 03, 2024 Related Terms
Deep Space Optical Communications (DSOC) Jet Propulsion Laboratory Psyche Mission Space Communications & Navigation Program Space Operations Mission Directorate Space Technology Mission Directorate Tech Demo Missions Explore More
3 min read How NASA Astronauts Vote from Space Aboard International Space Station
Article 23 mins ago 2 min read The Science of the Perfect Cup for Coffee
Material research is behind the design of a temperature-regulating mug
Article 6 days ago 1 min read Let It Go: (After Latching) Challenge
Article 1 week ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
This September saw the completion of a critical milestone for the construction of ESA's new deep space communication antenna in New Norcia, Australia: the lifting of the 122-tonne reflector dish.
View the full article
-
By NASA
Figure 1. An artist’s concept of the Van Allen belts with a cutaway section of the giant donuts of radiation that surround Earth. Image Credit: NASA Goddard Space Flight Center/Scientific Visualization Studio A new instrument is using advanced detection techniques and leveraging an orbit with specific characteristics to increase our understanding of the Van Allen belts—regions surrounding Earth that contain energetic particles that can endanger both robotic and human space missions. Recently, the instrument provided a unique view of changes to this region that were brought on by an intense magnetic storm in May 2024.
The discovery of the Van Allen radiation belts by the U.S. Explorer 1 mission in 1958 marked a prominent milestone in space physics and demonstrated that Earth’s magnetosphere efficiently accelerates and traps energetic particles. The inner belt contains protons in the MeV (million electric volt) to GeV (109 electric volt) range, and even higher concentrations of energetic electrons of 100s of keV (1000 electric volt) to MeV are found in both the inner belt and the outer belt.
The energetic electrons in these belts—also referred to as “killer electrons”—can have detrimental effects on spacecraft subsystems and are harmful to astronauts performing extravehicular activities. Understanding the source, loss, and varying concentrations of these electrons has been a longstanding research objective. High-energy resolution and clean measurements of these energetic electrons in space are required to further our understanding of their properties and enable more reliable prediction of their intensity.
Overcoming the challenges of measuring relativistic electrons in the inner belt
Measuring energetic electrons cleanly and accurately has been a challenge, especially in the inner belt, where MeV to GeV energy protons also exist. NASA’s Van Allen Probes, which operated from 2012 to 2019 in low inclination, geo-transfer-like orbits, showed that instruments traversing the heart of the inner radiation belt are subject to penetration by the highly energetic protons located in that region. The Relativistic Electron Proton Telescope (REPT) and the Magnetic Electron and Ion Spectrometer (MagEIS) instruments onboard the Van Allen Probes were heavily shielded but were still subject to inner-belt proton contamination.
To attempt to minimize these negative effects, a University of Colorado Boulder team led by Dr. Xinlin Li, designed the Relativistic Electron Proton Telescope integrated little experiment (REPTile)—a simplified and miniaturized version of REPT—to fly onboard the Colorado Student Space Weather Experiment (CSSWE). An effort supported by the National Science Foundation, the 3-Unit CSSWE CubeSat operated in a highly inclined low Earth orbit (LEO) from 2012 to 2014. In this highly inclined orbit, the spacecraft and the instruments it carried were only exposed to the inner-belt protons in the South Atlantic Anomaly (SAA) region where the Earth’s magnetic field is weaker, which greatly reduced the time that protons impacted the measurement of electrons.
REPTile’s success motivated a team, also led by Dr. Xinlin Li, to design REPTile-2—an advanced version of REPTile—to be hosted on the Colorado Inner Radiation Belt Experiment (CIRBE) mission. Like CSSWE, CIRBE operates in a highly inclined low-Earth orbit to ensure the exposure to damaging inner-belt protons is minimized. The team based the REPTile-2 design on REPTile but incorporated two additional technologies—guard rings and Pulse Height Analysis—to enable clean, high-energy-resolution measurements of energetic electrons, especially in the inner belt.
Figure 2: PI observing two engineers testing the interface between the CIRBE bus and REPTile-2 on September 29, 2021. Image Credit: Xinlin Li, University of Colorado Boulder As shown on the left in Figure 3, the field of view (FOV) of REPTile-2 is 51o. Electrons and protons enter the FOV and are measured when they reach a stack of silicon detectors where they deposit their energies. However, very energetic protons (energy greater than 60 MeV) could penetrate through the instrument’s tungsten and aluminum shielding and masquerade as valid particles, thus contaminating the intended measurements. To mitigate this contamination, the team designed guard rings that surround each detector. These guard rings are electronically separated from the inner active area of each detector and are connected by a separate electric channel. When the guard rings are triggered (i.e., hit by particles coming outside of the FOV), the coincident measurements are considered invalid and are discarded. This anti-coincidence technique enables cleaner measurements of particles coming through the FOV.
Figure 3. Left (adapted from Figure 1 of Khoo et al., 2022): Illustration of REPTile-2 front end with key features labeled; Right: REPTile-2 front end integrated with electronic boards and structures, a computer-aided design (CAD) model, and a photo of integrated REPTile-2. Image Credit: Xinlin Li, University of Colorado Boulder To achieve high energy resolution, the team also applied full Pulse Height Analysis (PHA) on REPTile-2. In PHA, the magnitude of measured charge in the detector is directly proportional to the energy deposited from the incident electrons. Unlike REPTile, which employed a simpler energy threshold discrimination method yielding three channels for the electrons, REPTile-2 offers enhanced precision with 60 energy channels for electron energies ranging from 0.25 – 6 MeV. The REPT instrument onboard the Van Allen Probes also employed PHA but while REPT worked very well in the outer belt, yielding fine energy resolution, it did not function as well in the inner belt since the instrument was fully exposed to penetrating energetic protons because it did not have the guard rings implemented.
Figure 4: The CIRBE team after a successful “plugs-out” test of the CIRBE spacecraft on July 21, 2022. During this test the CIRBE spacecraft successfully received commands from ground stations and completed various performance tests, including data transmission back to ground stations at LASP. Image Credit: Xinlin Li, University of Colorado Boulder CIRBE and REPTile-2 Results
CIRBE’s launch, secured through the NASA CubeSat Launch Initiative (CSLI), took place aboard SpaceX’s Falcon 9 rocket as part of the Transporter-7 mission on April 15, 2023. REPTile-2, activated on April 19, 2023, has been performing well, delivering valuable data about Earth’s radiation belt electrons. Many features of the energetic electrons in the Van Allen belts have been revealed for the first time, thanks to the high-resolution energy and time measurements REPTile-2 has provided.
Figure 5 shows a sample of CIRBE/REPTile-2 measurements from April 2024, and illustrates the intricate drift echoes or “zebra stripes” of energetic electrons, swirling around Earth in distinct bunches. These observations span a vast range across the inner and outer belts, encompassing a wide spectrum of energies and electron fluxes extending over six orders of magnitude. By leveraging advanced guard rings, Pulse Height Analysis (PHA), and a highly inclined LEO orbit, REPTile-2 is delivering unprecedented observations of radiation belt electrons.
Figure 5: Color-coded electron fluxes detrended between REPTile-2 measurements for a pass over the South Atlantic Anomaly region on April 24, 2023, and their average, i.e., the smoothed electron fluxes using a moving average window of ±19% in energy; Black curves plotted on top of the color-coded electron fluxes are contours of electron drift period in hr. The second horizontal-axis, L, represents the magnetic field line, which CIRBE crosses. The two radiation belts and a slot region in between are indicated by the red lines and arrow, respectively. Image Credit: Xinlin Li, University of Colorado Boulder In fact, the team recently announced that measurements from CIRBE/REPTile-2 have revealed a new temporary third radiation belt composed of electrons and sandwiched between the two permanent belts. This belt formed during the magnetic storm in May 2024, which was the largest in two decades. While such temporary belts have been seen after big storms previously, the data from CIRBE/REPTile-2 are providing a new viewpoint with higher energy resolution data than before. Scientists are currently studying the data to better understand the belt and how long it might stick around — which could be many months.
PROJECT LEAD
Dr. Xinlin Li, University of Colorado Laboratory for Atmospheric and Space Physics and Department of Aerospace Engineering Sciences.
SPONSORING ORGANIZATIONS
Heliophysics Flight Opportunities for Research & Technology (H-FORT) program, National Science Foundation
Share
Details
Last Updated Sep 17, 2024 Related Terms
Heliophysics Heliophysics Division Science-enabling Technology Explore More
5 min read Voyager 1 Team Accomplishes Tricky Thruster Swap
Article
7 days ago
2 min read Leveraging Teacher Leaders to Share the Joy of NASA Heliophysics
Article
2 weeks ago
9 min read Carbon Nanotubes and the Search for Life on Other Planets
Article
2 weeks ago
View the full article
-
By NASA
Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
Reaching New Heights to Unravel Deep Martian History!
This is an image of the rim that the Perseverance rover took on sol 383 (March 19th, 2022) when it was traversing the crater floor. Dox Castle is located at the top of the image in the far ground. NASA/JPL-Caltech/ASU The Perseverance rover is reaching new heights as it ascends the rim of Jezero crater (over 300 meters in elevation higher than the original landing site)! The rover is now enroute to its first campaign science stop Dox Castle (image in the far ground) a region of interest for its potential to host ancient Mars’ bedrock in the exposed rocks on the rim.
Impact craters like Jezero may be the key to piecing together the early geologic history of Mars, as they provide a window into the history of the ancient crust by excavating and depositing deep crustal materials above the surface. Crater rims act as keepers of ancient Martian history, uplifting and exposing the stratigraphy of these impacted materials. Additionally, extreme heat from the impact can encourage the circulation of fluids through fractures similar to hydrothermal vents, which have implications for early habitability and may be preserved in the exposed rim bedrock. With the Perseverance rover we have the potential to explore some of the oldest exposed rocks on the planet.
Exploring such diverse terrains takes a lot of initial planning! The team has been preparing for the Crater Rim Campaign these last few months by working together to map out the types of materials Perseverance may encounter during its traverse up and through the rim. Using orbital images from the High-Resolution Imaging Science Experiment (HiRISE) instrument, the science team divided the rim area into 36 map quadrants, carefully mapping different rock units based on the morphologies, tones, and textures they observed in the orbital images. Mapping specialists then connected units across the quads to turn 36 miniature maps into one big geologic map of the crater rim. This resource is being used by the team to plan strategic routes to scientific areas of interest on the rim.
On Earth, geologic maps are made using a combination of orbital images and mapping in the field. Planetary scientists don’t typically get to check their map in the field, but we have the unique opportunity to validate our map using our very own robot geologist! Dox Castle will be our first chance to do rim science – and we’re excited to search for evidence of the transition between the margin and rim materials to start piecing together the stratigraphic history of the rocks that make up the rim of Jezero crater.
Written by Margaret Deahn, Ph.D. student at Purdue University
Share
Details
Last Updated Sep 16, 2024 Related Terms
Blogs Explore More
5 min read Sols 4304-4006: 12 Years, 42 Drill Holes, and Now… 1 Million ChemCam Shots!
Article
3 days ago
3 min read Sols 4302-4303: West Side of Upper Gediz Vallis, From Tungsten Hills to the Next Rocky Waypoint
Article
3 days ago
2 min read Margin’ up the Crater Rim!
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By USH
The Department of Defense has appointed a new director to lead the AARO (All-domain Anomaly Resolution Office), which is responsible for investigating UFOs and UAPs. The choice of Dr. Jon T. Kosloski, a former NSA scientist, is notable. According to USAF whistleblower Dan Sherman, the NSA has been involved in tracking UFO and non-human intelligence (NHI) activity for decades. Additionally, there are claims that the NSA manages interstellar trade operations from a base in Antarctica.
Kosloski replaces Dr. Sean Kirkpatrick, the inaugural director of AARO, who faced criticism during his tenure. Many believed Kirkpatrick did little to support whistleblowers, hindering efforts to reveal critical information about UFOs and related phenomena.
One of the intriguing aspects of this story is the alleged NSA connection to Antarctica.
Eric Hecker a Raytheon contractor who worked at the Ice Cube Neutrino observatory at Antarctica from 2010-2011 said that this observatory constructed at the Amundsen–Scott South Pole Station in Antarctica is a huge air traffic control power station that monitors all interstellar craft that be operated by humans as well as non-humans.
The observatory is not the only station that tracks interstellar craft, reports from whistleblowers over the years have hinted at the presence of a vast underground military complex in the area. Allegedly, the NSA operates an office there, which also is involved in monitoring interstellar activity, possibly utilizing the Ice Cube Neutrino Observatory's facilities. In addition, this office is reportedly engaged in interstellar trade. According to Navy whistleblowers, the office is managed from the NSA headquarters at Fort Meade, Maryland, specifically on the sixth floor.
It may sound fantastical, but the NSA has been tracking UFO activity since its inception in 1952. The agency is believed to have developed capabilities to detect UFOs anywhere on Earth but keep quiet about it.
Now, as we look to the future, institutions that shape national security believe the U.S. needs to prepare the public for disclosure, as humanity's future may lie in space. Advanced propulsion systems, including anti-gravity and torsion field technologies, are being developed to construct fleets of spacecraft that can keep pace with extraterrestrial civilizations.
Furthermore, there is a large spaceport in Alabama, near the caverns around Huntsville, where pilots from around 30 nations are reportedly being trained to fly interstellar craft under supervision of a group of extraterrestrials known as the Nordics. It is said that this underground facility already houses hundreds of these craft.
Despite the ongoing UFO cover-up, with Dr. Kosloski now leading AARO, there is hope that in particular the NSA’s involvement in these operations will become more transparent and that further revelations may follow.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.