Jump to content

NASA’s Chandra Peers Into Densest and Weirdest Stars


NASA

Recommended Posts

  • Publishers
This is an image of the leftovers from an exploded star called 3C 58, shown in X-ray and optical light. At the center of the remnant is a rapidly spinning neutron star, called a pulsar, that presents itself as a bright white object that's somewhat elongated in shape.
Supernova remnant 3C 58.
X-ray: NASA/CXC/ICE-CSIC/A. Marino et al.; Optical: SDSS; Image Processing: NASA/CXC/SAO/J. Major

The supernova remnant 3C 58 contains a spinning neutron star, known as PSR J0205+6449, at its center. Astronomers studied this neutron star and others like it to probe the nature of matter inside these very dense objects. A new study, made using NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton, reveals that the interiors of neutron stars may contain a type of ultra-dense matter not found anywhere else in the Universe.

In this image of 3C 58, low-energy X-rays are colored red, medium-energy X-rays are green, and the high-energy band of X-rays is shown in blue. The X-ray data have been combined with an optical image in yellow from the Digitized Sky Survey. The Chandra data show that the rapidly rotating neutron star (also known as a “pulsar”) at the center is surrounded by a torus of X-ray emission and a jet that extends for several light-years. The optical data shows stars in the field.

The team in this new study analyzed previously released data from neutron stars to determine the so-called equation of state. This refers to the basic properties of the neutron stars including the pressures and temperatures in different parts of their interiors.

The authors used machine learning, a type of artificial intelligence, to compare the data to different equations of state. Their results imply that a significant fraction of the equations of state — the ones that do not include the capability for rapid cooling at higher masses — can be ruled out.

The researchers capitalized on some neutron stars in the study being located in supernova remnants, including 3C 58. Since astronomers have age estimates of the supernova remnants, they also have the ages of the neutron stars that were created during the explosions that created both the remnants and the neutron stars. The astronomers found that the neutron star in 3C 58 and two others were much cooler than the rest of the neutron stars in the study.

The team thinks that part of the explanation for the rapid cooling is that these neutron stars are more massive than most of the rest. Because more massive neutron stars have more particles, special processes that cause neutron stars to cool more rapidly might be triggered.

One possibility for what is inside these neutron stars is a type of radioactive decay near their centers where neutrinos — low mass particles that easily travel through matter — carry away much of the energy and heat, causing rapid cooling.

Another possibility is that there are types of exotic matter found in the centers of these more rapidly cooling neutron stars.

The Nature Astronomy paper describing these results is available here. The authors of the paper are Alessio Marino (Institute of Space Sciences (ICE) in Barcelona, Spain), Clara Dehman (ICE), Konstantinos Kovlakas (ICE), Nanda Rea (ICE), J. A. Pons (University of Alicante in Spain), and Daniele Viganò (ICE).

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

For more Chandra images, multimedia and related materials, visit:

https://www.nasa.gov/mission/chandra-x-ray-observatory/

Visual Description

This is an image of the leftovers from an exploded star called 3C 58, shown in X-ray and optical light. At the center of the remnant is a rapidly spinning neutron star, called a pulsar, that presents itself as a bright white object that’s somewhat elongated in shape.

Loops and swirls of material, in shades of blue and purple, extend outward from the neutron star in many directions, resembling the shape of an octopus and its arms.

Surrounding the octopus-like structure is a cloud of material in shades of red that is wider horizontally than it is vertically. A ribbon of purple material extends to the left edge of the red cloud, curling upward at its conclusion. Another purple ribbon extends to the right edge of the red cloud, though it is less defined than the one on the other side. Stars of many shapes and sizes dot the entire image.

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998

Jonathan Deal
Marshall Space Flight Center
Huntsville, Ala.
256-544-0034

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Tiny satellites, also known as CubeSats, are pictured after being deployed into Earth orbit from a small satellite orbital deployer on the outside of the International Space Station’s Kibo laboratory module. The CubeSats were delivered aboard the Northrop Grumman Cygnus space freighter and will serve a variety of educational and research purposes for public and private organizations around the world.
      Image Credit: NASA/Tracy Dyson
      View the full article
    • By NASA
      2 min read
      Hubble Zooms into the Rosy Tendrils of Andromeda
      NASA, ESA, M. Boyer (Space Telescope Science Institute), and J. Dalcanton (University of Washington); Image Processing: Gladys Kober (NASA/Catholic University of America) Clusters of stars set the interstellar medium ablaze in the Andromeda Galaxy about 2.5 million light-years away. Also known as M31, Andromeda is the Milky Way’s closest major galaxy. It measures approximately 152,000 light-years across and, with almost the same mass as our home galaxy, is headed for a collision with the Milky Way in 2-4 billion years. In the meantime, Andromeda remains an object of study for many astronomers.
      As a spiral galaxy, Andromeda’s winding arms are one of its most remarkable features. NASA’s Hubble Space Telescope zoomed in to get a close look at one of its tendrils in the northeast, revealing swathes of ionized gas. These regions — which are common in spiral and irregular galaxies — often indicate the presence of recent star formation. The combination of stellar nurseries and supernovae create a dynamic environment that excites the surrounding hydrogen gas, flourishing it into a garden of star-studded roses.
      NASA, ESA, M. Boyer (Space Telescope Science Institute), and J. Dalcanton (University of Washington); Image Processing: Gladys Kober (NASA/Catholic University of America) Scientists probed Andromeda’s spiral arms using Hubble’s Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3) to analyze the collection of stars buried in its cosmic bouquets. With ACS and WFC3’s wide spectral coverage, Hubble could peer through the hedges of gas and observe a valuable sample of these stars. The extent of the study spanned a vast range of stars, providing not just a clear view of Andromeda’s stellar history and diversity, but also more insight on stellar formation and evolution overall. By examining these stars in our local cosmic neighborhood, scientists can better understand those within galaxies in the distant universe.

      Download First Image


      Download Second Image

      This inset image shows the location of Hubble’s view within the Andromeda galaxy. NASA, ESA, M. Boyer (Space Telescope Science Institute), J. Dalcanton (University of Washington), and KPNO/NOIRLab/NSF/AURA/Adam Block; Image Processing: Gladys Kober (NASA/Catholic University of America) This inset image shows the location of Hubble’s view within the Andromeda galaxy. NASA, ESA, M. Boyer (Space Telescope Science Institute), J. Dalcanton (University of Washington), and KPNO/NOIRLab/NSF/AURA/Adam Block; Image Processing: Gladys Kober (NASA/Catholic University of America) Explore More

      Hubble’s Galaxies

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Aug 30, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science



      Hubble’s Galaxies



      Stars


      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Texas High School Aerospace Scholars get a virtual view of an extravehicular activity (EVA) suit in testing at NASA’s Johnson Space Center in Houston. Photo credit: NASA/Helen Arase Vargas Explore the universe this fall without leaving your classroom through live virtual engagements with NASA space and aviation experts. NASA is offering a new lineup of stellar virtual experiences to spark STEM excitement and connect students with the agency’s missions, science, careers, and more.
      The virtual engagements, managed by NASA’s Next Gen STEM project, are free to join and open to both formal and informal education groups. These options are sure to launch your students’ love of STEM:
      NASA Back-to-School Career Day (Grades K-12)
      On Sept. 26, NASA is hosting a Back-to-School Career Day showcasing a variety of NASA careers with virtual tours of agency facilities, live Q&A with experts, and more.
      Open to K-12 formal and informal education organizations, the registration deadline is Thursday, Sept. 5. In addition to the live event, the interactive platform will be available from Monday, Sept. 23, through Friday, Sept. 27.
      Europa Clipper Launch Virtual Watch Party (All Grade Levels)
      NASA’s Europa Clipper spacecraft is scheduled to launch no earlier than Oct. 10 on a mission to investigate whether Jupiter’s icy moon, Europa, could contain the building blocks needed to support life. The launch window opens on Oct. 10 during the school day at 12:32 p.m. EDT, and your classroom can be part of this pioneering mission. Sign up to watch the launch online, visit Europa Clipper’s Participation Hub for more opportunities, and find additional resources on Europa Clipper’s Kids Resources Hub.
      NQuest Virtual Workshops (Grades 6-8)
      NQuest offers 45-minute virtual workshops every Monday and Thursday. Available on a first-come, first-served basis, these free workshops include a live presentation, captivating NASA videos, and a hands-on activity to bring STEM concepts to life. All you need is a laptop, projector, and basic classroom supplies. Workshops can be scheduled to fit your school’s bell schedule between 11:30 a.m. and 6:30 p.m. EDT. Register your class by Oct. 11.
      “Astro-Not-Yets” Virtual Classroom Connections (Grades K-4)
      Introduce your students to the Astro-Not-Yets, a series of short stories that teach students about NASA’s Commercial Crew Program. In each of these monthly virtual events, a NASA expert whose job relates to the story will read the book to students, then answer their questions.
      Wednesday, Oct. 23: The Astro-Not-Yets! Explore Sound. Students will learn how sound travels and experiment with transmitting sound through a string-cup phone. Registration deadline: Wednesday, Oct. 9. Wednesday, Nov. 20: Astro-Not-Yets! Explore Energy. Students will learn how spacecraft safely bring astronauts home from space, then design and test their own system to safely land an egg on the ground. Registration deadline: Wednesday, Nov. 6. Wednesday, Dec. 11: Astro-Not-Yets! Explore Microgravity. Students will learn all about gravity, microgravity, and the International Space Station. Registration deadline: Wednesday, Nov. 27. “First Women” Virtual Classroom Connections (Grades 5-12)
      This series introduces some of the women at NASA who have made significant achievements in STEM. Students get to hear their stories first-hand and ask them questions in a live Q&A.
      Wednesday, Oct. 16: Meet NASA’s first female launch director, Charlie Blackwell-Thompson. She led the launch team during the uncrewed Artemis I mission around the Moon in 2022. Now, she and her team are preparing for the first crewed Artemis mission, Artemis II. Registration deadline: Monday, Sept. 30. Wednesday, Nov. 6: Meet Laurie A. Grindle and learn about NASA’s first X-43A Guinness world record. Today, Grindle is deputy center director at NASA’s Armstrong Flight Research Center in Edwards, California, but in 2004, the X-43A aircraft she and her team developed set the Guinness World Record for “the fastest air-breathing aircraft” twice in one year. Registration deadline: Monday, Oct. 21. Wednesday, Dec. 4: Meet Dr. Ruth Jones, NASA’s 2024 Wings of Excellence Awardee. Jones will share her experience as a woman in STEM and tell students what it was like to become the first woman to earn a bachelor’s degree in physics from the University of Arkansas at Pine Bluff. Registration deadline: Monday, Nov. 18. Surprisingly STEM Career Explorations Virtual Events (Grades 5-12)
      The Surprisingly STEM video series highlights some of NASA’s many unexpected careers. In these events, experts from the videos discuss their unusual and exciting jobs and share their journeys that led them to NASA.
      Thursday, Oct. 24: Soft robotics engineer Jim Neilan explains the importance of soft robotics in human spaceflight and some of the role’s critical skills. Registration deadline: Friday, Oct. 18. Thursday, Nov. 14: Exploration geologist Angela Garcia takes students behind the scenes of her job training NASA astronauts to explore for the “crater” good of humanity. Registration deadline: Thursday, Nov. 7. Thursday, Dec. 12: Memory metal engineer Othmane Benafan explains how he “trains” metal to bend, stretch, and twist when prompted, and how this technology benefits NASA missions. Registration deadline: Thursday, Dec. 5. Bring NASA Experts Into the Classroom (All Grades)
      NASA recently launched NASA Engages, a new, database-driven platform designed to connect a wide range of audiences with experts from across the space agency – both virtually and in person. Available to classrooms from preschool to college, informal education organizations such as libraries and science centers, and other eligible groups, NASA Engages enables educators and group leaders to find inspirational guest speakers, knowledgeable science fair judges, and more.
      There’s More to Explore
      Find student challenges, hands-on activities, and more opportunities on the Learning Resources website managed by NASA’s Office of STEM Engagement. Visit How Do I Navigate NASA Learning Resources and Opportunities? to explore additional platforms and offerings to enhance your STEM curriculum. Subscribe to the weekly NASA EXPRESS e-newsletter to discover the latest events, resources, and other opportunities to bring NASA into your classroom. Explore More
      7 min read NASA Project in Puerto Rico Trains Students in Marine Biology
      Article 20 hours ago 3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night
      During the April 8, 2024 total solar eclipse, approximately 770 AudioMoth recording devices were used…
      Article 22 hours ago 10 min read 40 Years Ago: President Reagan Announces Teacher in Space Project
      Article 2 days ago View the full article
    • By European Space Agency
      Image: Webb peeks into Perseus View the full article
    • By NASA
      5 Min Read Cassiopeia A, Then the Cosmos: 25 Years of Chandra X-ray Science
      By Rick Smith
      On Aug. 26, 1999, NASA’s Chandra X-ray Observatory opened its powerful telescopic eye in orbit and captured its awe-inspiring “first light” images of Cassiopeia A, a supernova remnant roughly 11,000 light-years from Earth. That first observation was far more detailed than anything seen by previous X-ray telescopes, even revealing – for the first time ever – a neutron star left in the wake of the colossal stellar detonation.
      Those revelations came as no surprise to Chandra project scientist Martin Weisskopf, who led Chandra’s development at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “When you build instrumentation that’s 10 times more sensitive than anything that was done before, you’re bound to discover something new and exciting,” he said. “Every step forward was a giant step forward.”
      Twenty-five years later, Chandra has repeated that seminal moment of discovery again and again, delivering – to date – nearly 25,000 detailed observations of neutron stars, quasars, supernova remnants, black holes, galaxy clusters, and other highly energetic objects and events, some as far away as 13 billion light-years from Earth.
      Chandra has further helped scientists gain tangible evidence of dark matter and dark energy, documented the first electromagnetic events tied to gravitational waves in space, and most recently aided the search for habitable exoplanets – all vital tools for understanding the vast, interrelated mechanisms of the universe we live in.
      NASA’s Chandra X-ray Observatory has observed Cassiopeia A for more than 2 million total seconds since its “first light ” images of the supernova remnant on Aug. 26, 1999. Cas A is some 11,000 light-years from Earth. Chandra X-rays are depicted in blue and composited with infrared images from NASA’s James Webb Space Telescope in orange and white.Credits: X-ray: NASA/CXC/SAO; Infrared: NASA/ESA/CSA/STScI/D. Milisavljevic (Purdue Univ.), I. De Looze (University of Ghent), T. Temim (Princeton Univ.); Image Processing: NASA/CXC/SAO/J. Schmidt, K. Arcand, and J. Major “Chandra’s first image of Cas A provided stunning demonstration of Chandra’s exquisite X-ray mirrors, but it simultaneously revealed things we had not known about young supernova remnants,” said Pat Slane, director of the CXC (Chandra X-ray Center) housed at the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts. “In a blink, Chandra not only revealed the neutron star in Cas A; it also taught us that young neutron stars can be significantly more modest in their output than what previously had been understood. Throughout its 25 years in space, Chandra has deepened our understanding of fundamental astrophysics, while also greatly broadening our view of the universe.”
      To mark Chandra’s silver anniversary, NASA and CXC have shared 25 of its most breathtaking images and debuted a new video, “Eye on the Cosmos.”
      Chandra often is used in conjunction with other space telescopes that observe the cosmos in different parts of the electromagnetic spectrum, and with other high-energy missions such as ESA’s (European Space Agency’s) XMM-Newton; NASA’s Swift, NuSTAR (Nuclear Spectroscopic Telescope Array), and IXPE (Imaging X-ray Polarization Explorer) imagers, and NASA’s NICER (Neutron Star Interior Composition Explorer) X-ray observatory, which studies high-energy phenomena from its vantage point aboard the International Space Station.
      Chandra remains a unique, global science resource, with a robust data archive that will continue to serve the science community for many years.
      “NASA’s project science team has always strived to conduct Chandra science as equitably as possible by having the world science community collectively decide how best to use the observatory’s many tremendous capabilities,” said Douglas Swartz, a USRA (Universities Space Research Association) principal research scientist on the Chandra project science team.
      These images were released to commemorate the 25th anniversary of Chandra. They represent the wide range of objects that the telescope has observed over its quarter century of observations. X-rays are an especially penetrating type of light that reveals extremely hot objects and very energetic physical processes. The images range from supernova remnants, like Cassiopeia A, to star-formation regions like the Orion Nebula, to the region at the center of the Milky Way. This montage also contains objects beyond our own Galaxy including other galaxies and galaxy clusters.X-ray: NASA/CXC/UMass/Q.D. Wang; “Chandra will continue to serve the astrophysics community long after its mission ends,” said Andrew Schnell, acting Chandra program manager at Marshall. “Perhaps its greatest discovery hasn’t been discovered yet. It’s just sitting there in our data archive, waiting for someone to ask the right question and use the data to answer it. It could be somebody who hasn’t even been born yet.”
      That archive is impressive indeed. To date, Chandra has delivered more than 70 trillion bytes of raw data. More than 5,000 unique principal investigators and some 3,500 undergraduate and graduate students around the world have conducted research based on Chandra’s observations. Its findings have helped earn more than 700 PhDs and resulted in more than 11,000 published papers, with half a million total citations.
      Weisskopf is now an emeritus researcher who still keeps office hours every weekday despite having retired from NASA in 2022. He said the work remains as stimulating now as it was 25 years ago, waiting breathlessly for those “first light” images.
      NASA’s Chandra X-ray Observatory data, seen here in violet and white, is joined with that of NASA’s Hubble Space Telescope (red, green, and blue) and Imaging X-ray Polarimetry Explorer (purple) to show off the eerie beauty of the Crab Nebula. The nebula is the result of a bright supernova explosion first witnessed and documented in 1054 A.D.X-ray: (Chandra) NASA/CXC/SAO, (IXPE) NASA/MSFC; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/J. Schmidt, K. Arcand, and L. Frattare “We’re always trying to put ourselves out of business with the next bit of scientific understanding,” he said. “But these amazing discoveries have demonstrated how much NASA’s astrophysics missions still have to teach us.”
      The universe keeps turning – and Chandra’s watchful eye endures.
      More about Chandra
      Chandra, managed for NASA by Marshall in partnership with the CXC, is one of NASA’s Great Observatories, along with the Hubble Space Telescope and the now-retired Spitzer Space Telescope and Compton Gamma Ray Observatory. It was first proposed to NASA in 1976 by Riccardo Giacconi, recipient of the 2002 Nobel Prize for Physics based on his contributions to X-ray astronomy, and Harvey Tananbaum, who would later become the first director of the Chandra X-ray Center. Chandra was named in honor of the late Nobel laureate Subrahmanyan Chandrasekhar, who earned the Nobel Prize in Physics in 1983 for his work explaining the structure and evolution of stars.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://cxc.harvard.edu
      News Media Contact
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated Aug 26, 2024 Related Terms
      Chandra X-Ray Observatory Crab Nebula Galaxies Marshall Space Flight Center Nebulae Explore More
      5 min read Webb Finds Early Galaxies Weren’t Too Big for Their Britches After All
      It got called the crisis in cosmology. But now astronomers can explain some surprising recent…
      Article 5 hours ago 2 min read Hubble Captures Unique Ultraviolet View of a Spectacular Star Cluster
      Roughly 210,000 light-years away, the Small Magellanic Cloud (SMC) is one of our Milky Way…
      Article 5 hours ago 2 min read Hubble Reaches a Lonely Light in the Dark
      A splatter of stars glows faintly at almost 3 million light-years away in this new…
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...