Jump to content

NASA Preserves Its Past at Kennedy While Building Future of Space


NASA

Recommended Posts

  • Publishers
ksc-20240528-ph-mwc01-0018orig.jpg?w=204
From the left, NASA Kennedy Space Center’s, Maui Dalton, project manager, engineering; Katherine Zeringue, cultural resources manager; Janet Petro, NASA Kennedy Space Center director; and Ismael Otero, project manager, engineering, unveil a large bronze historical marker plaque at the location of NASA Kennedy’s original headquarters building on Tuesday, May 28, 2024. Approved in April 2023 as part of the State of Florida’s Historical Markers program in celebration of National Historic Preservation Month, the marker commemorates the early days of space exploration and is displayed permanently just west of the seven-story, 200,000 square foot Central Campus Headquarters Building, which replaced the old building in 2019.
Photo credit:: NASA/Mike Chambers

Current and former employees of NASA’s Kennedy Space Center in Florida gathered recently to celebrate the installation of a Florida Historical Marker cast in bronze at the location of the spaceport’s old headquarters building.

The first of its kind inside the center’s secure area, the marker is the latest example of the center’s commitment to remembering its rich history as it continues to launch humanity’s future.

At the forefront of NASA Kennedy’s commitment to preservation is Katherine Zeringue, who serves as cultural resources manager, overseeing the center’s historic resources from buildings to historic districts to archaeological sites.

“Traditional approaches attempt to preserve things to a specific time period, including historic materials,” Zeringue said. “But that’s a challenge here because we still actively use our historic assets, which need to be modified to accommodate new missions and new spacecraft. Therefore, we rely on an adaptive reuse approach, in which the active use of a historic property helps to ensure its preservation.”

Many iconic structures are still in service at NASA Kennedy, like the Beach House where Apollo astronauts congregated with their families, the Vehicle Assembly Building where NASA rockets are still stacked, the Launch Control Center, and Launch Complex 39A. All told, 83 buildings, seven historic districts, and one National Historic Landmark are either listed or are eligible for listing on the National Register of Historic Places.

To conserve these resources, the spaceport follows a variety of federal laws, regulations, and executive orders, including the National Historic Preservation Act of 1966. This includes making a reasonable and good faith effort to identify any historic properties under its care and considering how its decisions affect historic properties.

“The Cultural Resources Management Program aims to balance historic preservation considerations with the agency’s mission and mandate to ensure reliable access to space for government and commercial payloads,” Zeringue said. “Finding that proper balance is challenging in the dynamic environment of our spaceport.”

Perhaps no other location embodies the center’s commitment to the past and the future more than Launch Complex 39A. Created in 1965, the launch complex was initially designed to support the Saturn V rocket, which powered the agency’s Apollo Program as it made numerous trips to the Moon. Outside of launching Skylab in 1973, the pad stood unused following Apollo’s end in 1972 until the agency’s Space Shuttle Program debuted in 1981. The transition from Apollo to space shuttle saw Launch Complex 39A transform from support of a single-use rocket to supporting the nation’s first reusable space launch and landing system.

By the time the program ended in 2011, 135 space shuttle launches had taken place within Kennedy’s boundary, 82 of which were at Launch Complex 39A. Many of those were among the program’s most notable, including the flights of astronauts Sally Ride, NASA’s first woman in space, and Guion Bluford, NASA’s first Black astronaut in space, as well as the first flight to the newly created International Space Station in 1998.

The launch complex began another transformation in 2014 when NASA signed a 20-year lease agreement with SpaceX as part of Kennedy’s transformation into a multi-user spaceport. SpaceX reconfigured Launch Complex 39A to support its Falcon 9 and Falcon Heavy rockets, which today launch robotic science missions and other government and commercial payloads, as well as crew and cargo to the space station. Apollo-era infrastructure is incorporated in the SpaceX Crew Launch Tower.

“Launch Complex 39A exemplifies the balance between historic preservation and supporting the mission,” Zeringue noted. “Each chapter of the space program brings change, and those changes become additional chapters in the center’s historical legacy as we continue to build the future in space exploration.”

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Diana Oglesby’s love for NASA began long before she started working for the agency. A native of Decatur, Texas, Oglesby knew at the age of eight that she would make NASA her future destination. That dream became a reality when Oglesby joined the agency, first as an intern and later as a NASA full-time employee, marking the beginning of a career that would span over two decades.  


      From left, Richard Jones, CCP (Commercial Crew Program) deputy program manager at NASA’s Johnson Space Center in Houston; Steve Stich, program manager for CCP; Dana Hutcherson, CCP deputy program manager at NASA’s Kennedy Space Center in Florida; and Diana Oglesby, director, Strategic Integration and Management Division, Space Operations Mission Directorate, pose with the agency’s SpaceX Crew-9 mission flag near the countdown clock at the NASA News Center at the Kennedy on Tuesday, Sept. 24, 2024.NASA/Cory S Huston Oglesby currently serves as director of the Strategic Integration and Management Division within NASA’s Space Operations Mission Directorate at NASA Headquarters. The division plays a key role in ensuring the effectiveness and efficiency of space operations, providing essential business support such as programmatic integration, strategic planning, information technology and cybersecurity leadership, stakeholder outreach, and administrative services.  

      Before her current role, Oglesby led the business management function for NASA’s Commercial Crew Program at NASA’s Kennedy Space Center in Florida. She had a front-row seat to history during NASA’s SpaceX Demo-2 mission, which successfully launched astronauts to the International Space Station in the first commercially built and operated American rocket and spacecraft, marking a significant milestone in NASA’s space exploration efforts.  

      “It was an honor of a lifetime,” she says, reflecting on her role in this historic achievement.

      Oglesby’s ability to foster teamwork and genuine care for others has been a hallmark of her career, whether serving in NASA’s Commercial Crew Program or now guiding the Strategic Integration and Management Division. 

      While reflecting on her new role as division director, Oglesby is most excited about the people. As someone who thrives on diverse activities and complex challenges, she looks forward to the strategic aspects of her role and the opportunity to lead a dynamic team helping to shape NASA’s future. 
      The future is bright. We are actively building the future now with each choice as part of the agency's strategic planning and transition from current International Space Station operations to the new commercial low Earth orbit destinations.
      Diana Oglesby
      Director, Strategic Integration and Management Division, Space Operations Mission Directorate 
      “The future is bright,” said Oglesby. “We are actively building the future now with each choice as part of the agency’s strategic planning and transition from current International Space Station operations to the new commercial low Earth orbit destinations.” 

      While Oglesby is deeply committed to her work, she also believes in “work-life harmony” rather than a work-life balance, by giving her attention to the sphere of life she is currently in at that moment in time. She remains ever focused on harmonizing between her NASA duties and her life outside of work, including her three children. Oglesby enjoys spending time with her family, baking, crafting, and participating in her local church and various causes to support community needs.   

      Known for her positive energy, passion, and innovation, Oglesby always seeks ways to improve systems and make a difference in whatever project she is tackling. Her attention to detail and problem-solving approach makes her an invaluable leader at NASA. 
      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the heart of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support. 


      To learn more about NASA’s Space Operation Mission Directorate, visit: 
      https://www.nasa.gov/directorates/space-operations
      Share
      Details
      Last Updated Nov 14, 2024 Related Terms
      Space Operations Mission Directorate Strategic Integration and Management Division Explore More
      4 min read Precision Pointing Goes the Distance on NASA Experiment
      Article 2 hours ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
      Article 2 weeks ago 3 min read Commercial Services User Group (CSUG)
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Humans In Space
      International Space Station
      Commercial Space
      NASA Directorates
      View the full article
    • By NASA
      Credit: NASA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected Southwest Research Institute of San Antonio to build three coronagraphs for the Lagrange 1 Series project, part of NOAA’s Space Weather Next program.
      Once operational, the coronagraphs will provide critical data to NOAA’s Space Weather Prediction Center, which issues forecasts, warnings, and alerts that help mitigate space weather impacts, including electric power outages and interruption to communications and navigation systems.
      This cost-plus-fixed-fee contract is valued at approximately $60 million, and the anticipated period of performance is from this November through January 2034, concluding after launch of the second coronagraph aboard a NOAA spacecraft. The third coronagraph will be delivered as a flight spare.
      This contract award marks a transfer of coronagraph development from the government to the U.S. commercial sector. The contract scope includes design, analysis, development, fabrication, integration, test, verification, and evaluation of the      coronagraphs; launch support; supply and maintenance of ground support equipment; and support of post-launch instrument operations at the NOAA Satellite Operations Facility. The work will take place at Southwest Research Institute’s facility in San Antonio.
      The coronagraphs will observe the density structure of the Sun’s faint outermost atmosphere — the corona — and will detect Earth-directed coronal mass ejections shortly after they erupt, providing the longest possible lead time for geomagnetic storm watches. With this forewarning, public and private organizations affected by space weather can take actions to protect their assets. The coronagraphs will also provide data continuity from the Space Weather follow-on Lagrange 1 mission.
      NASA and NOAA oversee the development, launch, testing and operation of all the satellites in the project. NOAA is the program owner providing the requirements and funding along with managing the program, operations, data products, and dissemination to users. NASA and its commercial partners develop and build the instruments, spacecraft, and provide launch services on behalf of NOAA.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Jeremy Eggers
      Goddard Space Flight Center, Greenbelt, Md.
      757-824-2958
      jeremy.l.eggers@nasa.gov
      View the full article
    • By NASA
      Johnson Space Center Vibration Test FacilityNASA Nov. 14, 2024
      NASA Johnson Invites Proposals to Lease Vibration Test Facility
      NASA’s Johnson Space Center is seeking proposals for the use of its historic, but underused, Vibration and Acoustic Test Facility. Prospective tenants must submit facility walk-through requests by Monday, Nov. 18.
      Final proposals are due by 12 p.m. EST Monday, Dec. 16, and must promote activities that will build, expand, modernize, or operate aerospace-related capabilities at NASA Johnson and help preserve the historic and iconic building through preservation and adaptive reuse.
      NASA plans to sign a National Historic Preservation Act (NHPA) lease agreement for the facility, also known as Building 49, for a five-year base period and one five-year extension to be negotiated between NASA and the tenant. To request a walk-through, send an email to hq-realestate@mail.nasa.gov.
      “This historic facility has been used for decades to ensure the success and safety of all human spaceflight missions by putting engineering designs and hardware to the ultimate stress tests,” said NASA Johnson Director Vanessa Wyche. “For more than 60 years, NASA Johnson has been the hub of human space exploration and this agreement will be a vital part of the center’s efforts to develop a robust and durable space economy that refines our understanding of the solar system and space exploration.”
      All proposals must adhere to the guidelines detailed in the Agency Announcement for Proposals describing concept plans for development of the property, including any modifications proposed to the building; a statement of financial capability to successfully achieve and sustain operations, demonstrated experience with aerospace-related services or other space-related activities, and a detailed approach to propelling the space economy.
      The nine-story building complex has a gross square footage of 62,737 square feet and consists of a north wing measuring 62 feet long, 268 feet wide and 106 feet tall, and a central wing about 64 feet long and 115 feet wide. Building 49 currently houses five laboratories, including the General Vibration Laboratory, Modal Operations Laboratory, Sonic Fatigue Laboratory, Spacecraft Acoustic Laboratory, and Spacecraft Vibration Laboratory. The south administrative portion of the building is not included in the property offered for lease. 
      As the home of Mission Control Center for the agency’s human space missions, astronaut training, robotics, human health and space medicine, NASA Johnson leads the way for the human exploration. Leveraging its unique role and location, the center is developing multiple lease agreements, including the recently announced Exploration Park, to sustain its key role in helping the human spaceflight community foster a robust space.
      In the coming years, NASA and its academic, commercial, and international partners will see the completion of the International Space Station Program, the commercial development of low Earth orbit, and the first human Artemis campaign missions establishing sustainable human presence on the Moon in preparation for human missions to Mars.
      Johnson already is leading the commercialization of space with the commercial cargo and crew programs and private astronaut missions to the space station. The center also is supporting the development of commercial space stations in low Earth orbit, and lunar-capable commercial spacesuits and lunar landers that will be provided as services to both NASA and the private sector to accelerate human access to space. Through the development of Exploration Park, the center will broaden the scope of the human spaceflight community that is tackling the many difficult challenges ahead.
      Learn more about NASA Johnson’s efforts to collaborate with industry partners:
      https://www.nasa.gov/johnson/frontdoor
      -end-
      Kelly Humphries
      Johnson Space Center, Houston
      281-483-5111
      kelly.o.humphries@nasa.gov
      View the full article
    • By NASA
      NASA Deputy Administrator Pam Melroy (front center left) discusses NASA 2040 on Wednesday, Nov. 13, 2024, the agency’s strategic initiative for aligning workforce, infrastructure, and technologies to meet the needs of the future with various groups of employees at the agency’s Kennedy Space Center in Florida.
      The initiative launched in June 2023 to implement meaningful changes to ensure the agency remains the global leader in aerospace and science in the year 2040 while also making the greatest impacts for the nation and the world.
      NASA will focus on addressing the agency’s aging infrastructure, shaping an agency workforce strategy, improving decision velocity at many levels, and exploring ways to achieve greater budget flexibility.
      Photo credit: NASA/Glenn Benson
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The laser that transmits between NASA’s Psyche spacecraft and Earth-based observatories for the Deep Space Optical Communications experiment successfully reaches its target thanks, in part, to a vibration isolation platform developed by Controlled Dynamics Inc., and supported by several Space Technology Mission Directorate programs. NASA/JPL-Caltech One year ago today, the future of space communications arrived at Earth as a beam of light from a NASA spacecraft nearly 10 million miles away. That’s 40 times farther than our Moon. That’s like using a laser pointer to track a moving dime from a mile away. That’s pretty precise.
      That laser — transmitted from NASA’s DSOC (Deep Space Optical Communications) technology demonstration — has continued to hit its target on Earth from record-breaking distances.
      “NASA’s Deep Space Optical Communications features many novel technologies that are needed to precisely point and track the uplink beacon and direct the downlink laser,” said Bill Klipstein, DSOC project manager at NASA’s Jet Propulsion Laboratory in Southern California.
      One of the technologies aiding that extremely precise pointing was invented by a small business and fostered by NASA for more than a decade.
      Whole Lotta Shakin’ Going On (Not!)
      Part of the challenge with the precision pointing needed for DSOC was isolating the laser from the spacecraft’s vibrations, which would nudge the beam off target. Fortunately for NASA, Controlled Dynamics Inc. (CDI), in Huntington Beach, California, offered a solution to this problem.
      The company had a platform designed to isolate orbiting experiments from vibrations caused by their host spacecraft, other payloads, crew movements, or even their own equipment. Just as the shocks on a car provide a smoother ride, the struts and actuators on CDI’s vibration isolation platform created a stable setting for delicate equipment.
      This idea needed to be developed and tested first to prove successful.
      The Path to Deep Space Success
      NASA’s Space Technology Mission Directorate started supporting the platform’s development in 2012 under its Game Changing Development program with follow-on support from the SBIR (Small Business Innovation Research) program. The technology really began to take off — pun intended — under NASA’s Flight Opportunities program. Managed out of NASA’s Armstrong Flight Research Center in Edwards, California, Flight Opportunities rapidly demonstrates promising technologies aboard suborbital rockets and other vehicles flown by commercial companies.
      Early flight tests in 2013 sufficiently demonstrated the platform’s performance, earning CDI’s technology a spot on the International Space Station in 2016. But the flight testing didn’t end there. A rapid series of flights with Blue Origin, UP Aerospace, and Virgin Galactic put the platform through its paces, including numerous boosts and thruster firings, pyrotechnic shocks, and the forces of reentry and landing.
      “Flight Opportunities was instrumental in our development,” said Dr. Scott Green, CDI’s co-founder and the platform’s principal investigator. “With five separate flight campaigns in just eight months, those tests allowed us to build up flight maturity and readiness so we could transition to deep space.”
      The vibration isolation platform developed by Controlled Dynamics Inc., and used on the Deep Space Optical Communications experiment conducted numerous tests through NASA’s Flight Opportunities program, including this flight aboard Virgin Galactic’s VSS Unity in February 2019. Virgin Galactic The culmination of NASA’s investments in CDI’s vibration isolation platform was through its Technology Demonstration Missions program, which along with NASA’s SCaN (Space Communications and Navigation) program supported NASA’s Deep Space Optical Communications.
      On Oct. 13, 2023, DSOC launched aboard the Psyche spacecraft, a mission managed by JPL. The CDI isolation platform provided DSOC with the active stabilization and precision pointing needed to successfully transmit a high-definition video of Taters the cat and other sample data from record-breaking distances in deep space.
      “Active stabilization of the flight laser transceiver is required to help the project succeed in its goal to downlink high bandwidth data from millions of miles,” said Klipstein. “To do this, we need to measure our pointing and avoid bumping into the spacecraft while we are floating. The CDI struts gave us that capability.”
      The Deep Space Optical Communications technology demonstration’s flight laser transceiver is shown at NASA’s Jet Propulsion Laboratory in Southern California in April 2021. The transceiver is mounted on an assembly of struts and actuators — developed by Controlled Dynamics Inc. — that stabilizes the optics from spacecraft vibrations. Several Space Technology Mission Directorate programs supported the vibration isolation technology’s development. NASA/JPL-Caltech Onward Toward Psyche
      The Psyche spacecraft is expected to reach its namesake metal-rich asteroid located between Mars and Jupiter by August 2029. In the meantime, the DSOC project team is celebrating recognition as one of TIME’s Inventions of 2024 and expects the experiment to continue adding to its long list of goals met and exceeded in its first year.
      By Nancy Pekar
      NASA’s Flight Opportunities Program
      Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      Deep Space Optical Communications (DSOC)
      Game Changing Development
      Flight Opportunities
      Share
      Details
      Last Updated Nov 14, 2024 EditorLoura Hall Related Terms
      Space Technology Mission Directorate Armstrong Flight Research Center Deep Space Optical Communications (DSOC) Flight Opportunities Program Game Changing Development Program Jet Propulsion Laboratory Psyche Mission Small Business Innovation Research / Small Business Space Communications & Navigation Program Technology Technology Demonstration Missions Program View the full article
  • Check out these Videos

×
×
  • Create New...