Jump to content

Celestial Fireworks


HubbleSite

Recommended Posts

low_STSCI-H-p0320a-k-1340x520.png

Resembling the puffs of smoke and sparks from a summer fireworks display in this image from NASA's Hubble Space Telescope, these delicate filaments are actually sheets of debris from a stellar explosion in a neighboring galaxy. Hubble's target was a supernova remnant, denoted LMC N 49, within the Large Magellanic Cloud, a nearby, small companion galaxy to the Milky Way visible from the southern hemisphere. This filamentary material will eventually be recycled into building new generations of stars in the LMC. Our own Sun and planets are constructed from similar debris of supernovae that exploded in the Milky Way billions of years ago.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Christy Hansen’s journey with NASA spans more than two decades and is marked by roles that have shaped her into a leader in space exploration. Now serving on a six-month rotation as the deputy manager for NASA’s CLDP (Commercial Low Earth Orbit Development Program) at Johnson Space Center in Houston, she brings 25 years of human spaceflight experience and a global perspective on Earth sciences to her role. 

      Prior to her rotation, she served as the Artemis deputy mission manager in the Moon to Mars Program Office at NASA Headquarters in Washington, where she supported Artemis missions and facilitated the integration of science and utilization activities into the mission architecture and planning.  

      Hansen now leverages her vast expertise to advance NASA’s commercial space initiatives and support the agency’s long-term goals. 
      Christy Hansen serves a six-month rotation as deputy manager for NASA’s Commercial Low Earth Orbit Development Program at Johnson Space Center in Houston. NASA/Bill Hrybyk She is no stranger to Johnson. From 1999 to 2010, Hansen worked as an operations engineer in Johnson’s Flight Operations Directorate, focusing on astronaut training and flight control. She developed procedures, planned spacewalks, and trained astronauts to work in space suits with specialty tools on Space Shuttle, International Space Station, and Hubble Space Telescope missions. She was instrumental in supporting real-time operations as a flight controller for space station assembly missions and the final mission to service Hubble in 2009. 

      In 2010, Hansen became the operations manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland for the Robotic Refueling Mission, a technology demonstration payload that flew to the orbiting laboratory on STS-135. By 2012 she transitioned to airborne science project management at Goddard, leading multiple missions including Operation IceBridge’s first deployment to Antarctica. Her work focused on studying changes in Earth’s ice sheets and sea ice in Greenland and Antarctica, where she collaborated with scientists, engineers, and managers to design aircraft-based Earth science missions. 
      Christy Hansen at Antarctica’s geographic south pole in 2012. Faced with her husband’s diagnosis of amyotrophic lateral sclerosis in 2014, Hansen drew on her vast experience and passion for engineering to solve a deeply personal issue on the ground. Combining her technical expertise and pioneering spirit, she led an effort to bring eye-gaze technology to Goddard, enabling individuals with neurodegenerative disabilities to continue working without the use of their hands or voice. 

      Her husband, Dave Parker, an engineer at Goddard who worked on all hubble servicing missions and tech demo payloads on the space station, was determined to keep working even when he could not use his arms, legs, hands, or voice. Together, they researched and pushed for this capability, ensuring that the technology could help many others in similar situations. 

      After collaborating with Goddard information technology and the commercial-off-the-shelf Tobi eye gaze company, they managed to implement the system within a year. Parker worked for a year and a half using this technology and supported the real-time installation of space station hardware he helped design from his hospital bed before passing away in March 2021.  

      Hansen continues to work with NASA’s Office of Diversity and Equal Opportunity to make this a standard accommodation option. 

      In her new role, she aims to support the development of an innovative acquisition strategy that fosters a robust commercial low Earth orbit environment. “I look forward to working with the CLDP team and our stakeholders to develop a creative and smart approach that enables a commercially led and operated low Earth orbit destination,” she said. “This includes fostering an open dialogue across disciplines, including critical tech authorities, programs, our industry and international partners, and Johnson and headquarters leadership. We can only go great places together.” 

      Her background in human spaceflight and science missions has given her a unique perspective. “I truly enjoy building partnerships and working across broad teams to achieve amazing goals,” she said. “This diversity of experience gave me an understanding of the critical goals, priorities, and culture of our key NASA stakeholders – and how we must integrate and work together to achieve the NASA mission.” 

      Through her career, she has learned to be open to new ideas and ways of doing things. “Be curious and proactively create space for all voices to be heard; there is more than one way to do things, and you must be open and receptive to different communication styles and experiences,” she said. “I lean on my broad experiences wherever I go.” 
      Christy Hansen at NASA’s Goddard Space Flight Center in Greenbelt, Maryland during her time as the project manager for NASA’s Operation IceBridge. NASA/Bill Hrybyk For young girls interested in a career in space, her advice is clear: “Go, go, go! You will face challenges and hurdles, but human spaceflight and NASA need your ideas, experiences, and energy. You uniquely bring momentum in a way others cannot – so don’t compare yourself to others. Study and do what you love – as that will get you through the hard times.” 

      Looking ahead, she is eager to help make space accessible and affordable to all, enabling a broader and diverse field of future flyers. “These destinations will enable critical science, human research, and tech development – important steppingstones to help us achieve our goals of landing on the Moon again and ultimately going to Mars,” she said. “No matter how dynamic and challenging our work is, my passion for human spaceflight and the NASA mission is inherently part of me.” 

      The agency’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions. 

      Learn more about NASA’s commercial space strategy at: 
      https://www.nasa.gov/humans-in-space/commercial-space/
      View the full article
    • By NASA
      4 Min Read NASA’s Webb Captures Celestial Fireworks Around Forming Star
      L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument). The colors within this mid-infrared image reveal details about the central protostar’s behavior.
      The cosmos seems to come alive with a crackling explosion of pyrotechnics in this new image from NASA’s James Webb Space Telescope. Taken with Webb’s MIRI (Mid-Infrared Instrument), this fiery hourglass marks the scene of a very young object in the process of becoming a star. A central protostar grows in the neck of the hourglass, accumulating material from a thin protoplanetary disk, seen edge-on as a dark line.
      The protostar, a relatively young object of about 100,000 years, is still surrounded by its parent molecular cloud, or large region of gas and dust. Webb’s previous observation of L1527, with NIRCam (Near-Infrared Camera), allowed us to peer into this region and revealed this molecular cloud and protostar in opaque, vibrant colors.
      Image A: L1527 – Webb/MIRI
      L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules. This image includes filters representing 7.7 microns light as blue, 12.8 microns light as green, and 18 microns light as red.
      Both NIRCam and MIRI show the effects of outflows, which are emitted in opposite directions along the protostar’s rotation axis as the object consumes gas and dust from the surrounding cloud. These outflows take the form of bow shocks to the surrounding molecular cloud, which appear as filamentary structures throughout. They are also responsible for carving the bright hourglass structure within the molecular cloud as they energize, or excite, the surrounding matter and cause the regions above and below it to glow. This creates an effect reminiscent of fireworks brightening a cloudy night sky. Unlike NIRCam, however, which mostly shows the light that is reflected off dust, MIRI provides a look into how these outflows affect the region’s thickest dust and gases.
      The areas colored here in blue, which encompass most of the hourglass, show mostly carbonaceous molecules known as polycyclic aromatic hydrocarbons. The protostar itself and the dense blanket of dust and a mixture of gases that surround it are represented in red. (The sparkler-like red extensions are an artifact of the telescopes’s optics). In between, MIRI reveals a white region directly above and below the protostar, which doesn’t show as strongly in the NIRCam view. This region is a mixture of hydrocarbons, ionized neon, and thick dust, which shows that the protostar propels this matter quite far away from it as it messily consumes material from its disk.
      As the protostar continues to age and release energetic jets, it’ll consume, destroy, and push away much of this molecular cloud, and many of the structures we see here will begin to fade. Eventually, once it finishes gathering mass, this impressive display will end, and the star itself will become more apparent, even to our visible-light telescopes.
      The combination of analyses from both the near-infrared and mid-infrared views reveal the overall behavior of this system, including how the central protostar is affecting the surrounding region. Other stars in Taurus, the star-forming region where L1527 resides, are forming just like this, which could lead to other molecular clouds being disrupted and either preventing new stars from forming or catalyzing their development.The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).  
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hanna Braun hbraun@stsci.edu Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      ARTICLE/IMAGE: Webb’s previous observation of L1527, with NIRCam (Near-Infrared Camera)
      VIDEO:   Fly-through the star-forming Pillars of Creation
      INTERACTIVE: Explore star formation via a multi-wavelength view of Herbig-Haro 46/47
      POSTER: L1527 NIRCam poster
      VIDEO: Science Snippets Video: Dust and the formation of Planetary Systems
      More Webb News
      More Webb Images
      Webb Mission Page
      Related For Kids
      What is a nebula?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      ¿Qué es una nebulosa?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Stars



      Universe


      Share








      Details
      Last Updated Jul 02, 2024 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics James Webb Space Telescope (JWST) Nebulae Protostars Science & Research Star-forming Nebulae Stars The Universe
      View the full article
    • By NASA
      ESA/Hubble & NASA, A. Sarajedini This densely populated group of stars is the globular cluster NGC 1841, which is part of the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way galaxy that lies about 162,000 light-years away. Satellite galaxies are bound by gravity in orbits around a more massive host galaxy. We typically think of the Andromeda Galaxy as our galaxy’s nearest galactic companion, but it is more accurate to say that Andromeda is the nearest galaxy that is not in orbit around the Milky Way galaxy. In fact, dozens of satellite galaxies orbit our galaxy and they are far closer than Andromeda. The largest and brightest of these is the LMC, which is easily visible to the unaided eye from the southern hemisphere under dark sky conditions away from light pollution.
      The LMC is home to many globular clusters. These celestial bodies fall somewhere between open clusters – which are much less dense and tightly bound – and small, compact galaxies. Increasingly sophisticated observations reveal the stellar populations and characteristics of globular clusters are varied and complex, and we have yet to fully understand how these tightly packed groups of stars form. However, there are certain consistencies across all globular clusters: they are very stable and hold their shape for a long time, which means they are generally very old and contain large numbers of very old stars. Globular clusters are akin to celestial ‘fossils.’ Just as fossils provide insight into the early development of life on Earth, globular clusters such as NGC 1841 can provide insights into very early star formation in galaxies.
      Text credit: European Space Agency (ESA)
      Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      View the full article
    • By NASA
      2 min read
      Hubble Uncovers a Celestial Fossil
      This NASA/ESA Hubble Space Telescope image features a densely populated group of stars, the globular cluster NGC 1841. ESA/Hubble & NASA, A. Sarajedini This densely populated group of stars is the globular cluster NGC 1841, which is part of the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way galaxy that lies about 162,000 light-years away. Satellite galaxies are bound by gravity in orbits around a more massive host galaxy. We typically think of the Andromeda Galaxy as our galaxy’s nearest galactic companion, but it is more accurate to say that Andromeda is the nearest galaxy that is not in orbit around the Milky Way galaxy. In fact, dozens of satellite galaxies orbit our galaxy and they are far closer than Andromeda. The largest and brightest of these is the LMC, which is easily visible to the unaided eye from the southern hemisphere under dark sky conditions away from light pollution.
      The LMC is home to many globular clusters. These celestial bodies fall somewhere between open clusters – which are much less dense and tightly bound – and small, compact galaxies. Increasingly sophisticated observations reveal the stellar populations and characteristics of globular clusters are varied and complex, and we have yet to fully understand how these tightly packed groups of stars form. However, there are certain consistencies across all globular clusters: they are very stable and hold their shape for a long time, which means they are generally very old and contain large numbers of very old stars. Globular clusters are akin to celestial ‘fossils.’ Just as fossils provide insight into the early development of life on Earth, globular clusters such as NGC 1841 can provide insights into very early star formation in galaxies.
      Text credit: European Space Agency (ESA)

      Download this image

      Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Feb 29, 2024 Editor Andrea Gianopoulos Location Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Star Clusters Stars Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxies Stories



      Stars Stories



      NASA Astrophysics


      View the full article
    • By NASA
      NASA, STScI/AURA The Hubble Space Telescope captured this image of a stellar explosion throwing out sheets of debris in the nearby Large Magellanic Cloud galaxy on July 7, 2003. Since its 1990 launch, Hubble has changed our fundamental understanding of the universe; with over 1.5 million observations and 20,000+ papers published on its discoveries, Hubble is the most productive science mission in the history of NASA.
      See more stunning images from Hubble – and experience some of the images through sound.
      Image Credit: NASA, STScI/AURA
      View the full article
  • Check out these Videos

×
×
  • Create New...