Jump to content

Artemis, Architecture, and Lunar Science: SMD and ESDMD Associate Administrators visits Tokyo


Recommended Posts

  • Publishers
Posted

3 min read

Artemis, Architecture, and Lunar Science: SMD and ESDMD Associate Administrators visits Tokyo

June 18, 2024

At NASA we always say that exploration enables science, and science enables exploration. During a recent, quick trip to Tokyo, Japan with our Associate Administrator for the Exploration Systems Development Mission Directorate (ESDMD), Cathy Koerner, I had an opportunity to share this message with our partners at the Japanese Aerospace Exploration Agency (JAXA).

We explore for several reasons but primarily to benefit humanity. How exactly does exploration benefit humanity? By accepting audacious challenges like retuning to the Moon and venturing on to Mars, we inspire and motivate current and future generations of scientists, engineers, problem solvers, and communicators to contribute to our mission and other national priorities. By conducting scientific investigations in deep space, on the Moon, and on Mars, we enhance our understanding of the universe and our place in it. And finally, what we achieve when we explore, how it’s accomplished, and who participates benefits international partnerships and global cooperation that are essential for enhancing the quality of life for all.

nicky-fox-jaxa-tokyo.jpg?w=1316
NASA Associate Administrator for the Science Mission Directorate, Dr. Nicky Fox, and Associate Administrator for the Exploration systems Development Mission Directorate, Cathy Koerner, meet with the Japanese Aerospace Exploration Agency (JAXA) in Tokyo, Japan on June 11, 2024.
Credits: NASA

In addition to bi-lateral meetings with our JAXA partners, Cathy and I co-presented at the International Space Exploration Symposium where I shared how every NASA Science division has a stake in Artemis. Cathy provided updates on the Orion spacecraft, SLS rocket, Gateway, human landing systems, and advanced spacesuits, and I talked about all of the incredible science we will conduct along the way. The Artemis campaign is a series of increasingly complex missions that provide ever-growing capabilities for scientific exploration of the Moon. From geology to solar, biological, and fundamental physics phenomena, exploration teaches about the earliest solar system environment: whether and how the bombardments of nascent worlds influenced the emergence of life, how the Earth and Moon formed and evolved, and how volatiles (like water) and other potential resources were distributed and transported throughout the solar system.

Together with our partners like JAXA, NASA is working towards establishing infrastructure for long-term exploration in lunar orbit and on the surface. For example, on Artemis III, JAXA will provide the Lunar Dielectric Analyzer instrument, which once installed near the lunar South Pole, will help collect valuable scientific data about the lunar environment, it’s interior, and how to sustain a long-duration human presence on the Moon. In April, the U.S. and Japan were proud to make a historic announcement for cooperation on the Moon. Japan will design, develop, and operate a pressurized rover for crewed and uncrewed exploration on the Moon. NASA will launch and deliver the rover, and provide two opportunities for Japanese astronauts to travel to the lunar surface. This historic agreement was highlighted by President Biden and Prime Minister Kishida and is an example of the strong relationship between the United States and Japan. The enclosed and pressurized rover will be able to accommodate two astronauts on the lunar surface for 30 days, and will have a lifespan of about 10 years, enabling it to be used for multiple missions. It will enable longer-duration expeditions, so that astronauts can conduct more moonwalks and perform more science in geographically diverse areas near the lunar South Pole.

Artemis is different than anything humanity has ever done before. The Artemis campaign will bring the world along for this historic journey, forever changing humanity’s perspective of our place in the universe. This is the start of a lunar ecosystem, where we’ll do more science than we can dream of, together.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA logo. (Credit: NASA) NASA acting Administrator Janet Petro announced Monday Vanessa Wyche will serve as the acting associate administrator for the agency at NASA Headquarters in Washington, effective immediately. Wyche, who had been the director of NASA’s Johnson Space Center in Houston, is detailed as Petro’s senior advisor leading the agency’s center directors and mission directorate associate administrators. She will act as the agency’s chief operating officer for about 18,000 civil servant employees and an annual budget of more than $25 billion. Stephen Koerner will become the acting center director of NASA Johnson.
      The agency also named Jackie Jester as associate administrator for the Office of Legislative and Intergovernmental Affairs and announced Catherine Koerner, associate administrator for the agency’s Exploration Systems Development Mission Directorate will retire effective Friday, Feb. 28. Lori Glaze, currently the deputy associate administrator for Exploration Systems Development will become the mission directorate’s acting associate administrator.
      “As we continue to advance our mission, it’s crucial that we have strong, experienced leaders in place,” Petro said. “Vanessa will bring exceptional leadership to NASA’s senior ranks, helping guide our workforce toward the opportunities that lie ahead, while Steve will continue to provide steadfast leadership at NASA Johnson. Jackie’s return to the agency will ensure we remain closely aligned with national priorities as we work with Congress. Cathy’s legacy is one of unwavering dedication to human spaceflight, and we are grateful for her years of service. Lori’s leadership will continue to build on that legacy as we push forward in our exploration efforts. These appointments reflect NASA’s unwavering commitment to excellence, and I have full confidence that each of these leaders will carry our vision forward with purpose, integrity, and a relentless drive to succeed.”
      Prior to her new role, Wyche was the director NASA Johnson – home to America’s astronaut corps, Mission Control Center, International Space Station, Orion and Gateway Programs, and its more than 11,000 civil service and contractor employees. Her responsibilities included a broad range of human spaceflight activities, including development and operation of human spacecraft, NASA astronaut selection and training, mission control, commercialization of low Earth orbit, and leading NASA Johnson in exploring the Moon and Mars.
      During her 35-year career, Wyche has served in several leadership roles, including Johnson’s deputy center director, director of Exploration Integration and Science Directorate, flight manager of several Space Shuttle Program missions, and executive officer in the Office of the Administrator. A native of South Carolina, Wyche earned a Bachelor of Science in Engineering and Master of Science in Bioengineering from Clemson University. 
      As deputy director of NASA Johnson, Stephen Koerner, oversaw strategic workforce planning, serves as the Designated Agency Safety Health Officer, and supported the Johnson center director in mission reviews. Before his appointment in July 2021, Koerner held various leadership roles at NASA Johnson, including director of the Flight Operations Directorate, associate director, chief financial officer, deputy director of flight operations, and deputy director of mission operations.
      In her new role as the associate administrator for the Office of Legislative and Intergovernmental Affairs, Jester will direct a staff responsible for managing and coordinating all communication with the U.S. Congress, as well as serve as a senior advisor to agency leaders on legislative matters.  
      Jester rejoins the agency after serving as the senior director for government affairs at Relativity Space’s Washington office where she led policy engagement for the company. Prior to her time with Relativity, she served as a policy advisor at NASA and at the White House Office of Science and Technology Policy. She has served as a professional staff member for the U.S. Senate Committee on Commerce, Science, and Transportation. She has spent time in state government as the Chief Legislative Aide to a member of the Massachusetts House of Representatives. Jester has significant experience advising on space policy issues, aviation operations and safety policy, and has helped develop numerous pieces of legislation.
      With a 34-year career at NASA, Catherine Koerner has been instrumental in leading NASA’s Exploration Systems Development Mission Directorate, overseeing the development of the agency’s deep space exploration approach. Previously, she was the deputy associate administrator for the mission directorate. Her extensive career at NASA includes roles such as the Orion program manager, director of the Human Health and Performance Directorate, former NASA flight director, several leadership positions within the International Space Station Program during its assembly phase and helping to foster a commercial space industry in low Earth orbit.
      Glaze has a distinguished background in planetary science, previously serving as the director of NASA’s Planetary Science Division before joining Explorations Systems Development. Prior to her tenure at NASA Headquarters in Washington, she was the chief of the Planetary Geology, Geophysics and Geochemistry Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the Deputy Director of Goddard’s Solar System Exploration Division. She has been a leading advocate for Venus exploration, serving as the principal investigator for the Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging mission. Glaze earned her Bachelor of Arts and Master of Science degrees in Physics from the University of Texas at Arlington and a doctorate in Environmental Science from Lancaster University in the United Kingdom. Her prior experience includes roles at the Jet Propulsion Laboratory and at Proxemy Research as Vice President and Senior Research Scientist.
      For more about NASA’s missions, visit:
      http://www.nasa.gov
      -end-
      Amber Jacobson / Kathryn Hambleton
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / kathryn.a.hambleton@nasa.gov
      View the full article
    • By NASA
      Improving space-based pharmaceutical research
      View of the Ice Cubes experiment #6 (Kirara) floating in the Columbus European Laboratory module aboard the International Space Station.UAE (United Arab Emirates)/Sultan Alneyadi Researchers found differences in the stability and degradation of the anti-Covid drug Remdesivir in space and on Earth on its first research flight, but not on a second. This highlights the need for more standardized procedures for pharmaceutical research in space.

      Long-term stability of drugs is critical for future space missions. Because multiple characteristics of spaceflight could influence chemical stability, the scientists repeated their experiment under circumstances as nearly identical as possible. This research used Kirara, a temperature-controlled incubator developed by JAXA (Japan Aerospace Exploration Agency) for crystallizing proteins in microgravity. Results also confirmed that a solubility enhancer used in the drug is radiation resistant and its quality was not affected by microgravity and launch conditions.

      Evaluating postflight task performance
      A test subject performing a sensorimotor field test on the ground.NASA/Lauren Harnett Immediately after returning from the International Space Station and for up to one week, astronauts perform functional tasks in ways similar to patients on Earth who have a loss of inner ear function. This finding suggests that comparing data from these patients and astronauts could provide insight into the role of the balance and sensory systems in task performance during critical parts of a mission such as landing on the Moon or Mars.   

      Spaceflight causes changes to the balance (vestibular) and sensory systems that can lead to symptoms such as disorientation and impaired locomotion. Standard Measures collects a set of data, including tests of sensorimotor function, related to human spaceflight risks from astronauts before, during, and after missions to help characterize how people adapt to living and working in space.

      View the full article
    • By NASA
      Gateway’s HALO (Habitation and Logistics Outpost) in a cleanroom at Thales Alenia Space in Turin, Italy. After final installations are complete, it will be packaged and transported to the United States for final outfitting before being integrated with Gateway’s Power and Propulsion Element and launched to lunar orbit. Thales Alenia Space Through the Artemis campaign, NASA will send astronauts on missions to and around the Moon. The agency and its international partners report progress continues on Gateway, the first space station that will permanently orbit the Moon, after visiting the Thales Alenia Space facility in Turin, Italy, where initial fabrication for one of two Gateway habitation modules is nearing completion.
      Leaders from NASA, ESA (European Space Agency), and the Italian Space Agency, as well as industry representatives from Northrop Grumman and Thales Alenia Space, were in Turin to assess Gateway’s HALO (Habitation and Logistics Outpost) module before its primary structure is shipped from Italy to Northrop Grumman’s Gilbert, Arizona site in March. Following final outfitting and verification testing, the module will be integrated with the Power and Propulsion Element at NASA’s Kennedy Space Center in Florida.
      “Building and testing hardware for Gateway is truly an international collaboration,” said Jon Olansen, manager, Gateway Program, at NASA’s Johnson Space Center in Houston. “We’re excited to celebrate this major flight hardware milestone, and this is just the beginning – there’s impressive and important progress taking shape with our partners around the globe, united by our shared desire to expand human exploration of our solar system while advancing scientific discovery.”
      Gateway’s HALO (Habitation and Logistics Outpost) in a cleanroom at Thales Alenia Space in Turin, Italy. After final installations are complete, it will be packaged and transported to the United States for final outfitting before being integrated with Gateway’s Power and Propulsion Element and launched to lunar orbit.Thales Alenia Space To ensure all flight hardware is ready to support Artemis IV — the first crewed mission to Gateway – NASA is targeting the launch of HALO and the Power and Propulsion Element no later than December 2027. These integrated modules will launch aboard a SpaceX Falcon Heavy rocket and spend about a year traveling uncrewed to lunar orbit, while providing scientific data on solar and deep space radiation during transit.
      Launching atop HALO will be ESA’s Lunar Link communication system, which will provide high-speed communication between the Moon and Gateway. The system is undergoing testing at another Thales Alenia Space facility in Cannes, France.
      Once in lunar orbit, Gateway will continue scientific observations while awaiting the arrival of Artemis IV astronauts aboard an Orion spacecraft which will deliver and dock Gateway’s second pressurized habitable module, the ESA-led Lunar I-Hab. Thales Alenia Space, ESA’s primary contractor for the Lunar I-Hab and Lunar View refueling module, has begun production of the Lunar I-Hab, and design of Lunar View in Turin.
      Teams from NASA and ESA (European Space Agency), including NASA astronaut Stan Love (far right) and ESA astronaut Luca Parmitano (far left) help conduct human factors testing inside a mockup of Gateway’s Lunar I-Hab module.Thales Alenia Space Northrop Grumman and its subcontractor, Thales Alenia Space, completed welding of HALO in 2024, and the module successfully progressed through pressure and stress tests to ensure its suitability for the harsh environment of deep space.
      Maxar Space Systems is assembling the Power and Propulsion Element, which will make Gateway the most powerful solar electric propulsion spacecraft ever flown. Major progress in 2024 included installation of Xenon and chemical propulsion fuel tanks, and qualification of the largest roll-out solar arrays ever built. NASA and its partners will complete propulsion element assembly, and acceptance and verification testing of next-generation electric propulsion thrusters this year.
      The main bus of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems SpaceX will provide both the Starship human landing system that will land astronauts on the lunar surface during NASA’s Artemis III mission and ferry astronauts from Gateway to the lunar South Pole region during Artemis IV, as well as provide logistics spacecraft to support crewed missions.
      NASA also has selected Blue Origin to develop Blue Moon, the human landing system for Artemis V, as well as logistics spacecraft for future Artemis missions. Having two distinct lunar landing designs provides flexibility and supports a regular cadence of Moon landings in preparation for future missions to Mars.
      CSA (Canadian Space Agency) is developing Canadarm3, an advanced robotics system, and JAXA (Japan Aerospace Exploration Agency) is designing and testing Lunar I-Hab’s vital life support systems, batteries, and a resupply and logistics vehicle called HTV-XG.
      NASA’s newest Gateway partner, the Mohammad Bin Rashid Space Centre (MBRSC) of the United Arab Emirates, kicked off early design for the Gateway Crew and Science Airlock that will be delivered on Artemis VI. The selection of Thales Alenia Space as its airlock prime contractor was announced by MBRSC on Feb. 4.
      Development continues to advance on three radiation-focused initial science investigations aboard Gateway. These payloads will help scientists better understand unpredictable space weather from the Sun and galactic cosmic rays that will affect astronauts and equipment during Artemis missions to the Moon and beyond.
      The Gateway lunar space station is a multi-purpose platform that offers capabilities for long-term exploration in deep space in support of NASA’s Artemis campaign and Moon to Mars objectives. Gateway will feature docking ports for a variety of visiting spacecraft, as well as space for crew to live, work, and prepare for lunar surface missions. As a testbed for future journeys to Mars, continuous investigations aboard Gateway will occur with and without crew to better understand the long-term effects of deep space radiation on vehicle systems and the human body as well as test and operate next generation spacecraft systems that will be necessary to send humans to Mars.
      Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Feb 21, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Space Station Humans in Space Johnson Space Center Explore More
      2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission
      A key element of the Gateway lunar space station has entered the cleanroom for final…
      Article 1 week ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 1 month ago 2 min read Gateway Tops Off
      Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
      Article 3 months ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Orion Spacecraft
      Human Landing System
      Extravehicular Activity and Human Surface Mobility
      View the full article
    • By European Space Agency
      Image: This Copernicus Sentinel-1 radar image shows Tokyo and its metropolitan area, the largest urban agglomeration in the world. View the full article
    • By NASA
      NASA/Kim Shiflett Engineers at NASA’s Kennedy Space Center in Florida completed stacking the twin SLS (Space Launch System) solid rocket boosters – seen in this Feb. 19, 2025, photo – inside the Vehicle Assembly Building for the agency’s Artemis II crewed test flight around the Moon.
      During stacking operations, which began Nov. 20, 2024, technicians used a massive overhead crane to lift each booster segment into place on mobile launcher 1, the 380-foot-tall structure used to process, assemble, and launch the SLS rocket and Orion spacecraft.
      Learn more about the process of stacking from Exploration Ground Systems.
      Image credit: NASA/Kim Shiflett
      View the full article
  • Check out these Videos

×
×
  • Create New...