Members Can Post Anonymously On This Site
Artemis, Architecture, and Lunar Science: SMD and ESDMD Associate Administrators visits Tokyo
-
Similar Topics
-
By NASA
Humans are returning to the Moon—this time, to stay. Because our presence will be more permanent, NASA has selected a location that maximizes line-of-sight communication with Earth, solar visibility, and access to water ice: the Lunar South Pole (LSP). While the Sun is in the lunar sky more consistently at the poles, it never rises more than a few degrees above the horizon; in the target landing regions, the highest possible elevation is 7°. This presents a harsh lighting environment never experienced during the Apollo missions, or in fact, in any human spaceflight experience. The ambient lighting will severely affect the crews’ ability to see hazards and to perform simple work. This is because the human vision system, which despite having a high-dynamic range, cannot see well into bright light and cannot adapt quickly from bright to dark or vice versa. Functional vision is required to perform a variety of tasks, from simple tasks (e.g., walking, operating simple tools) through managing complex machines (e.g., lander elevator, rovers). Thus, the environment presents an engineering challenge to the Agency: one that must be widely understood before it can be effectively addressed.
In past NASA missions and programs, design of lighting and functional vision support systems for extravehicular activity (EVA) or rover operations have been managed at the lowest program level. This worked well for Apollo and low Earth orbit because the Sun angle was managed by mission planning and astronaut self-positioning; helmet design alone addressed all vision challenges. The Artemis campaign presents new challenges to functional vision, because astronauts will be unable to avoid having the sun in their eyes much of the time they are on the lunar surface. This, combined with the need for artificial lighting in the extensive shadowing at the LSP, means that new functional vision support systems must be developed across projects and programs. The design of helmets, windows, and lighting systems must work in a complementary fashion, within and across programs, to achieve a system of lighting and vision support that enables crews to see into darkness while their eyes are light-adapted, in bright light while still dark-adapted, and protects their eyes from injury.
Many of the findings of the assessment were focused on the lack of specific requirements to prevent functional vision impairment by the Sun’s brilliance (which is different from preventing eye injury), while enabling astronauts to see well enough to perform specific tasks. Specifically, tasks expected of astronauts at the LSP were not incorporated into system design requirements to enable system development that ensures functional vision in the expected lighting environment. Consequently, the spacesuit, for example, has flexibility requirements for allowing the astronauts to walk but not for ensuring they can see well enough to walk from brilliant Sun into a dark shadow and back without the risk of tripping or falling. Importantly, gaps were identified in allocation of requirements across programs to ensure that the role of the various programs is for each to understand functional vision. NESC recommendations were offered that made enabling functional vision in the harsh lighting environment a specific and new requirement for the system designers. The recommendations also included that lighting, window, and visor designs be integrated.
The assessment team recommended that a wide variety of simulation techniques, physical and virtual, need to be developed, each with different and well-stated capabilities with respect to functional vision. Some would address the blinding effects of sunlight at the LSP (not easily achieved through virtual approaches) to evaluate performance of helmet shields and artificial lighting in the context of the environment and adaptation times. Other simulations would add terrain features to identify the threats in simple (e.g., walking, collection of samples) and complex (e.g., maintenance and operation of equipment) tasks. Since different facilities have different strengths, they also have different weaknesses. These strengths and limitations must be characterized to enable verification of technical solutions and crew training.
NESC TB 2024- discipline-focus-hfView the full article
-
By NASA
More than 30,000 scientists gathered in Washington, D.C. during the second week of December – many to show off the work of NASA’s science volunteers! The American Geophysical Union held its annual meeting of professionals this month – the world’s largest gathering of Earth and Space Scientists. Here’s what they were talking about.
Eighteen NASA-sponsored project team members presented discoveries made with volunteers on topics from solar eclipses to global freshwater lake monitoring and exoplanet research. Overall, 175 posters and presentations featured the work of volunteers (up from 137 in 2023). Overall, 363 scientists and presenters at the conference described themselves as being involved in citizen science research (up from 201 in 2023). Two dozen scientists at the meeting gathered for lunch in the atrium of the National Portrait Gallery to talk about doing NASA science with volunteers. They discussed projects about asteroids, landslide hazard prediction, solar eclipse science, water quality, martian clouds, and more. Science done with volunteers is often called citizen science or participatory science – it does not require citizenship in any particular country. “Between the immense datasets being collected by NASA missions and the perennial need to open wide the doors to science so everyone can experience the joy and rewards of doing research together, citizen science is needed now more than ever!” said Sarah Kirn, the participatory science strategist at the Gulf of Maine Research Institute in Portland.” You can join one of NASA’s many participatory science projects right here!
Two dozen scientists gathered for lunch in the atrium of the National Portrait Gallery to talk about working with volunteers. They discussed projects about asteroids, landslide hazard prediction, solar eclipse science, water quality, martian clouds and more. Credit: Sarah Kirn Facebook logo @DoNASAScience @DoNASAScience Share
Details
Last Updated Dec 23, 2024 Related Terms
Citizen Science Earth Science Division Heliophysics Division Planetary Science Division Explore More
2 min read Jovian Vortex Hunters Spun Up Over New Paper
Article
6 days ago
5 min read NASA DAVINCI Mission’s Many ‘Firsts’ to Unlock Venus’ Hidden Secrets
NASA’s DAVINCI probe will be first in the 21st century to brave Venus’ atmosphere as…
Article
1 week ago
5 min read Scientists Share Early Results from NASA’s Solar Eclipse Experiments
Article
2 weeks ago
View the full article
-
By NASA
From left to right, Ambassador of the Principality of Liechtenstein to the United States of America Georg Sparber, Director of the Office for Communications of the Principality of Liechtenstein Dr. Rainer Schnepfleitner, NASA Deputy Administrator Pam Melroy, and Ambassador Extraordinary and Plenipotentiary to the Swiss Confederation and to the Principality of Liechtenstein Scott Miller, pose for a group photo during an Artemis Accords signing ceremony, Friday, Dec. 20, 2024, at the Mary W. Jackson NASA Headquarters building in Washington. The Principality of Liechtenstein is the 52nd country to sign the Artemis Accords, which establish a practical set of principles to guide space exploration cooperation among nations participating in NASA’s Artemis program. Credit: NASA/Keegan Barber Liechtenstein signed the Artemis Accords Friday during a ceremony hosted by NASA Deputy Administrator Pam Melroy at the agency’s headquarters in Washington, becoming the 52nd nation to commit to the responsible exploration of space for all humanity.
“Today, as Liechtenstein signs the Artemis Accords, we take another step forward together, united by the promise of international cooperation and discovery,” said Melroy. “Liechtenstein’s commitment strengthens our vision, where space is explored with peace, transparency, and sustainability as guiding principles. With each new signatory, the Artemis Accords community adds fresh energy and capabilities to ensure the benefits of space reach the entire world.”
Director of Liechtenstein’s Office for Communications Rainer Schnepfleitner signed the Artemis Accords on behalf of Liechtenstein. The Ambassador of the Principality of Liechtenstein to the United States Georg Sparber and U.S. Ambassador to the Swiss Confederation and the Principality of Liechtenstein Scott Miller also participated in the event.
“With its participation in the Artemis Accords, Liechtenstein looks forward to advancing space exploration among a strong group of like-minded countries committed to the peaceful use of space for the benefit of all humanity,” Sparber said.
The United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords in 2020, identifying a set of principles promoting the beneficial use of space for humanity. Since then, signatories have expanded to represent a quarter of the world’s countries, with 19 countries signing in 2024.
In addition to an increase in numbers, the Artemis Accords signatories, representing every region of the world, continued to build consensus this year and make significant progress in implementing the accords principles.
NASA co-chaired the Artemis Accords Principals’ Meeting in October, which brought together 42 nations and furthered discussions on the safe and responsible use of space. They agreed on recommendations for non-interference, interoperability, release of scientific data, long-term sustainability guidelines, and registration of space objects to advance implementation.
The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data.
Learn more about the Artemis Accords at:
https://www.nasa.gov/artemis-accords
-end-
Amber Jacobson / Elizabeth Shaw
Headquarters, Washington
202-358-1600
amber.c.jacobson@nasa.gov / elizabeth.a.shaw@nasa.gov
Share
Details
Last Updated Dec 20, 2024 LocationNASA Headquarters Related Terms
Office of International and Interagency Relations (OIIR) View the full article
-
By NASA
A method for evaluating thermophysical properties of metal alloys
Simulation of the solidification of metal alloys, a key step in certain industrial processes, requires reliable data on their thermophysical properties such as surface tension and viscosity. Researchers propose comparing predictive models with experimental outcomes as a method to assess these data.
Scientists use data on surface tension and viscosity of titanium-based alloys in industrial processes such as casting and crystal growth. Non-Equilibrium Solidification, Modelling for Microstructure Engineering of Industrial Alloys, an ESA (European Space Agency) investigation, examined the microstructure and growth of these alloys using the station’s Electromagnetic Levitator. This facility eliminates the need for containers, which can interfere with experiment results.
European Space Agency (ESA) astronaut Alexander Gerst is shown in the Columbus module of the International Space Station during the installation of the Electromagnetic Levitator.ESA/Alexander Gerst Overview of techniques for measuring thermal diffusion
Researchers present techniques for measuring thermal diffusion of molecules in a mixture. Thermal diffusion is measured using the Soret coefficient – the ratio of movement caused by temperature differences to overall movement within the system. This has applications in mineralogy and geophysics such as predicting the location of natural resources beneath Earth’s surface.
A series of ESA investigations studied diffusion, or how heat and particles move through liquids, in microgravity. Selectable Optical Diagnostics Instrument-Influence of VIbrations on DIffusion of Liquids examined how vibrations affect diffusion in mixtures with two components and SODI-DCMIX measured more-complex diffusion in mixtures of three or more components. Understanding and predicting the effects of thermal diffusion has applications in various industries such as modeling of underground oil reservoirs.
NASA astronaut Kate Rubins works on Selectable Optical Diagnostics Instrument Experiment Diffusion Coefficient Mixture-3 (SODI) DCMix-3 installation inside the station’s Microgravity Science Glovebox.JAXA (Japan Aerospace Exploration Agency)/Takuya Onishi Research validates ferrofluid technology
Researchers validated the concept of using ferrofluid technology to operate a thermal control switch in a spacecraft. This outcome could support development of more reliable and long-lasting spacecraft thermal management systems, increasing mission lifespan and improving crew safety.
Überflieger 2: Ferrofluid Application Research Goes Orbital analyzed the performance of ferrofluids, a technology that manipulates components such as rotors and switches using magnetized liquids and a magnetic field rather than mechanical systems, which are prone to wear and tear. This technology could lower the cost of materials for thermal management systems, reduce the need for maintenance and repair, and help avoid equipment failure. The paper discusses possible improvements to the thermal switch, including optimizing the geometry to better manage heat flow.
A view of the Ferrofluid Application Research Goes Orbital investigation hardware aboard the International Space Station. UAE (United Arab Emirates)/Sultan AlneyadiView the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Regolith Adherence Characterization, or RAC, is one of 10 science and technology instruments flying on NASA’s next Commercial Lunar Payload Services (CLPS) flight as part of the Blue Ghost Misison-1. Developed by Aegis Aerospace of Webster, Texas, RAC is designed to study how lunar dust reacts to more than a dozen different types of material samples, located on the payload’s wheels. Photo courtesy Firefly Aerospace The Moon may look like barren rock, but it’s actually covered in a layer of gravel, pebbles, and dust collectively known as “lunar regolith.” During the Apollo Moon missions, astronauts learned firsthand that the fine, powdery dust – electromagnetically charged due to constant bombardment by solar and cosmic particles – is extremely abrasive and clings to everything: gloves, boots, vehicles, and mechanical equipment. What challenges does that dust pose to future Artemis-era missions to establish long-term outposts on the lunar surface?
That’s the task of an innovative science instrument called RAC-1 (Regolith Adherence Characterization), one of 10 NASA payloads flying aboard the next delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative and set to be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
Developed by Aegis Aerospace of Webster, Texas, RAC will expose 15 sample materials – fabrics, paint coatings, optical systems, sensors, solar cells, and more – to the lunar environment to determine how tenaciously the lunar dust sticks to each one. The instrument will measure accumulation rates during landing and subsequent routine lander operations, aiding identification of those materials which best repel or shed dust. The data will help NASA and its industry partners more effectively test, upgrade, and protect spacecraft, spacesuits, habitats, and equipment in preparation for continued exploration of the Moon under the Artemis campaign.
“Lunar regolith is a sticky challenge for long-duration expeditions to the surface,” said Dennis Harris, who manages the RAC payload for NASA’s CLPS initiative at the agency’s Marshall Space Flight Center in Huntsville, Alabama. “Dust gets into gears, sticks to spacesuits, and can block optical properties. RAC will help determine the best materials and fabrics with which to build, delivering more robust, durable hardware, products, and equipment.”
Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
Learn more about. CLPS and Artemis at:
https://www.nasa.gov/clps
Alise Fisher
Headquarters, Washington
202-358-2546
Alise.m.fisher@nasa.gov
Headquarters, Washington
202-358-2546
Alise.m.fisher@nasa.gov
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
corinne.m.beckinger@nasa.gov
Share
Details
Last Updated Dec 20, 2024 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
3 min read NASA Payload Aims to Probe Moon’s Depths to Study Heat Flow
Article 2 days ago 4 min read NASA Technology Helps Guard Against Lunar Dust
Article 8 months ago 4 min read NASA Collects First Surface Science in Decades via Commercial Moon Mission
Article 10 months ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.