Jump to content

15 Years Ago: Lunar Reconnaissance Orbiter Begins Moon Mapping Mission


Recommended Posts

  • Publishers
Posted

The Lunar Reconnaissance Orbiter (LRO) and the Lunar Crater Observation and Sensing Satellite (LCROSS) launched together from Cape Canaveral Air Force, now Space Force, Station on June 18, 2009, atop an Atlas V launch vehicle. The primary mission of the LRO, managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, involved imaging the entire Moon’s surface to create a 3-D map with ~50-centimeter resolution to aid in the planning of future robotic and crewed missions. In addition, LRO would map the polar regions and search for the presence of water ice. Although its primary mission intended to last only one year, it continues to operate after 15 years in lunar orbit. The LCROSS, managed by NASA’s Ames Research Center in California’s Silicon Valley, planned to further investigate the presence of water ice in permanently shaded areas of the Moon’s polar regions. The two components of LCROSS, the Centaur upper stage of the launch vehicle and the Shepherding Satellite, planned to deliberately crash into the Moon. Instruments on Earth and aboard LRO and the LCROSS Shepherding Satellite would observe the resulting plumes and analyze them for the presence of water.

Lunar Reconnaissance Orbiter (LRO), top, silver, and Lunar Crater Observation and Sensing Satellite (LCROSS), bottom, gold, spacecraft during placement inside the launch shroud Launch of LRO and LCROSS on an Atlas V rocket
Left: Lunar Reconnaissance Orbiter (LRO), top, silver, and Lunar Crater Observation and Sensing Satellite (LCROSS), bottom, gold, spacecraft during placement inside the launch shroud. Right: Launch of LRO and LCROSS on an Atlas V rocket.

The LRO spacecraft carries seven scientific instruments:

  • the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) to characterize the lunar radiation environment;
  • the Diviner Lunar Radiometer Experiment (DLRE) to identify areas cold enough to trap ice;
  • the Lyman-Alpha Mapping Project (LMAP) to search for ice in the lunar polar regions;
  • the Lunar Exploration Neutron Detector (LEND) to create a map of hydrogen distribution and to determine the neutron component of the lunar radiation environment;
  • the Lunar Orbiter Laser Altimeter (LOLA) to measure slopes and roughness of potential landing sites;
  • the Lunar Reconnaissance Orbiter Camera (LROC) consisting of two-narrow angle and one wide-angle camera to take high-resolution images of the lunar surface; and
  • the Mini Radio Frequency (Mini-RF) experiment, an advanced radar system to image the polar regions and search for water ice.

Illustration of the Lunar Reconnaissance Orbiter and its scientific instruments Illustration of the Lunar Crater Observation and Sensing Satellite and its scientific instruments on panel at left
Left: Illustration of the Lunar Reconnaissance Orbiter and its scientific instruments. Right: Illustration of the Lunar Crater Observation and Sensing Satellite and its scientific instruments on panel at left.

The LCROSS Shepherding Satellite carried nine instruments – five cameras (one visible, two near-infrared, and two mid-infrared); three spectrometers (one visible and two near-infrared); and a photometer. They monitored the plume sent up by the impact of the Centaur upper stage.

Illustration of the Lunar Reconnaissance Orbiter in lunar orbit Illustration of the Lunar Crater Observation and Sensing Satellite’s Shepherding Satellite at left and Centaur upper stage at right prior to lunar impact
Left: Illustration of the Lunar Reconnaissance Orbiter in lunar orbit. Right: Illustration of the Lunar Crater Observation and Sensing Satellite’s Shepherding Satellite at left and Centaur upper stage at right prior to lunar impact.

On June 23, 2009, after a four-and-a-half-day journey from Earth, LRO entered an elliptical polar orbit around the Moon. Over the next four days, four engine burns refined the spacecraft’s orbit and engineers on the ground began commissioning its instruments. The LROC returned its first image of the Moon on June 30 of an area near the Mare Nubium. On Sept. 15, 2009, LRO began its primary one-year mission to map the lunar surface from its science orbit 31 miles above the Moon.  

On Oct. 9, 2009, first the Centaur upper stage followed five minutes later by the LCROSS Shepherding Satellite crashed into the Moon’s Cabeus Crater near the lunar south pole. Although the impacts created smaller plumes than anticipated, instruments detected signs of water in the ejected debris.

In September 2010, LRO completed its primary mapping mission and began an extended science mission around the Moon. On Dec. 17, NASA released the most detailed topographic map covering more than 98 percent of the Moon’s surface based on data from LRO’s LOLA instrument. The map continues to be updated as new data are received from the spacecraft. On March 15, 2011, LRO had made available more than 192 terabytes of data from its primary mission to the NASA Planetary Data System, or PDS, to make the information available to researchers, students, media, and the general public. LRO  continues to deliver data to the PDS, having generated the largest volume of data from a NASA planetary science mission ever.

First high-resolution image of the Moon taken by Lunar Reconnaissance Orbiter (LRO). Mosaic of LRO images of the Moon’s near side Mosaic of LRO images of the Moon’s far side
Left: First high-resolution image of the Moon taken by Lunar Reconnaissance Orbiter (LRO). Middle: Mosaic of LRO images of the Moon’s near side. Right: Mosaic of LRO images of the Moon’s far side.

Mosaic of Lunar Reconnaissance Orbiter (LRO) images of the lunar north pole Mosaic of LRO images of the lunar south pole
Left: Mosaic of Lunar Reconnaissance Orbiter (LRO) images of the lunar north pole. Right: Mosaic of LRO images of the lunar south pole.

The LCROSS data showed that the lunar soil within shadowy craters is rich in useful materials, such as hydrogen gas, ammonia, and methane, which could be used to produce fuel for space missions. Large amounts of light metals, such as sodium, mercury, and silver, were discovered. The data revealed that there is perhaps as much as hundreds of millions of tons of frozen water on the Moon, enough to make it an effective oasis for future explorers.

Thanks to its unique vantage point in a low altitude lunar orbit, LRO’s camera has taken remarkably detailed images of all six Apollo landing sites. The detail is such that not only can the Lunar Module (LM) descent stages be clearly identified, but disturbances of the lunar soil by the astronauts’ boots, the shadows of the American flag are visible at five of the landing sites, and the Lunar Rovers from the last three missions are even visible. The scientific instruments, and in at least three of the landing sites, the U.S. flag left by the astronauts can be discerned. The flag at the Apollo 11 site cannot be seen because it most likely was blown over by the exhaust of the LM’s ascent stage engine when the astronauts lifted off. In addition to the Apollo landing sites, LRO has also imaged crash and soft-landing sites of other American, Soviet, Chinese, Indian, and Israeli spacecraft, including craters left by the deliberate impacts of Apollo S-IVB upper stages. It also imaged a Korean satellite in lunar orbit as the two flew within a few miles of each other at high speed. LRO also turned its camera Earthward to catch stunning Earthrise views, one image with Mars in the background, and the Moon’s shadow on the Earth during the total solar eclipse on April 8, 2024.

Lunar Reconnaissance Orbiter images of the Apollo 11 Lunar Reconnaissance Orbiter images of the Apollo 12 Lunar Reconnaissance Orbiter images of the Apollo 14 landing sites Lunar Reconnaissance Orbiter images of the Apollo 14 landing sites
Lunar Reconnaissance Orbiter images of the Apollo 11, left, 12, and 14 landing sites.

Lunar Reconnaissance Orbiter images of the Apollo 15 landing sites Lunar Reconnaissance Orbiter images of the Apollo 16 landing site Lunar Reconnaissance Orbiter images of the Apollo 17 landing site
Lunar Reconnaissance Orbiter images of the Apollo 15, left, 16, and 17 landing sites.

Lunar Reconnaissance Orbiter (LRO) image of Luna 17 that landed on the Moon on Nov. 17, 1970, and the tracks of the Lunokhod 1 rover that it deployed LRO image of the Chang’e 4 lander and Yutu 2 rover that landed on the Moon’s far side on Jan. 3, 2019 LRO image of the Chandrayaan 3 lander taken four days after it landed on the Moon on Aug. 23, 2023
Left: Lunar Reconnaissance Orbiter (LRO) image of Luna 17 that landed on the Moon on Nov. 17, 1970, and the tracks of the Lunokhod 1 rover that it deployed. Middle: LRO image of the Chang’e 4 lander and Yutu 2 rover that landed on the Moon’s far side on Jan. 3, 2019. Right: LRO image of the Chandrayaan 3 lander taken four days after it landed on the Moon on Aug. 23, 2023.

Lunar Reconnaissance Orbiter (LRO) image of Odysseus that landed on the Moon on Feb. 22, 2024 LRO image taken on March 5, 2024, of the Danuri lunar orbiting satellite as the two passed within 3 miles of each other at a relative velocity of 7,200 miles per hour LRO image of the Chang’e 6 lander on the Moon’s farside, taken on June 7, 2024
Left: Lunar Reconnaissance Orbiter (LRO) image of Odysseus that landed on the Moon on Feb. 22, 2024. Middle: LRO image taken on March 5, 2024, of the Danuri lunar orbiting satellite as the two passed within 3 miles of each other at a relative velocity of 7,200 miles per hour. Right: LRO image of the Chang’e 6 lander on the Moon’s farside, taken on June 7, 2024.

Lunar Reconnaissance Orbiter (LRO) image of Earthrise over Compton Crater taken Oct. 12, 2015 LRO image of Earth and Mars taken Oct. 2, 2014 LRO image of the total solar eclipse taken on April 8, 2024
Left: Lunar Reconnaissance Orbiter (LRO) image of Earthrise over Compton Crater taken Oct. 12, 2015. Middle: LRO image of Earth and Mars taken Oct. 2, 2014. Right: LRO image of the total solar eclipse taken on April 8, 2024.

The LRO mission continues with the spacecraft returning images and data from its instruments. LRO has enough fuel on board to operate until 2027. The spacecraft can support new robotic lunar activities and the knowledge from the mission will help aid in the return of humans to the lunar surface. 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Artemis II Mission Patch Just Launched
    • By NASA
      NASA astronaut Christopher Williams poses for a portrait at NASA’s Johnson Space Center in Houston, Texas.Credit: NASA NASA astronaut Chris Williams will embark on his first mission to the International Space Station, serving as a flight engineer and Expedition 74 crew member.
      Williams will launch aboard the Roscosmos Soyuz MS-28 spacecraft in November, accompanied by Roscosmos cosmonauts Sergey Kud-Sverchkov and Sergei Mikaev. After launching from the Baikonur Cosmodrome in Kazakhstan, the trio will spend approximately eight months aboard the orbiting laboratory.
      During his expedition, Williams will conduct scientific investigations and technology demonstrations that help prepare humans for future space missions and benefit humanity.
      Selected as a NASA astronaut in 2021, Williams graduated with the 23rd astronaut class in 2024. He began training for his first space station flight assignment immediately after completing initial astronaut candidate training.
      Williams was born in New York City, and considers Potomac, Maryland, his hometown. He holds a bachelor’s degree in Physics from Stanford University in California and a doctorate in Physics from the Massachusetts Institute of Technology in Cambridge, where his research focused on astrophysics. Williams completed Medical Physics Residency training at Harvard Medical School in Boston. He was working as a clinical physicist and researcher at the Brigham and Women’s Hospital in Boston when he was selected as an astronaut.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to more fully focus its resources on deep space missions to the Moon and Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Josh Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Apr 03, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) ISS Research Johnson Space Center View the full article
    • By NASA
      NASA’s Electrodynamic Dust Shield (EDS) successfully demonstrated its ability to remove regolith, or lunar dust and dirt, from its various surfaces on the Moon during Firefly Aerospace’s Blue Ghost Mission 1, which concluded on March 16. Lunar dust is extremely abrasive and electrostatic, which means it clings to anything that carries a charge. It can damage everything from spacesuits and hardware to human lungs, making lunar dust one of the most challenging features of living and working on the lunar surface. The EDS technology uses electrodynamic forces to lift and remove the lunar dust from its surfaces. The first image showcases the glass and thermal radiator surfaces, coated in a layer of regolith. As you slide to the left, the photo reveals the results after EDS activation. Dust was removed from both surfaces, proving the technology’s effectiveness in mitigating dust accumulation.
      This milestone marks a significant step toward sustaining long-term lunar and interplanetary operations by reducing dust-related hazards to a variety of surfaces for space applications ranging from thermal radiators, solar panels, and camera lenses to spacesuits, boots, and helmet visors. The EDS technology is paving the way for future dust mitigation solutions, supporting NASA’s Artemis campaign and beyond. NASA’s Electrodynamic Dust Shield was developed at Kennedy Space Center in Florida with funding from NASA’s Game Changing Development Program, managed by the agency’s Space Technology Mission Directorate.
      Image Credit: NASA
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s LRO (Lunar Reconnaissance Orbiter) imaged Firefly Aerospace’s Blue Ghost Mission 1 lunar lander on the Moon’s surface the afternoon of March 2, not quite 10 hours after the spacecraft landed.
      Firefly Aerospace’s Blue Ghost Mission 1 lunar lander, which appears in this image from NASA’s Lunar Reconnaissance Orbiter as a bright pixel casting a shadow in the middle of the white box, reached the surface of the Moon on March 2 at 3:34 a.m. EST.NASA/Goddard/Arizona State University The delivery is part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign. This is the first CLPS delivery for Firefly, and their first Moon landing.
      LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
      More on this story from Arizona State University’s LRO Camera website
      Media Contact:
      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Mar 25, 2025 Related Terms
      Lunar Reconnaissance Orbiter (LRO) View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s LRO (Lunar Reconnaissance Orbiter) imaged Intuitive Machines’ IM-2 on the Moon’s surface on March 7, just under 24 hours after the spacecraft landed.
      Later that day Intuitive Machines called an early end of mission for IM-2, which carried NASA technology demonstrations as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.
      The Intuitive Machines IM-2 Athena lander, indicated here with a white arrow, reached the surface of the Moon on March 6, 2025, near the center of Mons Mouton. NASA’s Lunar Reconnaissance Orbiter (LRO) imaged the site at 12:54 p.m. EST on March 7.NASA/Goddard/Arizona State University The IM-2 mission lander is located closer to the Moon’s South Pole than any previous lunar lander.
      LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
      More on this story from Arizona State University’s LRO Camera website
      Media Contact:
      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Mar 25, 2025 Related Terms
      Lunar Reconnaissance Orbiter (LRO) View the full article
  • Check out these Videos

×
×
  • Create New...