Jump to content

15 Years Ago: Lunar Reconnaissance Orbiter Begins Moon Mapping Mission


NASA

Recommended Posts

  • Publishers

The Lunar Reconnaissance Orbiter (LRO) and the Lunar Crater Observation and Sensing Satellite (LCROSS) launched together from Cape Canaveral Air Force, now Space Force, Station on June 18, 2009, atop an Atlas V launch vehicle. The primary mission of the LRO, managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, involved imaging the entire Moon’s surface to create a 3-D map with ~50-centimeter resolution to aid in the planning of future robotic and crewed missions. In addition, LRO would map the polar regions and search for the presence of water ice. Although its primary mission intended to last only one year, it continues to operate after 15 years in lunar orbit. The LCROSS, managed by NASA’s Ames Research Center in California’s Silicon Valley, planned to further investigate the presence of water ice in permanently shaded areas of the Moon’s polar regions. The two components of LCROSS, the Centaur upper stage of the launch vehicle and the Shepherding Satellite, planned to deliberately crash into the Moon. Instruments on Earth and aboard LRO and the LCROSS Shepherding Satellite would observe the resulting plumes and analyze them for the presence of water.

Lunar Reconnaissance Orbiter (LRO), top, silver, and Lunar Crater Observation and Sensing Satellite (LCROSS), bottom, gold, spacecraft during placement inside the launch shroud Launch of LRO and LCROSS on an Atlas V rocket
Left: Lunar Reconnaissance Orbiter (LRO), top, silver, and Lunar Crater Observation and Sensing Satellite (LCROSS), bottom, gold, spacecraft during placement inside the launch shroud. Right: Launch of LRO and LCROSS on an Atlas V rocket.

The LRO spacecraft carries seven scientific instruments:

  • the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) to characterize the lunar radiation environment;
  • the Diviner Lunar Radiometer Experiment (DLRE) to identify areas cold enough to trap ice;
  • the Lyman-Alpha Mapping Project (LMAP) to search for ice in the lunar polar regions;
  • the Lunar Exploration Neutron Detector (LEND) to create a map of hydrogen distribution and to determine the neutron component of the lunar radiation environment;
  • the Lunar Orbiter Laser Altimeter (LOLA) to measure slopes and roughness of potential landing sites;
  • the Lunar Reconnaissance Orbiter Camera (LROC) consisting of two-narrow angle and one wide-angle camera to take high-resolution images of the lunar surface; and
  • the Mini Radio Frequency (Mini-RF) experiment, an advanced radar system to image the polar regions and search for water ice.

Illustration of the Lunar Reconnaissance Orbiter and its scientific instruments Illustration of the Lunar Crater Observation and Sensing Satellite and its scientific instruments on panel at left
Left: Illustration of the Lunar Reconnaissance Orbiter and its scientific instruments. Right: Illustration of the Lunar Crater Observation and Sensing Satellite and its scientific instruments on panel at left.

The LCROSS Shepherding Satellite carried nine instruments – five cameras (one visible, two near-infrared, and two mid-infrared); three spectrometers (one visible and two near-infrared); and a photometer. They monitored the plume sent up by the impact of the Centaur upper stage.

Illustration of the Lunar Reconnaissance Orbiter in lunar orbit Illustration of the Lunar Crater Observation and Sensing Satellite’s Shepherding Satellite at left and Centaur upper stage at right prior to lunar impact
Left: Illustration of the Lunar Reconnaissance Orbiter in lunar orbit. Right: Illustration of the Lunar Crater Observation and Sensing Satellite’s Shepherding Satellite at left and Centaur upper stage at right prior to lunar impact.

On June 23, 2009, after a four-and-a-half-day journey from Earth, LRO entered an elliptical polar orbit around the Moon. Over the next four days, four engine burns refined the spacecraft’s orbit and engineers on the ground began commissioning its instruments. The LROC returned its first image of the Moon on June 30 of an area near the Mare Nubium. On Sept. 15, 2009, LRO began its primary one-year mission to map the lunar surface from its science orbit 31 miles above the Moon.  

On Oct. 9, 2009, first the Centaur upper stage followed five minutes later by the LCROSS Shepherding Satellite crashed into the Moon’s Cabeus Crater near the lunar south pole. Although the impacts created smaller plumes than anticipated, instruments detected signs of water in the ejected debris.

In September 2010, LRO completed its primary mapping mission and began an extended science mission around the Moon. On Dec. 17, NASA released the most detailed topographic map covering more than 98 percent of the Moon’s surface based on data from LRO’s LOLA instrument. The map continues to be updated as new data are received from the spacecraft. On March 15, 2011, LRO had made available more than 192 terabytes of data from its primary mission to the NASA Planetary Data System, or PDS, to make the information available to researchers, students, media, and the general public. LRO  continues to deliver data to the PDS, having generated the largest volume of data from a NASA planetary science mission ever.

First high-resolution image of the Moon taken by Lunar Reconnaissance Orbiter (LRO). Mosaic of LRO images of the Moon’s near side Mosaic of LRO images of the Moon’s far side
Left: First high-resolution image of the Moon taken by Lunar Reconnaissance Orbiter (LRO). Middle: Mosaic of LRO images of the Moon’s near side. Right: Mosaic of LRO images of the Moon’s far side.

Mosaic of Lunar Reconnaissance Orbiter (LRO) images of the lunar north pole Mosaic of LRO images of the lunar south pole
Left: Mosaic of Lunar Reconnaissance Orbiter (LRO) images of the lunar north pole. Right: Mosaic of LRO images of the lunar south pole.

The LCROSS data showed that the lunar soil within shadowy craters is rich in useful materials, such as hydrogen gas, ammonia, and methane, which could be used to produce fuel for space missions. Large amounts of light metals, such as sodium, mercury, and silver, were discovered. The data revealed that there is perhaps as much as hundreds of millions of tons of frozen water on the Moon, enough to make it an effective oasis for future explorers.

Thanks to its unique vantage point in a low altitude lunar orbit, LRO’s camera has taken remarkably detailed images of all six Apollo landing sites. The detail is such that not only can the Lunar Module (LM) descent stages be clearly identified, but disturbances of the lunar soil by the astronauts’ boots, the shadows of the American flag are visible at five of the landing sites, and the Lunar Rovers from the last three missions are even visible. The scientific instruments, and in at least three of the landing sites, the U.S. flag left by the astronauts can be discerned. The flag at the Apollo 11 site cannot be seen because it most likely was blown over by the exhaust of the LM’s ascent stage engine when the astronauts lifted off. In addition to the Apollo landing sites, LRO has also imaged crash and soft-landing sites of other American, Soviet, Chinese, Indian, and Israeli spacecraft, including craters left by the deliberate impacts of Apollo S-IVB upper stages. It also imaged a Korean satellite in lunar orbit as the two flew within a few miles of each other at high speed. LRO also turned its camera Earthward to catch stunning Earthrise views, one image with Mars in the background, and the Moon’s shadow on the Earth during the total solar eclipse on April 8, 2024.

Lunar Reconnaissance Orbiter images of the Apollo 11 Lunar Reconnaissance Orbiter images of the Apollo 12 Lunar Reconnaissance Orbiter images of the Apollo 14 landing sites Lunar Reconnaissance Orbiter images of the Apollo 14 landing sites
Lunar Reconnaissance Orbiter images of the Apollo 11, left, 12, and 14 landing sites.

Lunar Reconnaissance Orbiter images of the Apollo 15 landing sites Lunar Reconnaissance Orbiter images of the Apollo 16 landing site Lunar Reconnaissance Orbiter images of the Apollo 17 landing site
Lunar Reconnaissance Orbiter images of the Apollo 15, left, 16, and 17 landing sites.

Lunar Reconnaissance Orbiter (LRO) image of Luna 17 that landed on the Moon on Nov. 17, 1970, and the tracks of the Lunokhod 1 rover that it deployed LRO image of the Chang’e 4 lander and Yutu 2 rover that landed on the Moon’s far side on Jan. 3, 2019 LRO image of the Chandrayaan 3 lander taken four days after it landed on the Moon on Aug. 23, 2023
Left: Lunar Reconnaissance Orbiter (LRO) image of Luna 17 that landed on the Moon on Nov. 17, 1970, and the tracks of the Lunokhod 1 rover that it deployed. Middle: LRO image of the Chang’e 4 lander and Yutu 2 rover that landed on the Moon’s far side on Jan. 3, 2019. Right: LRO image of the Chandrayaan 3 lander taken four days after it landed on the Moon on Aug. 23, 2023.

Lunar Reconnaissance Orbiter (LRO) image of Odysseus that landed on the Moon on Feb. 22, 2024 LRO image taken on March 5, 2024, of the Danuri lunar orbiting satellite as the two passed within 3 miles of each other at a relative velocity of 7,200 miles per hour LRO image of the Chang’e 6 lander on the Moon’s farside, taken on June 7, 2024
Left: Lunar Reconnaissance Orbiter (LRO) image of Odysseus that landed on the Moon on Feb. 22, 2024. Middle: LRO image taken on March 5, 2024, of the Danuri lunar orbiting satellite as the two passed within 3 miles of each other at a relative velocity of 7,200 miles per hour. Right: LRO image of the Chang’e 6 lander on the Moon’s farside, taken on June 7, 2024.

Lunar Reconnaissance Orbiter (LRO) image of Earthrise over Compton Crater taken Oct. 12, 2015 LRO image of Earth and Mars taken Oct. 2, 2014 LRO image of the total solar eclipse taken on April 8, 2024
Left: Lunar Reconnaissance Orbiter (LRO) image of Earthrise over Compton Crater taken Oct. 12, 2015. Middle: LRO image of Earth and Mars taken Oct. 2, 2014. Right: LRO image of the total solar eclipse taken on April 8, 2024.

The LRO mission continues with the spacecraft returning images and data from its instruments. LRO has enough fuel on board to operate until 2027. The spacecraft can support new robotic lunar activities and the knowledge from the mission will help aid in the return of humans to the lunar surface. 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      SpaceX Crew-9 members (from left) Mission Specialist Aleksandr Gorbunov from Roscosmos and Commander Nick Hague from NASA pose for an official crew portrait at NASA’s Johnson Space Center in Houston, Texas.NASA/Josh Valcarel NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov are preparing to launch on the agency’s SpaceX Crew-9 mission to the International Space Station.
      The flight is the ninth crew rotation mission with SpaceX to the station under NASA’s Commercial Crew Program. The duo will lift off aboard the SpaceX Dragon spacecraft, which previously flew NASA’s SpaceX Crew-4, Axiom Mission 2 and Axiom Mission 3, from Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
      Once aboard the space station, Hague and Gorbunov will become members of the Expedition 72 crew and perform research, technology demonstrations, and maintenance activities. The pair will join NASA astronauts Don Petitt, Butch Wilmore, Suni Williams, as well as Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner.
      Wilmore and Williams, who launched aboard the Starliner spacecraft in June, will fly home with Hague and Gorbunov in February 2025.
      Launch preparations are underway, and teams are working to integrate the spacecraft and the SpaceX Falcon 9 rocket, including checkouts of a second flight rocket booster  for the mission. The integrated spacecraft and rocket will then be rolled to the pad and raised to the vertical position for a dry dress rehearsal with the crew and an integrated static fire test prior to launch.
      The Crew
      Nick Hague will serve as crew commander for Crew-9, making this his third launch and second mission to the space station. During his first launch in October 2018, Hague and his crewmate, Roscosmos’ Alexey Ovchinin, experienced a rocket booster failure, resulting in an in-flight, post-launch abort, ballistic re-entry, and safe landing in their Soyuz MS-10 spacecraft. Five months later, Hague launched aboard Soyuz MS-12 and served as a flight engineer aboard the space station during Expeditions 59 and 60. Hague has spent 203 days in space and conducted three spacewalks to upgrade space station power systems and install a docking adapter for commercial spacecraft.
      Born in Belleville, Kansas, Hague earned a bachelor’s degree in Astronautical Engineering from the United States Air Force Academy and a master’s degree in Aeronautical and Astronautical Engineering from the Massachusetts Institute of Technology in Cambridge, Massachusetts. Hague was selected as an astronaut by NASA in 2013. An active-duty colonel in the U.S. Space Force, Hague completed a developmental rotation at the Defense Department and served as the Space Force’s director of test and evaluation from 2020 to 2022. In August 2022, Hague resumed duties at NASA, working on the Boeing Starliner Program until this flight assignment.
      Follow @astrohague on X and Instagram.
      Roscosmos cosmonaut Aleksandr Gorbunov will embark on his first trip to the space station as a mission specialist for Crew-9. Born in Zheleznogorsk, Kursk region, Russia, he studied engineering with qualifications in spacecraft and upper stages from the Moscow Aviation Institute. Gorbunov graduated from the military department with a specialty in operating and repairing aircraft, helicopters, and aircraft engines. Before his selection as a cosmonaut in 2018, he worked as an engineer for Rocket Space Corp. Energia and supported cargo spacecraft launches from the Baikonur Cosmodrome. Gorbunov will serve as a flight engineer during Expedition 71/72 aboard the space station.
      Mission Overview
      After liftoff, Dragon will accelerate to approximately 17,500 mph to dock with the space station.
      Once in orbit, flight control teams from NASA’s Mission Control Center at the agency’s Johnson Space Center in Houston and the SpaceX mission control in Hawthorne, California, will monitor a series of automatic maneuvers that will guide Dragon to the forward-facing port of the station’s Harmony module. The spacecraft is designed to dock autonomously, but the crew can take control and pilot manually if necessary.
      After docking, Expedition 71 will welcome Hague and Gorbunov inside the station and conduct several days of handover activities with the departing astronauts of NASA’s SpaceX Crew-8 mission. After a handover period, NASA astronauts Matthew Dominick, Michael Barratt, Jeanette Epps, and Roscosmos cosmonaut Alexander Grebenkin of Crew-8 will undock from the space station and splash down off the coast of Florida.
      Crew-9 will conduct new scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. Experiments include the impact of flame behavior on Earth, studying cells and platelets during long-duration spaceflight, and a B vitamin that could reduce Spaceflight-Associated Neuro-ocular Syndrome. They’ll also work on experiments that benefit life on Earth, like studying the physics of supernova explosions and monitoring the effects of different moister treatments on plants grown aboard the station. These are just a few of over 200 scientific experiments and technology demonstrations taking place during their mission.
      While aboard the orbiting laboratory, Crew-9 will welcome two Dragon spacecraft, including NASA’s SpaceX’s 31st commercial resupply services mission and NASA’s SpaceX Crew-10, and two Roscosmos-led cargo deliveries on Progress 90 and 91.
      In February, Hague, Gorbunov, Wilmore, and Williams will climb aboard Dragon and autonomously undock, depart the space station, and re-enter Earth’s atmosphere. After splashdown off Florida’s coast, a SpaceX recovery vessel will pick up the spacecraft and crew, who then will be helicoptered back to shore.
      Commercial crew missions enable NASA to maximize use of the space station, where astronauts have lived and worked continuously for more than 23 years testing technologies, performing research, and developing the skills needed to operate future commercial destinations in low Earth orbit, and explore farther from Earth. Research conducted on the space station provides benefits for people on Earth and paves the way for future long-duration trips to the Moon and beyond through NASA’s Artemis missions.
      Get breaking news, images, and features from the space station on Instagram, Facebook, and X.
      Learn more about the space station, its research, and crew, at https://www.nasa.gov/station.
      Share
      Details
      Last Updated Sep 19, 2024 Related Terms
      Commercial Crew International Space Station (ISS) Explore More
      4 min read NASA Astronaut Tracy C. Dyson’s Scientific Mission aboard Space Station
      Article 1 day ago 3 min read Station Science Top News: September 13, 2024
      Article 3 days ago 4 min read NASA’s SpaceX Crew-9 to Conduct Space Station Research
      Article 7 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronaut Tracy C. Dyson smiles for a portrait in the vestibule between the Kibo laboratory module and the Harmony module aboard space station.NASA NASA astronaut Tracy C. Dyson is returning home after a six-month mission aboard the International Space Station. While on orbit, Dyson conducted an array of experiments and technology demonstrations that contribute to advancements for humanity on Earth and the agency’s trajectory to the Moon and Mars. 
      Here is a look at some of the science Dyson conducted during her mission: 
      Heart-Shaped Bioprints 
      NASA NASA astronaut Tracy C. Dyson operates the BioFabrication Facility for the Redwire Cardiac Bioprinting Investigation, which 3D prints cardiovascular tissue samples. In microgravity, bio inks used for 3D printing are less likely to settle and retain their shape better than on Earth. Cardiovascular disease is currently the number one cause of death in the United States, and findings from this space station investigation could one day lead to 3D-printed organs such as hearts for patients awaiting transplants. 
      Wicking in Weightlessness 
      NASA NASA astronaut Tracy C. Dyson handles hardware for the Wicking in Gel-Coated Tubes (Gaucho Lung) experiment. This study uses a tube lined with various gel thicknesses to simulate the human respiratory system. A fluid mass known as a liquid plug is then observed as it either blocks or flows through the tube. Data regarding the movement and trailing of the liquid plug allows researchers to design better drug delivery methods to address respiratory ailments. 
      Programming for Future Missions 
      NASA NASA NASA astronaut Tracy C. Dyson runs student-designed software on the free-flying Astrobee robot. This technology demonstration is part of Zero Robotics, a worldwide competition that engages middle school students in writing computer code to address unique specifications. Winning participants get to run their software on an actual Astrobee aboard the space station. This educational opportunity helps inspire the next generation of technology innovators.     
      Robo-Extensions
      NASA As we venture to the Moon and Mars, astronauts may rely more on robots to ensure safety and preserve resources. Through the Surface Avatar study, NASA astronaut Tracy C. Dyson controls a robot on Earth’s surface from a computer aboard station. This technology demonstration aims to toggle between manipulating multiple robots and “diving inside” a specific bot to control as an avatar. This two-way demonstration also evaluates how robot operators respond their robotic counterparts’ efficiency and general output. Applications for Earth use include exploration of inhospitable zones and search and rescue missions after disasters.  
      Capturing Earth’s Essence
      NASA For Crew Earth Observations, astronauts take pictures of Earth from space for research purposes. NASA astronauts Suni Williams (left) and Tracy C. Dyson (right) contribute by aiming handheld cameras from the space station’s cupola to photograph our planet. Images help inform climate and environmental trends worldwide and provide real-time natural disaster assessments. More than four million photographs have been taken of Earth by astronauts from space.  
      Multi-faceted Crystallization Processor 
      NASA NASA astronaut Tracy C. Dyson holds a cassette for Pharmaceutical In-Space Laboratory – 04 (ADSEP-PIL-04), an experiment to crystallize the model proteins lysozyme and insulin. Up to three cassettes with samples can be processed simultaneously in the Advanced Space Experiment Processor (ADSEP), each at an independent temperature. Because lysozyme and insulin have well-documented crystal structures, they can be used to evaluate the hardware’s performance in space. Successful crystallization with ADSEP could lead to production and manufacturing of versatile crystals with pharmaceutical applications.  
      Cryo Care  
      NASA NASA astronauts Tracy C. Dyson and Matthew Dominick preserve research samples in freezers aboard the space station. Cryopreservation is essential for maintaining the integrity of samples for a variety of experiments, especially within the field of biology. The orbiting laboratory has multiple freezer options with varying subzero temperatures. Upon return, frozen samples are delivered back to their research teams for further analysis.    
      Welcoming New Science 
      NASA NASA astronaut Tracy C. Dyson is pictured between the Unity module and Northrop Grumman’s Cygnus spacecraft in preparation for depressurization and departure from the International Space Station. On long-duration missions, visiting vehicles provide necessities for crew daily living as well as new science experiments and supplies for ongoing research. This vehicle brought experiments to test water recovery technology, produce stem cells in microgravity, study the effects of spaceflight on microorganism DNA, and conduct science demonstrations for students.   
      Diana Garcia 
      International Space Station Research Communications Team
      NASA’s Johnson Space Center 
      Keep Exploring Discover More Topics
      Latest News from Space Station Research
      Humans in Space
      Station Science 101
      Expedition 71
      Expedition 71 began on April 5, 2024 and ends in September 2024. This crew will explore neuro-degenerative diseases and therapies,…
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      While astronaut Gene Cernan was on the lunar surface during the Apollo 17 mission, his spacesuit collected loads of lunar dust. The gray, powdery substance stuck to the fabric and entered the capsule causing eye, nose, and throat irritation dubbed “lunar hay fever.” Credit: NASACredit: NASA Moon dust, or regolith, isn’t like the particles on Earth that collect on bookshelves or tabletops – it’s abrasive and it clings to everything. Throughout NASA’s Apollo missions to the Moon, regolith posed a challenge to astronauts and valuable space hardware.

      During the Apollo 17 mission, astronaut Harrison Schmitt described his reaction to breathing in the dust as “lunar hay fever,” experiencing sneezing, watery eyes, and a sore throat. The symptoms went away, but concern for human health is a driving force behind NASA’s extensive research into all forms of lunar soil.
      The need to manage the dust to protect astronaut health and critical technology is already beneficial on Earth in the fight against air pollution.

      Working as a contributor on a habitat for NASA’s Next Space Technologies for Exploration Partnerships (NextSTEP) program, Lunar Outpost Inc. developed an air-quality sensor system to detect and measure the amount of lunar soil in the air that also detects pollutants on Earth. 

      Originally based in Denver, the Golden, Colorado-based company developed an air-quality sensor called the Space Canary and offered the sensor to Lockheed Martin Space for its NextSTEP lunar orbit habitat prototype. After the device was integrated into the habitat’s environmental control system, it provided distinct advantages over traditional equipment.

      Rebranded as Canary-S (Solar), the sensor is now meeting a need for low-cost, wireless air-quality and meteorological monitoring on Earth. The self-contained unit, powered by solar energy and a battery, transmits data using cellular technology. It can measure a variety of pollutants, including particulate matter, carbon monoxide, methane, sulfur dioxide, and volatile organic compounds, among others. The device sends a message up to a secure cloud every minute, where it’s routed to either Lunar Outpost’s web-based dashboard or a customer’s database for viewing and analysis.

      The oil and gas industry uses the Canary-S sensors to provide continuous, real-time monitoring of fugitive gas emissions, and the U.S. Forest Service uses them to monitor forest-fire emissions.

      “Firefighters have been exhibiting symptoms of carbon monoxide poisoning for decades. They thought it was just part of the job,” explained Julian Cyrus, chief operating officer of Lunar Outpost. “But the sensors revealed where and when carbon monoxide levels were sky high, making it possible to issue warnings for firefighters to take precautions.”

      The Canary-S sensors exemplify the life-saving technologies that can come from the collaboration of NASA and industry innovations. 
      Read More Share
      Details
      Last Updated Sep 17, 2024 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read Printed Engines Propel the Next Industrial Revolution
      Efforts to 3D print engines produce significant savings in rocketry and beyond
      Article 5 days ago 2 min read Tech Today: Flipping NASA Tech and Sticking the Landing 
      NASA tech adds gecko grip to phone accessory
      Article 1 month ago 2 min read Tech Today: Space Age Swimsuit Reduces Drag, Breaks Records
      SpeedoUSA worked with Langley Research Center to design a swimsuit with reduced surface drag.
      Article 2 months ago Keep Exploring Discover Related Topics
      Technology Transfer and Spinoffs News
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Credit: NASA NASA has awarded a contract to Intuitive Machines, LLC of Houston, to support the agency’s lunar relay systems as part of the Near Space Network, operated by the agency’s Goddard Space Flight Center in Greenbelt, Maryland.
      This Subcategory 2.2 GEO to Cislunar Relay Services is a new firm-fixed-price, multiple award, indefinite-delivery/indefinite-quantity task order contract. The contract has a base period of five years with an additional 5-year option period, with a maximum potential value of $4.82 billion. The base ordering period begins Tuesday, Oct. 1, 2024, through Sept. 30, 2029, with the option period potentially extending the contract through Sept. 30, 2034.
      Lunar relays will play an essential role in NASA’s Artemis campaign to establish a long-term presence on the Moon. These relays will provide vital communication and navigation services for the exploration and scientific study of the Moon’s South Pole region. Without the extended coverage offered by lunar relays, landing opportunities at the Moon’s South Pole will be significantly limited due to the lack of direct communication between potential landing sites and ground stations on Earth.
      The lunar relay award also includes services to support position, navigation, and timing capabilities, which are crucial for ensuring the safety of navigation on and around the lunar surface. Under the contract, Intuitive Machines also will enable NASA to provide communication and navigation services to customer missions in the near space region.
      The initial task award will support the progressive validation of lunar relay capabilities/services for Artemis. NASA anticipates these lunar relay services will be used with human landing systems, the LTV (lunar terrain vehicle), and CLPS (Commercial Lunar Payload Services) flights.
      As lunar relay services become fully operational, they will be integrated into the Near Space Network’s expanding portfolio, enhancing communications and navigation support for future lunar missions. By implementing these new capabilities reliance on NASA’s Deep Space Network will be reduced.
      NASA’s goal is to provide users with communication and navigation services that are secure, reliable, and affordable, so that all NASA users receive the services required by their mission within their latency, accuracy, and availability requirements.
      This is another step in NASA partnering with U.S. industry to build commercial space partners to support NASA missions, including NASA’s long-term Moon to Mars objectives for interoperable communications and navigation capabilities.   This award is part of the Space Communications and Navigation (SCaN) Program and will be executed by the Near Space Network team at NASA Goddard.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Share
      Details
      Last Updated Sep 17, 2024 LocationNASA Headquarters Related Terms
      Near Space Network Communicating and Navigating with Missions Goddard Space Flight Center Space Communications & Navigation Program Space Operations Mission Directorate View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist’s concept depicts NASA’s Europa Clipper spacecraft in orbit around Jupiter. The mission is targeting an Oct. 10, 2024, launch.NASA/JPL-Caltech The first NASA spacecraft dedicated to studying an ocean world beyond Earth, Europa Clipper aims to find out if the ice-encased moon Europa could be habitable.
      NASA’s Europa Clipper spacecraft, the largest the agency has ever built for a planetary mission, will travel 1.8 billion miles (2.9 billion kilometers) from the agency’s Kennedy Space Center in Florida to Europa, an intriguing icy moon of Jupiter. The spacecraft’s launch period opens Thursday, Oct. 10.
      Learn more about how NASA’s Europa Clipper came together – and how it will explore an ocean moon of Jupiter. Credit: NASA/JPL-Caltech  Data from previous NASA missions has provided scientists with strong evidence that an enormous salty ocean lies underneath the frozen surface of the moon. Europa Clipper will orbit Jupiter and conduct 49 close flybys of the moon to gather data needed to determine whether there are places below its thick frozen crust that could support life.
      Here are eight things to know about the mission:
      1. Europa is one of the most promising places to look for currently habitable conditions beyond Earth.
      There’s scientific evidence that the ingredients for life — water, the right chemistry, and energy — may exist at Europa right now. This mission will gather the information scientists need to find out for sure. The moon may hold an internal ocean with twice the water of Earth’s oceans combined, and it may also host organic compounds and energy sources under its surface. If the mission determines that Europa is habitable, it would mean there may be more habitable worlds in our solar system and beyond than we have imagined.
      2. The spacecraft will fly through one of the most punishing radiation environments in our solar system — second only to the Sun’s.
      Jupiter is surrounded by a gigantic magnetic field 20,000 times stronger than Earth’s. As the field spins, it captures and accelerates charged particles, creating radiation that can damage spacecraft. Mission engineers designed a spacecraft vault to shield sensitive electronics from radiation, and they plotted orbits that will limit the time Europa Clipper spends in most radiation-heavy areas around Jupiter.
      3. Europa Clipper will orbit Jupiter, studying Europa while flying by the moon dozens of times.
      The spacecraft will make looping orbits around Jupiter that bring it close to Europa for 49 science-dedicated flybys. On each orbit, the spacecraft will spend less than a day in Jupiter’s dangerous radiation zone near Europa before zipping back out. Two to three weeks later, it will repeat the process, making another flyby.
      4. Europa Clipper features NASA’s most sophisticated suite of science instruments yet.
      To determine if Europa is habitable, Europa Clipper must assess the moon’s interior, composition, and geology. The spacecraft carries nine science instruments and a gravity experiment that uses the telecommunications system. In order to obtain the best science during each flyby, all the science instruments will operate simultaneously on every pass. Scientists will then layer the data together to paint a full picture of the moon.
      5. With antennas and solar arrays fully deployed, Europa Clipper is the largest spacecraft NASA has ever developed for a planetary mission.
      The spacecraft extends 100 feet (30.5 meters) from one end to the other and about 58 feet (17.6 meters) across. That’s bigger than a basketball court, thanks in large part to the solar arrays, which need to be huge so they can collect enough sunlight while near Jupiter to power the instruments, electronics, and other subsystems.
      6. It’s a long journey to Jupiter.
      Jupiter is on average some 480 million miles (about 770 million kilometers) from Earth; both planets are in motion, and a spacecraft can carry only a limited amount of fuel. Mission planners are sending Europa Clipper past Mars and then Earth, using the planets’ gravity as a slingshot to add speed to the spacecraft’s trek. After journeying about 1.8 billion miles (2.9 billion kilometers) over 5½ years, the spacecraft will fire its engines to enter orbit around Jupiter in 2030.
      7. Institutions across the U.S. and Europe have contributed to Europa Clipper.
      Currently, about a thousand people work on the mission, including more than 220 scientists from both the U.S. and Europe. Since the mission was officially approved in 2015, more than 4,000 people have contributed to Europa Clipper, including teams who work for contractors and subcontractors.
      8. More than 2.6 million of us are riding along with the spacecraft, bringing greetings from one water world to another.
      As part of a mission campaign called “Message in a Bottle,” the spacecraft is carrying a poem by U.S. Poet Laureate Ada Limón, cosigned by millions of people from nearly every country in the world. Their names have been stenciled onto a microchip attached to a tantalum metal plate that seals the spacecraft’s electronics vault. The plate also features waveforms of people saying the word “water” in over 100 spoken languages.
      More About Europa Clipper
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. The main spacecraft body was designed by APL in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA’s Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission.
      NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft, which will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at Kennedy.
      Find more information about Europa here:
      https://europa.nasa.gov
      Europa Clipper Teachable Moment See Europa’s Chaos Terrain in Crisp Detail Europa Clipper Gets Its Super-Size Solar Arrays News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-6215
      gretchen.p.mccartney@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-125
      Share
      Details
      Last Updated Sep 17, 2024 Related Terms
      Europa Clipper Jet Propulsion Laboratory Jupiter The Solar System Explore More
      4 min read NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training
      At first glance, it seems like a scene from an excursion on the Moon’s surface…except…
      Article 4 days ago 3 min read NASA to Develop Lunar Time Standard for Exploration Initiatives 
      Article 5 days ago 23 min read The Next Full Moon is a Partial Lunar Eclipse; a Supermoon; the Corn Moon; and the Harvest Moon
      The next full Moon will be Tuesday, September 17, 2024, at 10:35 PM EDT. The…
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...