Jump to content

Sols 4219-4221: It’s a Complex Morning…


NASA

Recommended Posts

  • Publishers

6 min read

Sols 4219-4221: It’s a Complex Morning…

There are many whiteish rocks in the area that lately attracted the team’s special interest, as this image, taken by Right Navigation Camera onboard NASA's Mars rover Curiosity on Sol 4217 (2024-06-17 02:10:34 UTC) shows.
There are many whiteish rocks in the area that lately attracted the team’s special interest, as this image, taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4217 (2024-06-17 02:10:34 UTC) shows.
NASA/JPL-Caltech

Earth planning date: Monday, June 17, 2024

Who thought it was a good idea to select a name with the word ‘mammoth’ in it? Well, we don’t remember who did it, and if we did, we wouldn’t say anyways… but these rocks take ‘Mammoth Lakes’ and seem to translate it into ‘Mammoth Effort’ for the team here on Earth! You may have seen my colleague Conor’s blog about ‘The best laid plans’, and today we tried again.

For a start, orbital mechanics wasn’t our friend on this nervous Monday morning: the data we needed reached us – as scheduled – in the early morning hours; hence assessment could only begin shortly before the normal start of the planning day. The assessment of a preload test is not a quick task as it concerns rover health and safety. Even with over 11 years of experience, engineers want to look very, very closely. Or shall I say, tongue in cheek, after over 11 years of experience we want to look even closer as we have seen many of the ways Mars rocks can play tricks on us and we are pretty sure that the rocks have even more surprises up their sleeves! We don’t want to get caught out by… a rock!

With that assessment still ongoing (can you feel the nerves?!), the team had to start planning assuming we would go ahead with the drill. I was Geo Science Theme Lead today, and it was my task to help navigate through the things that we would want to do, if we pass the preload assessment and are going to drill. And it was also agreed that if this isn’t going to work today, we would try another preload test. The science team really wants to see what these bright rocks are made of, as bright, almost white colour on a basaltic planet always means that it is different and interesting.. Water rock interactions are my favourite possible explanation, but I don’t want to speculate, I prefer to interpret data… but those would come after the drill! Cliffhanger, part one, we kept asking those with an ear close to the engineering rooms for updates, but the only updates were that there are no updates… yet. I am not good at waiting, are you?

We were planning four sols today, but one of them is a ‘soliday’  – a day on Earth with no corresponding sol on Mars. They come up occasionally to re-synchronise Earth and Mars timings (and to not make downlinks even closer to start of planning). This is because an Earth day is 24 hours long, but a Mars day is 24 hours, 39 minutes, 35 seconds long. Therefore, Mars and Earth days get slowly but surely out of sync and planning would have to happen in the middle of the Earth night. Therefore, Curiosity gets a break thanks to orbital mechanics (and human sleep patterns).  But just before Curiosity gets a break (and the humans, too, for Juneteenth), there is a lot of work to do, even with this cliffhanger still ongoing.

The plan started – optimistically, and yes, with the cliffhanger STILL ongoing – with the full drill and everything we always do to assess whether the drill is successful. This includes an image of the newly accomplished (hopefully, are you keeping your fingers crossed?!) drill hole, an image of the drill bit inspecting our tools, and a ChemCem Remote Micro Imager mosaic of the drill hole.  ChemCam also does a passive spectral investigation of the drill tailings (are you still holding your breath that we even get to uplink the commands?!). Most of the drill activities happen on sol 4219, and just the ChemCam activities happen in sol 4220. Also, on sol 4220 ChemCam investigates the target “Longley Pass,” which is also a whitish rock.

Well, if these rocks play tricks on us and make us wait this long for an answer, we can at least shoot them with a laser and get some more data this way. Mastcam documents the ChemCam target Longley Pass and does two more single frame images of the targets “Walker Lake2” and “Finch Lake,” both of which you will have seen in previous blogs. They are part of a change detection campaign, where we repeatedly image the same location to find out if the sand moves. This helps with assessing the current winds on Mars. But that’s just the warm up for Mastcam, which will then embark on a 334 image journey 360° around the rover, also known as a 360-panorama. Given the very exciting landscape, we are all very much looking forward to getting to see this! But before that, the question is still there: will we get the go for drilling?! It’s one and a half hours into planning, and we still don’t know.

Finally on sol 4221 there is more ChemCam laser activity, this time on the target Quarry Peak, and there is a long-distance mosaic by ChemCam, too, to further document all the different sedimentary structures around us. Last but not least, our part of the plan had some ‘homework’ in form of a ChemCam calibration activity. There is more, of course, as the environmental group looks at dust devils and the opacity of the atmosphere and the DAN instrument performs its routine cadence of measurements. It’s a fully packed plan!

And the cliffhanger? Well, not so fast… after the initial planning meeting everyone who has assembled parts of the plan will meet in the so-called Science Operations Working Group meeting. I was really hoping for a result then, but we were told we had to wait just a little longer. Mars doesn’t make things easy, and we fully trust the engineers to make the right call. But will that call be the one the scientist in me wants? Will we drill?

We got through all of this meeting and about an hour later had a fully integrated plan, and still no word from the engineers. Come on, Mars, do you have to make it this hard?!

Planning rarely gets this tight and nerve wracking to be honest. But then, when Mars decides to write the script, we can either decide that we forego the measurement… or that we try again. And try again was what we were after.

Almost two hours of planning done, time for a break in the planning meeting cadence and dinner in my part of the world, but I wasn’t really hungry, to be honest. I just wanted to hear the outcome.

And finally, 3 hours and 38 minutes after the start of planning,  “GO GO GO” accompanied by a smiley with a wide grin appeared in the chat, straight from Ashwin, the project scientist.

And breathe… Let’s hope Mars rewards our brilliant engineers’ efforts!

Written by Susanne Schwenzer, Planetary Geologist at The Open University

Share

Details

Last Updated
Jun 18, 2024

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read
      Sols 4234-4235: And That’s (Nearly) a Wrap on Mammoth Lakes!
      This image was taken by Mast Camera (Mastcam) onboard NASA’s Mars rover Curiosity on Sol 4219 (2024-06-19 02:21:12 UTC). Earth Planning Date: Wednesday, July 3, 2024
      We received the data from our SAM analysis of the Mammoth Lakes sample late Monday afternoon. After chewing over the results, the team declared we are very happy with all of the analyses we’ve done with this sample, and we are ready to move on to greener pastures… er, redder rocks! This decision means that we will go ahead and clear out the drill assembly in today’s plan, and subsequently use the arm to collect MAHLI and APXS observations of the pile of drill tailings around the drill hole.
      We’ll also have some time for remote sensing activities that use our mast-mounted instruments. Even though we’ve been parked at this location for several weeks, we’re still finding lots of things to look at! ChemCam will collect LIBS observations on a light-toned rock target named “Finger Peaks,” as well as a bumpy rock named “Glen Aulin.” We’ll also collect some additional Mastcam images of interesting features in the area, and a long-distance RMI mosaic of a target named “Rock Island Pass.” Several kinds of environmental monitoring activities will round out the plan.
      It’s been a very productive drill sampling campaign here at Mammoth Lakes, our first after crossing into Gediz Vallis channel, and I’m excited to start getting ready to move on. What’s around the corner in this fascinating area of Mt. Sharp?
      Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Jul 03, 2024 Related Terms
      Blogs Explore More
      5 min read Sols 4232-4233: Going For a Ride, Anyone?


      Article


      2 days ago
      2 min read Sols 4229-4231: More Analyses of the Mammoth Lakes 2 Sample!


      Article


      2 days ago
      2 min read Sols 4226-4228: A Powerful Balancing Act


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources



      Rover Basics



      Mars Exploration Science Goals


      View the full article
    • By NASA
      NASA astronaut Andre Douglas poses for a portrait at NASA’s Johnson Space Center in Houston.Credits: NASA/Josh Valcarcel NASA has selected astronaut Andre Douglas as its backup crew member for the agency’s Artemis II test flight, the first crewed mission under NASA’s Artemis campaign.
      Douglas will train alongside NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and Canadian Space Agency (CSA) astronaut Jeremy Hansen.
      In the event a NASA astronaut is unable to take part in the flight, Douglas would join the Artemis II crew.
      “Andre’s educational background and extensive operational experience in his various jobs prior to joining NASA are clear evidence of his readiness to support this mission,” said Joe Acaba, chief astronaut at NASA’s Johnson Space Center in Houston. “He excelled in his astronaut candidate training and technical assignments, and we are confident he will continue to do so as NASA’s backup crew member for Artemis II.”  
      The CSA announced Jenni Gibbons as its backup crew member in November 2023. Gibbons would step into the mission to represent Canada should Hansen not be available.
      “Canada’s seat on the historic Artemis II flight is a direct result of our contribution of Canadarm3 to the lunar Gateway. Jenni Gibbons’ assignment as backup is of utmost importance for our country,” said CSA President Lisa Campbell. “Since being recruited, Jenni has distinguished herself repeatedly through her work with NASA and the CSA. She is also a tremendous role model for Canada’s future scientists, engineers, and explorers.”
      The selection of Douglas and Gibbons as backup crew members for Artemis II is independent of the selection of crew members for Artemis III. NASA has not yet selected crew members for Artemis flights beyond Artemis II. All active NASA astronauts are eligible for assignment to any human spaceflight mission.
      The approximately 10-day Artemis II test flight will launch on the agency’s powerful SLS (Space Launch System) rocket, prove the Orion spacecraft’s life-support systems, and validate the capabilities and techniques needed for humans to live and work in deep space.
      More on Artemis II backup crew
      Douglas graduated from NASA’s astronaut candidate training program in March 2024. He is a Virginia native and earned a bachelor’s degree in Mechanical Engineering from the U.S. Coast Guard Academy in New London, Connecticut, as well as four post-graduate degrees from various institutions, including a doctorate in Systems Engineering from George Washington University in Washington. Douglas served in the U.S. Coast Guard as a naval architect, salvage engineer, damage control assistant, and officer of the deck. He also worked as a staff member at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, working on maritime robotics, planetary defense, and space exploration missions for NASA. Douglas participated in the Joint EVA and Human Surface Mobility Test Team 5, working with a specialized group that develops, integrates, and executes human-in-the-loop tests, analog missions, and Moonwalks. Most recently, Douglas worked with teams on the development of the lunar terrain vehicle, pressurized rover, lunar Gateway and lunar spacesuit.
      Gibbons was recruited as a CSA astronaut in 2017 and completed her basic training in 2020. Since then, Gibbons has continued to serve Canada’s space program and has worked in different positions, including Mission Control as a capsule communicator (CAPCOM) during spacewalks, and commercial spacecraft and daily International Space Station operations. Gibbons holds an honors bachelor’s degree in Mechanical Engineering from McGill University in Montreal. While at McGill, she conducted research on flame propagation in microgravity in collaboration with CSA and Canada’s National Research Council Flight Research Laboratory in Ontario. She holds a doctorate in engineering from Jesus College at the University of Cambridge, England.
      Under NASA’s Artemis campaign, the agency is establishing the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all. 
      Learn more about NASA’s Artemis campaign at:
      https://www.nasa.gov/artemis
      -end-
      Rachel Kraft/Madison Tuttle
      Headquarters, Washington
      202-358-1100
      rachel.h.kraft@nasa.gov/madison.e.tuttle@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      Share
      Details
      Last Updated Jul 03, 2024 LocationNASA Headquarters Related Terms
      Artemis 2 Andre Douglas Artemis Astronauts Humans in Space View the full article
    • By NASA
      Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 5 min read
      Sols 4232-4233: Going For a Ride, Anyone?
      This image shows some of the sand ripples we spot all around the rover between the rocks. It was taken by Mast Camera (Mastcam) onboard NASA’s Mars rover Curiosity on Sol 4225 (2024-06-25 01:10:39 UTC). Earth planning date: Monday, July 1, 2024
      Have you ever wondered what it might look like to ride along with the rover? Probably not as much as we have here on the planning team, where we are looking at the images on a daily basis. I always wish I could walk around there myself, or drive around in a vehicle, maybe. As you likely know, we don’t even get video, “just” images. But of course those images are stunning and the landscape is unique and – apart from being scientifically interesting – so very, very beautiful. And some cameras record images so often that it’s actually possible to create the impression of a movie. The front hazard camera is among them. And that can create a stunning impression of looking out of the front window! If you want to see that for yourself, you can! If you go to the NASA interactive tool called “Eyes on the Solar System” there is a Curiosity Rover feature that allows you to do just that: simulate a drive between waypoints and look out of the window, which is the front hazard camera. Here is the link to “Experience Curiosity.” The drive there is a while back, but the landscape is just so fascinating, I can watch and rewatch that any number of times!
      Now, after reminiscing about the past, what did we do today? First of all: change all plans we ever had. We don’t have – as scheduled – the SAM data on Earth just yet. But we have a good portion of the sample still in the drill, and if SAM gets their data and wants to do more analysis with that sample, then we can’t move the arm as we originally had planned. Why didn’t we consider that to begin with? Normally, there isn’t enough sample for all the analysis; you may have seen this blog post: “Sols 4118-4119: Can I Have a Second Serving, Please? Oh, Me Too!” But it’s the sample that dictates how much we get to begin with, and how much we need, which only becomes clear as the data come in. And there is an unusually lucky combination here that would avoid us having to drill a second hole for getting the second helping. Instead, we just sit here carefully holding the arm still so we do not lose sample. That saves a lot of rover resources. But then, once we had settled how we adjust to keeping our current position, we also learnt that the uplink time might shift from the original slot we had been allocated to a later one… And all of this with a pretty new-to-the-role Science Operations Working Group (SOWG) chair (me) and a similarly new Geology and Mineralogy theme group science lead. Well, we managed, with lots of help from the great team around us.
      Those sudden-change planning days are so tricky because there is so much more to remember. It’s not, “This is what we came to do…,” and it had been carefully pre-planned, and it is all in the notes. Instead, the pre-planning preparation doesn’t fit the new reality anymore, and all that work has to be redone. So we have to do all the pre-planning work, and the actual planning work, and sometimes also account for some “if… then…” scenarios in the same amount of time we usually have to do the planning on the basis of all the pre-planning work. 
      Sounds stressful? Yes, I can tell you it is!
      Once we had changed all the skeleton plans, the team got very excited about the extra time. This is such an interesting area, there are rocks that are almost white, there are darker rocks, very interesting sand features with beautiful ripples, so much to look at! Mars has much to offer here, so the team got to work swiftly and the plan filled up with a great set of observations. ChemCam used LIBS on the target “Tower Peak,” which is one of those white-ish rocks, and on “Quarry Peak.” Mastcam delivers all the pictures to go along with these two activities and gets its own science, too. These are mainly so-called “change detection” images, where the same area is pictured repeatedly to see what particles might move in the time between the two images. ChemCam uses its long-distance imaging capability to add to the stunning images they are getting from faraway rocks. They have two mosaics on a target called “Edge Bench.” There is also a lot of atmospheric science in the plan; looking for dust devils and the opacity of the atmosphere are just two examples. REMS and DAN are also active throughout, to assess the wind, and the water underground, respectively. And as if that weren’t enough, CheMin also performs another night of analysis. We get to uplink a full plan, and we’ll see what the data say and what decisions we’ll make for next Wednesday.
      Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Share








      Details
      Last Updated Jul 02, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4229-4231: More Analyses of the Mammoth Lakes 2 Sample!


      Article


      11 hours ago
      2 min read Sols 4226-4228: A Powerful Balancing Act


      Article


      4 days ago
      2 min read Interesting Rock Textures Galore at Bright Angel


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources



      Rover Basics



      Mars Exploration Science Goals


      View the full article
    • By NASA
      Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read
      Sols 4229-4231: More Analyses of the Mammoth Lakes 2 Sample!
      The inlet into to the SAM instrument open and awaiting sample delivery. This image was taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4226 (2024-06-26 11:06:46 UTC). Earth Planning Date: Friday, June 28, 2024
      After reviewing results from the Evolved Gas Analysis (EGA) experiment that were downlinked yesterday afternoon (Sols 4226-4228: A Powerful Balancing Act), the SAM team decided they’d like to go ahead with a second experiment to analyze the Mammoth Lakes 2 drilled sample. This experiment is known as the Gas Chromatograph/Mass Spectrometer (GCMS) experiment.
      SAM, whose full name is Sample Analysis at Mars, is actually a suite of three different analytical instruments that are used to measure the composition of gases which come off drilled samples as we bake them in SAM’s ovens. The three analytical instruments are called a gas chromatograph, quadrupole mass spectrometer, and tunable laser spectrometer. Each one is particularly suited for measuring specific kinds of compounds in the gases, and these include things like water, methane, carbon, or organic (carbon-containing) molecules. In the EGA experiment that we ran in our last plan, we baked the Mammoth Lakes 2 sample and measured the gas compositions using the tunable laser spectrometer and quadrupole mass spectrometer. In this plan, we’ll deliver a new pinch of sample to the SAM oven and then measure the composition of the gases that are released using the gas chromatograph and quadrupole mass spectrometer. By running both experiments, we’ll have a more thorough understanding of the materials that are in this rock.
      The SAM GCMS experiment takes a lot of power to run, so it will be the focus of today’s three-sol plan. However, we still managed to fit in some other science activities around the experiment, including a ChemCam RMI mosaic of some far-off ridges, a ChemCam LIBS observation of a nodular target named “Trail Lakes,” environmental monitoring activities, and a couple Mastcam mosaics to continue imaging the terrain around the rover. Should be another fun weekend of science in Gale crater!
      Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Jul 01, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4226-4228: A Powerful Balancing Act


      Article


      4 days ago
      2 min read Interesting Rock Textures Galore at Bright Angel


      Article


      4 days ago
      2 min read Sol 4225: Sliding Down Horsetail Falls


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources



      Rover Basics



      Mars Exploration Science Goals


      View the full article
    • By NASA
      Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read
      Sols 4226-4228: A Powerful Balancing Act
      NASA’s Mars rover Curiosity acquired this image about 10 inches (25 centimeters) from the “Loch Leven” target using its Mars Hand Lens Imager (MAHLI) close-up camera, located on the turret at the end of the rover’s robotic arm, in daylight on June 16, 2024, sol 4216 (or Martian day 4,216) of the Mars Science Laboratory Mission, at 05:12:12 UTC. Earth planning date: Tuesday, June 25, 2024
      As documented in a previous blog last week, we continue to juggle power constraints as we focus on analyzing our newest drilled sample on Mars: “Mammoth Lakes 2.” Today, the star of the show is a planned dropoff to SAM (Sample Analysis at Mars instrument suite) and evolved gas analysis of the drill sample. This activity requires significant power so the team had to be judicious in planning other science observations and balancing the power needs of the different activities.
      While the team eagerly awaits the outcome of the SAM and CheMin (Chemistry and Mineralogy X-Ray Diffraction instrument) analyses of Mammoth Lakes 2, we continue to acquire other observations in this fascinating area that will assist in our interpretations of the mineralogical data. ChemCam (the Chemistry and Camera instrument) will fire its laser at the “Loch Leven” target to get more chemical data on a target that was previously analyzed by APXS (the Alpha Particle X-Ray Spectrometer). “Loch Leven” is an example of gray material that rims the Mammoth Lakes drill block. The remote imaging capabilities of the ChemCam instrument will also be utilized to acquire a mosaic of a nearby area with interesting lighter- and darker-toned patches within the exposed rocks. Mastcam (Mast camera, for color stills and video) will document the ChemCam “Loch Leven” target and image the Mammoth Lakes 2 drill hole and surrounding fines to monitor any changes resulting from wind. We will also acquire extensions to two previous Mastcam mosaics: “Camp Four” and “Falls Ridge.”
      To continue monitoring atmospheric conditions, the team also planned a Navcam (grayscale, stereoscopic Navigation cameras) large dust devil survey and Mastcam tau observation, an overhead image to measure dust in the atmosphere above Curiosity. Standard DAN (Dynamic Albedo of Neutrons instrument), REMS (Rover Environmental Monitoring Station), and RAD (Radiation Assessment Detector) activities round out the plan.
      Written by Lucy Thompson, Planetary Geologist at University of New Brunswick
      Share








      Details
      Last Updated Jun 27, 2024 Related Terms
      Blogs Explore More
      2 min read Interesting Rock Textures Galore at Bright Angel


      Article


      48 mins ago
      2 min read Sol 4225: Sliding Down Horsetail Falls


      Article


      2 days ago
      3 min read Sols 4222-4224: A Particularly Prickly Power Puzzle


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources



      Rover Basics



      Mars Exploration Science Goals


      View the full article
  • Check out these Videos

×
×
  • Create New...