Jump to content

Mars: Closest Encounter


HubbleSite

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      Reports of alien abductions first became widespread during the 1960s and 70s. Alleged abductees frequently described undergoing experimental procedures performed by extraterrestrial beings. Some even claimed that these aliens had inserted unknown objects into their bodies. 

      In many cases, these so-called "alien implants" are metallic and have been reported to emit radio frequency waves. Often, they are found attached to nerve endings within the body. 
      One of the most prominent figures in this field of research was Dr. Roger Leir, who passed away on March 14, 2014. Along with his surgical team, Dr. Leir performed 17 surgeries on individuals who claimed to have been abducted by aliens, removing 13 distinct objects suspected to be alien implants.

      These objects were subjected to scientific analysis by prestigious laboratories, including Los Alamos National Labs, New Mexico Tech, and the University of California at San Diego. The findings have been puzzling, with some comparisons made to meteorite samples, and isotopic ratios in some tests suggesting materials not of Earthly origin.
      One such case is that of Terry Lovelace, a former Air Force medic, who kept a disturbing secret for 40 years. In 2012, a routine x-ray revealed a small square object about the size of a fingernail which was buried deep in Terry's right leg the doctor had never see anything like it. 
      Then Terry suddenly remembered the terrifying experience he had tried to forget - an event during a camping trip at Devil's Den State Park that he had never spoken of, knowing no one would believe him without proof. Yet the evidence had always been there: a strange metal object embedded in his leg, something that was not man-made. 
      In 1977, Terry and a friend had an extraordinary encounter at Devil's Den State Park, where they witnessed a massive triangular craft. This experience resulted in missing time and unexplained injuries. Years later, Terry was faced with a difficult choice: reveal his story of alien contact or remain silent. His decision led him into conflict with powerful forces and uncovered a conspiracy that extended beyond our world.
      While some remain skeptical, believing these implants are man-made and part of a secretive human agenda, Dr. Leir’s work, along with Terry Lovelace's experience at Devil’s Den and the mysterious object found in his leg, suggests that 'alien' implants may not be mere fiction.
        View the full article
    • By NASA
      NASA wants you to visualize the future of space exploration! This art challenge is looking for creative, artistic images to represent NASA’s Moon to Mars Architecture, the agency’s roadmap for crewed exploration of deep space. With NASA’s Moon to Mars Objectives in hand, the agency is developing an architecture for crewed exploration of the Moon, Mars, and beyond. Using systems engineering processes, NASA has begun to perform the analyses and studies needed to make informed decisions about a sustained lunar evolution and initial human missions to Mars. NASA’s Moon to Mars Architecture currently includes four segments of increasing complexity: Human Lunar Return, Foundational Exploration, Sustained Lunar Evolution, and Humans to Mars. For this competition, NASA is interested in your artistic interpretation of the latter two segments: Sustained Lunar Evolution and Humans to Mars. These depictions could include operations in space, on the surface, or both. Artists may develop and submit a still image for either the lunar and Mars exploration segments.
      Award: $10,000 in total prizes
      Open Date: September 12, 2024
      Close Date: October 31, 2024
      For more information, visit: https://nasa.yet2.com/
      View the full article
    • By NASA
      5 Min Read 9 Phenomena NASA Astronauts Will Encounter at Moon’s South Pole
      An artist’s rendering of an Artemis astronaut working on the Moon’s surface. Credits:
      NASA NASA’s Artemis campaign will send the first woman and the first person of color to the Moon’s south polar region, marking humanity’s first return to the lunar surface in more than 50 years.
      Here are some out-of-this-world phenomena Artemis astronauts will experience:
      1. A Hovering Sun and Giant Shadows
      This visualization shows the motions of Earth and the Sun as viewed from the South Pole of the Moon.
      NASA’s Goddard Space Flight Center Near the Moon’s South Pole, astronauts will see dramatic shadows that are 25 to 50 times longer than the objects casting them. Why? Because the Sun strikes the surface there at a low angle, hanging just a few degrees above the horizon. As a result, astronauts won’t see the Sun rise and set. Instead, they’ll watch it hover near the horizon as it moves horizontally across the sky.

      2. Sticky, Razor-Sharp Dust …
      This dust particle came from a lunar regolith sample brought to Earth in 1969 by Apollo 11 astronauts. The particle is about 25 microns across, less than the width of an average human hair. The image was taken with a scanning electron microscope. The lunar dust, called regolith, that coats the Moon’s surface looks fine and soft like baking powder. But looks can be deceiving. Lunar regolith is formed when meteoroids hit the Moon’s surface, melting and shattering rocks into tiny, sharp pieces. The Moon doesn’t have moving water or wind to smooth out the regolith grains, so they stay sharp and scratchy, posing a risk to astronauts and their equipment.

      3. … That’s Charged with Static Electricity
      Astronaut Eugene Cernan, commander of Apollo 17, inside the lunar module on the Moon after his second moonwalk of the mission in 1972. His spacesuit and face are covered in lunar dust. Because the Moon has no atmosphere to speak of, its surface is exposed to plasma and radiation from the Sun. As a result, static electricity builds up on the surface, as it does when you shuffle your feet against a carpeted floor. When you then touch something, you transfer that charge via a small shock. On the Moon, this transfer can short-circuit electronics. Moon dust also can make its way into astronaut living quarters, as the static electricity causes it to easily stick to spacesuits. NASA has developed methods to keep the dust at bay using resistant textiles, filters, and a shield that employs an electric field to remove dust from surfaces.

      4. A New Sense of Lightness
      In 1972, Apollo 16 astronaut Charles Duke hammered a core tube into the Moon’s surface until it met a rock and wouldn’t go any farther. Then the hammer flew from his hand. He made four attempts to pick it up by bending down and leaning to reach for it. He gave up and returned to the rover to get tongs to finally pick up the hammer successfully.
      NASA’s Johnson Space Center Artemis moonwalkers will have a bounce to their step as they traverse the lunar surface. This is because gravity won’t pull them down as forcefully as it does on Earth. The Moon is only a quarter of Earth’s size, with six times less gravity. Simple activities, like swinging a rock hammer to chip off samples, will feel different. While a hammer will feel lighter to hold, its inertia won’t change, leading to a strange sensation for astronauts. Lower gravity has perks, too. Astronauts won’t be weighed down by their hefty spacesuits as much as they would be on Earth. Plus, bouncing on the Moon is just plain fun.

      5. A Waxing Crescent … Earth?
      This animated image features a person holding a stick with a sphere on top that represents the Moon. The person is demonstrating an activity that helps people learn about the phases of the Moon by acting them out. NASA’s Jet Propulsion Laboratory When Artemis astronauts look at the sky from the Moon, they’ll see their home planet shining back at them. Just like Earthlings see different phases of the Moon throughout a month, astronauts will see an ever-shifting Earth. Earth phases occur opposite to Moon phases: When Earth experiences a new Moon, a full Earth is visible from the Moon.

      6. An Itty-Bitty Horizon 
      A view from the Apollo 11 spacecraft in July 1969 shows Earth rising above the Moon’s horizon. NASA Because the Moon is smaller than Earth, its horizon will look shorter and closer. To someone standing on a level Earth surface, the horizon is 3 miles away, but to astronauts on the Moon, it’ll be only 1.5 miles away, making their surroundings seem confined.

      7. Out-of-This-World Temperatures
      This graphic shows maximum summer and winter temperatures near the lunar South Pole. Purple, blue, and green identify cold regions, while yellow to red signify warmer ones. The graphic incorporates 10 years of data from NASA’s LRO (Lunar Reconnaissance Orbiter), which has been orbiting the Moon since 2009.
      NASA/LRO Diviner Seasonal Polar Data Because sunlight at the Moon’s South Pole skims the surface horizontally, it brushes crater rims, but doesn’t always reach their floors. Some deep craters haven’t seen the light of day for billions of years, so temperatures there can dip to minus 334 F. That’s nearly three times colder than the lowest temperature recorded in Antarctica. At the other extreme, areas in direct sunlight, such as crater rims, can reach temperatures of 130 F.

      8. An Inky-Black Sky
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      An animated view of Earth emerging below the horizon as seen from the Moon’s South Pole. This visual was created using a digital elevation map from LRO’s laser altimeter, LOLA. NASA’s Scientific Visualization Studio The Moon, unlike Earth, doesn’t have a thick atmosphere to scatter blue light, so the daytime sky is black. Astronauts will see a stark contrast between the dark sky and the bright ground.

      9. A Rugged Terrain 
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      An overhead view of the Moon, beginning with a natural color from a distance and changing to color-coded elevation as the camera comes closer. The visual captures the rugged terrain of the lunar South Pole area. It includes a color key and animated scale bar. This visual was created using a digital elevation map from NASA LRO’s laser altimeter, LOLA. NASA’s Scientific Visualization Studio Artemis moonwalkers will find a rugged landscape that takes skill to traverse. The Moon has mountains, valleys, and canyons, but its most notable feature for astronauts on the surface may be its millions of craters. Near the South Pole, gaping craters and long shadows will make it difficult for astronauts to navigate. But, with training and special gear, astronauts will be prepared to meet the challenge.

      By Avery Truman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Sep 11, 2024 Related Terms
      Artemis Earth’s Moon Exploration Systems Development Mission Directorate Humans in Space Missions NASA Directorates Planetary Science Division Science Mission Directorate The Solar System Explore More
      5 min read Voyager 1 Team Accomplishes Tricky Thruster Swap


      Article


      21 hours ago
      5 min read NASA’s Hubble, Chandra Find Supermassive Black Hole Duo


      Article


      2 days ago
      2 min read NASA Summer Camp Inspires Future Climate Leaders


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Tests on Earth appear to confirm how the Red Planet’s spider-shaped geologic formations are carved by carbon dioxide.
      Spider-shaped features called araneiform terrain are found in the southern hemisphere of Mars, carved into the landscape by carbon dioxide gas. This 2009 image taken by NASA’s Mars Reconnaissance Orbiter shows several of these distinctive formations within an area three-quarters of a mile (1.2 kilometers) wide. NASA/JPL-Caltech/University of Arizona Dark splotches seen in this example of araneiform terrain captured by NASA’s Mars Reconnaissance Orbiter in 2018 are believed to be soil ejected from the surface by carbon dioxide gas plumes. A set of experiments at JPL has sought to re-create these spider-like formations in a lab. NASA/JPL-Caltech/University of Arizona Since discovering them in 2003 via images from orbiters, scientists have marveled at spider-like shapes sprawled across the southern hemisphere of Mars. No one is entirely sure how these geologic features are created. Each branched formation can stretch more than a half-mile (1 kilometer) from end to end and include hundreds of spindly “legs.” Called araneiform terrain, these features are often found in clusters, giving the surface a wrinkled appearance.
      The leading theory is that the spiders are created by processes involving carbon dioxide ice, which doesn’t occur naturally on Earth. Thanks to experiments detailed in a new paper published in The Planetary Science Journal, scientists have, for the first time, re-created those formation processes in simulated Martian temperatures and air pressure.
      Here’s a look inside of JPL’s DUSTIE, a wine barrel-size chamber used to simulate the temperatures and air pressure of other planets – in this case, the carbon dioxide ice found on Mars’ south pole. Experiments conducted in the chamber confirmed how Martian formations known as “spiders” are created.NASA/JPL-Caltech “The spiders are strange, beautiful geologic features in their own right,” said Lauren Mc Keown of NASA’s Jet Propulsion Laboratory in Southern California. “These experiments will help tune our models for how they form.”
      The study confirms several formation processes described by what’s called the Kieffer model: Sunlight heats the soil when it shines through transparent slabs of carbon dioxide ice that built up on the Martian surface each winter. Being darker than the ice above it, the soil absorbs the heat and causes the ice closest to it to turn directly into carbon dioxide gas — without turning to liquid first — in a process called sublimation (the same process that sends clouds of “smoke” billowing up from dry ice). As the gas builds in pressure, the Martian ice cracks, allowing the gas to escape. As it seeps upward, the gas takes with it a stream of dark dust and sand from the soil that lands on the surface of the ice.
      When winter turns to spring and the remaining ice sublimates, according to the theory, the spiderlike scars from those small eruptions are what’s left behind.
      These formations similar to the Red Planet’s “spiders” appeared within Martian soil simulant during experiments in JPL’s DUSTIE chamber. Carbon dioxide ice frozen within the simulant was warmed by a heater below, turning it back into gas that eventually cracked through the frozen top layer and formed a plume.NASA/JPL-Caltech Re-Creating Mars in the Lab
      For Mc Keown and her co-authors, the hardest part of conducting these experiments was re-creating conditions found on the Martian polar surface: extremely low air pressure and temperatures as low as minus 301 degrees Fahrenheit (minus 185 degrees Celsius). To do that, Mc Keown used a liquid-nitrogen-cooled test chamber at JPL, the Dirty Under-vacuum Simulation Testbed for Icy Environments, or DUSTIE.
      “I love DUSTIE. It’s historic,” Mc Keown said, noting that the wine barrel-size chamber was used to test a prototype of a rasping tool designed for NASA’s Mars Phoenix lander. The tool was used to break water ice, which the spacecraft scooped up and analyzed near the planet’s north pole.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video shows Martian soil simulant erupting in a plume during a JPL lab experiment that was designed to replicate the process believed to form Martian features called “spiders.” When a researcher who had tried for years to re-create these conditions spotted this plume, she was ecstatic. NASA/JPL-Caltech For this experiment, the researchers chilled Martian soil simulant in a container submerged within a liquid nitrogen bath. They placed it in the DUSTIE chamber, where the air pressure was reduced to be similar to that of Mars’ southern hemisphere. Carbon dioxide gas then flowed into the chamber and condensed from gas to ice over the course of three to five hours. It took many tries before Mc Keown found just the right conditions for the ice to become thick and translucent enough for the experiments to work.
      Once they got ice with the right properties, they placed a heater inside the chamber below the simulant to warm it up and crack the ice. Mc Keown was ecstatic when she finally saw a plume of carbon dioxide gas erupting from within the powdery simulant.
      “It was late on a Friday evening and the lab manager burst in after hearing me shrieking,” said Mc Keown, who had been working to make a plume like this for five years. “She thought there had been an accident.”
      The dark plumes opened holes in the simulant as they streamed out, spewing simulant for as long as 10 minutes before all the pressurized gas was expelled.
      The experiments included a surprise that wasn’t reflected in the Kieffer model: Ice formed between the grains of the simulant, then cracked it open. This alternative process might explain why spiders have a more “cracked” appearance. Whether this happens or not seems dependent on the size of soil grains and how embedded water ice is underground.
      “It’s one of those details that show that nature is a little messier than the textbook image,” said Serina Diniega of JPL, a co-author of the paper.
      What’s Next for Plume Testing
      Now that the conditions have been found for plumes to form, the next step is to try the same experiments with simulated sunlight from above, rather than using a heater below. That could help scientists narrow down the range of conditions under which the plumes and ejection of soil might occur.
      There are still many questions about the spiders that can’t be answered in a lab. Why have they formed in some places on Mars but not others? Since they appear to result from seasonal changes that are still occurring, why don’t they seem to be growing in number or size over time? It’s possible that they’re left over from long ago, when the climate was different on Mars— and could therefore provide a unique window into the planet’s past.
      For the time being, lab experiments will be as close to the spiders as scientists can get. Both the Curiosity and Perseverance rovers are exploring the Red Planet far from the southern hemisphere, which is where these formations appear (and where no spacecraft has ever landed). The Phoenix mission, which landed in the northern hemisphere, lasted only a few months before succumbing to the intense polar cold and limited sunlight.
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-122
      Share
      Details
      Last Updated Sep 11, 2024 Related Terms
      Mars Jet Propulsion Laboratory Explore More
      5 min read NASA JPL Scientists, Engineers Collaborate With Artists for Exhibition
      Article 2 days ago 6 min read NASA’s Hubble, MAVEN Help Solve the Mystery of Mars’ Escaping Water
      Mars was once a very wet planet as is evident in its surface geological features.…
      Article 6 days ago 5 min read NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:01:00 Rover trials in a quarry in the UK showing a four-wheeled rover, known as Codi, using its robotic arm and a powerful computer vision system to pick up sample tubes. 
      The rover drives to the samples with an accuracy of 10cm, constantly mapping the terrain. Codi uses its arm and four cameras to locate the sample tube, retrieve it and safely store it on the rover – all of it without human intervention. At every stop, the rover uses stereo cameras to build up a 180-degree map of the surroundings and plan its next maneouvres. Once parked, the camera on top of the mast detects the tube and estimates its position with respect to the rover. The robotic arm initiates a complex choreography to move closer to the sample, fetch it and store it. 
      The sample tubes are a replica of the hermetically sealed samples inside which NASA’s Perseverance rover is collecting precious martian soil inside. To most people on Earth, they resemble lightsabres.
      The reddish terrain, although not fully representative of Mars in terms of soil composition, has plenty of slopes and rocks of different sizes, similar to what a rover might encounter on the martian surface. Quarry testing is an essential next step in the development process, providing a unique and dynamic landscape that cannot be replicated indoors. 
      ESA continues to run further research using the rover to maintain and develop rover capabilities in Europe.
      Read the full article: Rovers, lightsabres and a piglet.
      View the full article
  • Check out these Videos

×
×
  • Create New...