Jump to content

Recommended Posts

  • Publishers
Posted

4 min read

Sols 4216-4218: Another ‘Mammoth’ Plan!

https-mars-nasa-gov-msl-raw-images-proj-
This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4212 (2024-06-11 22:04:23 UTC)
NASA/JPL-Caltech

Earth planning date: Friday, June 14, 2024

At the start of this week, we did a preload test on the target “Mammoth Lakes,” the rightmost bright ellipse (DRT ellipse, so less dusty) on the workspace image above. The preload test shows the stability of the rock, making sure it doesn’t move and that it doesn’t look like it will fracture under pressure from the drill. This is obviously a very important test! For example, if the rock fractured, the arm might slip down unexpectedly, so we really want to get that confirmation before we commit to drilling here. We also want to ensure the arm can adequately control the orientation of the drill as it makes progress into the rock. Unfortunately, as Conor reported on Wednesday, the preload test didn’t give us the information that we wanted to go ahead with full drill. However, this workspace (“Whitebark Pass”) is very intriguing, so the RPs found us a second spot (“Mammoth Lakes 2”), about 2.4 inches (6 centimeters) away from the original “Mammoth Lakes” to do a preload test. 

The GEO (Geology and Mineralogy) theme group took advantage of the extra time to further document the color variations and lithological types in this workspace. Mammoth Lakes is centered on the main slab, but the rim of the slab is darker in color. APXS and MAHLI will analyze along this rim at “Loch Leven” for comparison to the center of the slab (e.g., Mammoth Lakes, analyzed by APXS and ChemCam, and imaged by Mastcam and MAHLI on sol 4212) and the whiter, pitted float rocks along the edge of the slab (e.g., “Snow Lakes”, analyzed by APXS and ChemCam, and imaged by Mastcam and MAHLI on sol 4202). 

ChemCam will analyze the darker material, using LIBS on “Split Lake,” about 15.8 inches (40 centimeters) away from the Loch Leven target, and the underlying bedrock farther away from the rover at “Big Five Lakes.” They will also use ChemCam passive to look at “Grass Lake” – you can see the bright DRT ellipse for this target in the center of the workspace image above, as it was an APXS and MAHLI target on sol 4209. Both LIBS targets will be imaged by Mastcam. ChemCam will also take an RMI (Remote Micro Imager) 10×1 mosaic image (i.e., one row of 10 images) of a collection of loose rocks in the distance. 

The Mastcam team have a very busy plan. On the morning of the first sol (4217), Mastcam will take a large 19×5 mosaic of the Texoli butte, looking at the stratigraphy and erosional surfaces under morning illumination. 

Then it is taking advantage of the stop here at Whitebark Pass, with two larger experiments that need to run over several sols (days). The first is a series of change-detection images on the targets “Walker Lake” and “Finch Lake,” taken at different times over multiple sols to look for movement of sand grains, etc. The second is a photometry experiment – this involves taking multiple sets of observations at specific times of day (sunset and sunrise) at the same location in order to study surface scattering properties. 

Mastcam will also support the ENV (environmental) theme group today, taking a series of tau images to help constrain dust levels in the atmosphere. ENV have stuffed their section of the plan with dust devil scans and movies, and zenith (looking directly upwards) and suprahorizon (looking in a more horizontal direction) movies, in addition to regular DAN, RAD and REMS activities. APXS will also take an atmospheric measurement, overnight on the second sol, specifically to track seasonal argon changes.  

Written by Catherine O’Connell-Cooper, Planetary Geologist at University of New Brunswick

Share

Details

Last Updated
Jun 17, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Curiosity Blog, Sols 4655-4660: Boxworks With a View
      NASA’s Mars rover Curiosity acquired this image, showing the boxwork terrain in the foreground and the bright wind-sculpted material in the distance, on Sept. 12, 2025. Curiosity used its Right Navigation Camera on Sol 4657, or Martian day 4,657 of the Mars Science Laboratory mission, at 00:50:58 UTC. NASA/JPL-Caltech Written by Sharon Wilson Purdy, Planetary Geologist at the Smithsonian National Air and Space Museum
      Earth planning date: Friday Sept. 12, 2025
      Curiosity continues to image, analyze, and traverse through a landscape characterized by higher standing ridges separating low-lying depressions (hollows) — a surface known as the boxwork terrain on Mount Sharp. The science team is actively characterizing the texture, chemistry, and mineralogy of the ridges and hollows to understand how this surface formed and changed over time. I served as the Geology theme group “Keeper of the Plan” for Sols 4656-4657 where I compiled the details for each scientific activity that will be carried out by the rover. I selected the particular Navcam image accompanying this blog post because it not only shows the intriguing boxwork terrain beneath our wheels but also highlights the striking wind-sculpted yardangs on our exciting route ahead.
      Our successful drive over the weekend set us up nicely to investigate the bedrock ridge in the workspace directly in front of the rover on Sol 4655. The target “Chango” was selected for closer inspection with the dust removal tool (DRT) and APXS and MAHLI instruments. ChemCam used its LIBS instrument to analyze the chemistry of a bedrock ridge at the “Quechua” target, and Mastcam and ChemCam included several mosaics to document walls of nearby hollow interiors, fractures, and the hollow-to-ridge transitions.
      The plan for Sols 4656-4657 focused on a variety of remote sensing activities including a 360-degree mosaic by Mastcam — one of the most spectacular data products! ChemCam investigated the local bedrock and a raised resistant bedrock feature at “Chita” and “Chaco,” respectively, and then turned its sights to the distant floor of Gale crater to image features that may have formed when water eroded material from the interior walls of the crater rim.
      Planning on Friday for Sols 4658-4660 included three targeted science blocks to dig deeper into the boxwork unit. ChemCam LIBS will analyze the bedrock at targets “Tarata” and “El Sombrio” and a rock that does not look like typical bedrock at “Cobres.” The Mastcam team assembled multiple images and mosaics that will help decipher the distribution of veins, fractures, and nodules (somewhat rounded features) in the bedrock, as well as small sand dunes in and around the workspace. The environmental theme group worked throughout the week to monitor clouds and dust-devil activity, and planned Mastcam tau observations to assess the optical depth of the atmosphere and constrain aerosol scattering properties.

      Want to read more posts from the Curiosity team?



      Visit Mission Updates


      Want to learn more about Curiosity’s science instruments?



      Visit the Science Instruments page


      NASA’s Mars rover Curiosity at the base of Mount Sharp NASA/JPL-Caltech/MSSS Share








      Details
      Last Updated Sep 15, 2025 Related Terms
      Blogs Explore More
      2 min read Curiosity Blog, Sols 4649-4654: Ridges, Hollows and Nodules, Oh My


      Article


      3 days ago
      2 min read Perseverance Meets the Megabreccia


      Article


      7 days ago
      4 min read Curiosity Blog, Sols 4641-4648: Thinking Outside and Inside the ‘Boxwork’


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Curiosity Blog, Sols 4649-4654: Ridges, Hollows and Nodules, Oh My
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera, showing the transition from smoother ridge bedrock (right) to more nodular bedrock (bottom left to top middle) on the edge of a shallow hollow (top left). Curiosity, whose masthead shadow is also visible, captured this image on Sept. 5, 2025 — Sol 4650, or Martian day 4,650 of the Mars Science Laboratory mission — at 00:22:34 UTC. NASA/JPL-Caltech Written by Lucy Thompson, Planetary Scientist and APXS Team Member, University of New Brunswick, Canada
      Earth planning date: Friday, Sept. 5, 2025
      Curiosity is in the midst of the boxwork campaign, trying to decipher why we see such pronounced ridges and hollows in this area of Mount Sharp. When this terrain was first identified from orbit it was hypothesized that the ridges may be the result of cementation by circulating fluids, followed by differential erosion of the less resistant bedrock in between (the hollows that we now observe). 
      We have been exploring the boxwork terrain documenting textures, structures and composition to investigate potential differences between ridges and hollows. One of the textural features we have observed are nodules in varying abundance. The focus of our activities this week was to document the transition from smoother bedrock atop a boxwork ridge to more nodular bedrock associated with the edge of a shallow hollow. 
      In Tuesday’s three-sol plan we analyzed the smoother bedrock within the ridge, documenting textures with MAHLI, Mastcam, and ChemCam RMI, and chemistry with ChemCam LIBS and APXS. Curiosity then successfully bumped towards the edge of the ridge/hollow to place the more nodular bedrock in our workspace. Friday’s three-sol plan was basically a repeat of the previous observations, but this time focused on the more nodular bedrock. The planned drive should take us to another boxwork ridge, and closer to the area where we plan to drill into one of the ridges.
      As the APXS strategic planner this week, I helped to select the rock targets for analysis by our instrument, ensuring they were safe to touch and that they met the science intent of the boxwork campaign. I also communicated to the rest of the team the most recent results from our APXS compositional analyses and how they fit into our investigation of the boxwork terrain. This will help to inform our fast-approaching decision about where to drill.
      Both plans included Mastcam and ChemCam long-distance RMI imaging of more distant features, including other boxwork ridges and hollows, buttes, the yardang unit, and Gale crater rim. Planned environmental activities continue to monitor dust in the atmosphere, dust-devil activity, and clouds. Standard REMS, RAD, and DAN activities round out the week’s activities.

      Want to read more posts from the Curiosity team?



      Visit Mission Updates


      Want to learn more about Curiosity’s science instruments?



      Visit the Science Instruments page


      NASA’s Mars rover Curiosity at the base of Mount Sharp NASA/JPL-Caltech/MSSS Share








      Details
      Last Updated Sep 12, 2025 Related Terms
      Blogs Explore More
      2 min read Perseverance Meets the Megabreccia


      Article


      4 days ago
      4 min read Curiosity Blog, Sols 4641-4648: Thinking Outside and Inside the ‘Boxwork’


      Article


      1 week ago
      2 min read Over Soroya Ridge & Onward!


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By Space Force
      The United States Space Force announced when Guardians will have the opportunity to be sized for and order the new service dress uniform.

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
      Curiosity Blog, Sols 4641-4648: Thinking Outside and Inside the ‘Boxwork’
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on Aug. 28, 2025 — Sol 4643, or Martian day 4,643 of the Mars Science Laboratory mission — at 20:45:52 UTC. NASA/JPL-Caltech Written by Ashley Stroupe, Mission Operations Engineer and Rover Planner at NASA’s Jet Propulsion Laboratory
      Earth planning week: Aug. 25, 2025.
      This week Curiosity has been exploring the boxwork unit, investigating both the ridges and the hollows to better characterize them and understand how they may have formed. We’ve been doing lots of remote science, contact science, and driving in each plan. In addition, we have our standard daily environmental observations to look at dust in the atmosphere. We can still see distant targets like the crater rim, but temperatures will soon begin to warm up as we start moving into a dustier part of the year. And after each drive, we also use AEGIS to do some autonomous target selection for ChemCam observations. I was the arm rover planner for the 4645-4648 plan on Friday.
      For Monday’s plan (sols 4641-4642), after a successful weekend drive Curiosity began on the edge of a boxwork ridge. We did a lot of imaging, including Mastcam mosaics of “El Alto,” an upturned rock near a wheel, the ridge forming the south side of the Mojo hollow, “Sauces,” our contact science target, and “Navidad,” an extension of our current workspace. We also took ChemCam LIBS of Sauces and an RMI mosaic. The rover planners did not find any bedrock large enough to brush, but did MAHLI and APXS on Sauces. Ready to drive, Curiosity drove about 15 meters (about 49 feet) around the ridge to the south and into the next hollow, named “Mojo.” 
      In Wednesday’s plan (sols 4643-4644), Curiosity was successfully parked in the Mojo hollow. We started with a lot of imaging, including Mastcam mosaics of the ridges around the Mojo hollow, a nearby trough and the hollow floor to look for regolith movement. We also imaged a fractured float rock named “La Laguna Verde.” ChemCam planned a LIBS target on “Corani,” a thin resistant clast sticking out of the regolith, a RMI mosaic of a target on the north ridge named “Cocotoni,” and a long-distance RMI mosaic of “Babati Mons,” a mound about 100 kilometers (about 62 miles) away that we can see peeking over the rim of Gale crater! With no bedrock in the workspace, the rover planners did MAHLI and APXS observations on a regolith target named “Tarapacá.” The 12-meter drive in this plan (about 39 feet) was challenging; driving out of the hollow and up onto the ridge required the rover to overcome tilts above 20 degrees, where the rover can experience a lot of slip. Also, with the drive late in the day, it was challenging to determine where Curiosity should be looking to track her slip using Visual Odometry without getting blinded by the sun or losing features in shadows. Making sure VO works well is particularly important on drives like this when we expect a lot of slip. 
      Friday’s plan, like most weekend plans, was more complex — particularly because this four-sol plan also covers the Labor Day holiday on Monday. Fortunately, the Wednesday drive was successful, and we reached the desired parking location on the ridge south of Mojo for imaging and contact science. The included image looks back over the rover’s shoulder, where we can see the ridge and hollow. We took a lot of imaging looking at hollows and the associated ridges. We are taking a Mastcam mosaic of “Jorginho Cove,” a target covering the ridge we are parked on and the next hollow to the south, “Pica,” a float rock that is grayish in color, and a ridge/hollow pair named “Laguna Colorada.” We also take ChemCam LIBS observations of Pica and two light-toned pieces of bedrock named “Tin Tin” and ”Olca.” ChemCam takes RMI observations of “Briones,” which is a channel on the crater rim, “La Serena,” some linear features in the crater wall, and a channel that feeds into the Peace Vallis fan. 
      After a week of fairly simple arm targets, the rover planners had a real challenge with this workspace. The rocks were mostly too small and too rough to brush, but we did find one spot after a lot of looking. We did DRT, APXS, and MAHLI on this spot, named “San Jose,” and also did MAHLI and APXS on another rock named “Malla Qullu.” This last drive of the week is about 15 meters (about 49 feet) following along a ridge and then driving onto a nearby one.

      Want to read more posts from the Curiosity team?



      Visit Mission Updates


      Want to learn more about Curiosity’s science instruments?



      Visit the Science Instruments page


      NASA’s Mars rover Curiosity at the base of Mount Sharp NASA/JPL-Caltech/MSSS Share








      Details
      Last Updated Sep 04, 2025 Related Terms
      Blogs Explore More
      2 min read Over Soroya Ridge & Onward!


      Article


      1 week ago
      3 min read Curiosity Blog, Sols 4638-4640: Imaging Extravaganza Atop a Ridge


      Article


      1 week ago
      3 min read To See the World in a Grain of Sand: Investigating Megaripples at ‘Kerrlaguna’


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      These maps of Prince George’s County, MD, show surface temperatures collected a few hours apart on July 30, 2023 from the Landsat 9 satellite and the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) instrument. The dark blue spots in the right hand image are likely clouds that formed in the afternoon.Credit: Stephanie Schollaert Uz, NASA Goddard Space Flight Center Thousands of Americans are impacted each summer by excessive heat and humidity, some suffering from heat-related illnesses when the body can’t cool itself down. Data from NASA satellites could help local governments reduce the sweltering risks, thanks to a collaboration between NASA scientists and officials in Prince George’s County, Maryland. The effort demonstrates how local officials in other communities could turn to NASA data to inform decisions that provide residents with relief from summer heat.
      NASA researchers and their Prince George’s County collaborators reported in Frontiers in Environmental Science that they used the Landsat 8 satellite, jointly operated by NASA and the US Geological Survey, and NASA’s Aqua satellite, to gain insight into surface temperature trends across the county over the past few decades. The data also show how temperatures have responded to changing land use and construction. It is information that county planners and environmental experts hope can aid them in their attempts to remediate and prevent heat dangers in the future. The collaboration may also help the county’s first responders anticipate and prepare for heat-related emergencies and injuries.
      Cooperation with Prince George’s County expands on NASA’s historic role, said Stephanie Schollaert Uz, an applications scientist with NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and one of the study authors. “Applying government satellite data to county-level problems is new here. We’re trying to make it easier for people outside of NASA to use our data, in part by including how-to guides referenced at the end of our paper,” Schollaert Uz said.
      In the long run, county officials hope to use NASA satellites to track the negative health impacts that arise from land use and modification. Removal of tree cover and the construction of non-permeable roads, parking lots, and structures that lead to water runoff are among the factors that create heat islands, where temperatures in localized areas soar relative to the surrounding landscape. In addition to the direct dangers of heat for county residents and workers, areas with higher-than-normal temperatures can drive intense local weather events.
      “There’s potentially a greater incidence of microbursts,” said Mary Abe of Prince George’s County’s sustainability division. “The atmosphere can become supercharged over hot spots,” causing high winds and flood-inducing rains.
      Prince George’s County planners anticipate relying on NASA satellites to determine where residents and county employees are at greater risk, predict how future construction could impact heat dangers, and develop strategies to moderate heat in areas currently experiencing elevated summer temperatures. Efforts might include protecting existing trees and planting new ones. It could include replacing impermeable surfaces (cement, pavement, etc.) with alternatives that let water soak into the ground rather than running off into storm drains. To verify and calibrate the satellite observations crucial for such planning, county experts are considering enlisting residents to act as citizen scientists to collect temperature and weather data on the ground, Abe said.
      Eventually, the NASA satellite temperature data could also lead to strategies to curb insect-borne diseases, said Evelyn Hoban, associate director for the Prince George’s County division of environmental health and communicable disease. “Once we know where the higher temperatures are, we can check to see if they create mosquito or tick breeding grounds,” said Hoban, who coauthored the study. “We could then focus our outreach and education, and perhaps prevention efforts, on areas of greater heat and risk.”
      A NASA guide is available to aid other communities who hope to duplicate the Prince George’s County study. The guide provides introductions on a variety of NASA satellite and ground-based weather station data. Instructions for downloading and analyzing the data are illustrated in an accompanying tutorial that uses the Prince George’s County study as an example for other communities to follow on their own.
      One of the greatest benefits of the collaboration, Abe said, is the boost in credibility that comes from incorporating NASA resources and expertise in the county’s efforts to improve safety and health. “It’s partly the NASA brand. People recognize it and they’re really intrigued by it,” she said. “Working with NASA builds confidence that the decision-making process is based firmly in science.”
      By James Riordon
      NASA Goddard Space Flight Center
      Media contact: Elizabeth Vlock
      NASA Headquarters
      Share
      Details
      Last Updated Aug 28, 2025 EditorJames RiordonLocationNASA Goddard Space Flight Center Related Terms
      Earth General Landsat 8 / LDCM (Landsat Data Continuity Mission) Moderate Resolution Imaging Spectroradiometer (MODIS) Explore More
      3 min read NASA’s ECOSTRESS Detects ‘Heat Islands’ in Extreme Indian Heat Wave
      Article 3 years ago 6 min read Landsat Legacy: NASA-USGS Program Observing Earth from Space Turns 50
      Article 3 years ago 2 min read NASA’s ECOSTRESS Sees Las Vegas Streets Turn Up the Heat
      Article 3 years ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...