Jump to content

NASA Satellites Find Snow Didn’t Offset Southwest US Groundwater Loss


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

This is a photgraph of the dry lakebed of the Great Salt Lake extending into the distance where the is a large, far off mountain range.
Despite some years with significant snowfalls, long-term drought conditions in the Great Basin region of Nevada, California, Arizona, and Utah, along with increasing water demands, have strained water reserves in the western U.S. As a result, inland bodies of water, including the Great Salt Lake pictured here, have shrunk dramatically, exposing lakebeds that may release toxic dust when dried.
Dorothy Hall/University of Maryland

Record snowfall in recent years has not been enough to offset long-term drying conditions and increasing groundwater demands in the U.S. Southwest, according to a new analysis of NASA satellite data.

Declining water levels in the Great Salt Lake and Lake Mead have been testaments to a megadrought afflicting western North America since 2000. But surface water only accounts for a fraction of the Great Basin watershed that covers most of Nevada and large portions of California, Utah, and Oregon. Far more of the region’s water is underground. That has historically made it difficult to track the impact of droughts on the overall water content of the Great Basin.

A new look at 20 years of data from the Gravity Recovery and Climate Experiment (GRACE) series of satellites shows that the decline in groundwater in the Great Basin far exceeds stark surface water losses. Over about the past two decades, the underground water supply in the basin has fallen by 16.5 cubic miles (68.7 cubic kilometers). That’s roughly two-thirds as much water as the entire state of California uses in a year and about six times the total volume of water that was left in Lake Mead, the nation’s largest reservoir, at the end of 2023.

While new maps show a seasonal rise in water each spring due to melting snow from higher elevations, University of Maryland earth scientist Dorothy Hall said occasional snowy winters are unlikely to stop the dramatic water level decline that’s been underway in the U.S. Southwest.

The finding came about as Hall and colleagues studied the contribution of annual snowmelt to Great Basin water levels. “In years like the 2022-23 winter, I expected that the record amount of snowfall would really help to replenish the groundwater supply,” Hall said. “But overall, the decline continued.” The research was published in March 2024 in the journal Geophysical Research Letters.

“A major reason for the decline is the upstream water diversion for agriculture and households,” Hall said. Populations in the states that rely on Great Basin water supplies have grown by 6% to 18% since 2010, according to the U.S. Census Bureau. “As the population increases, so does water use.”

Runoff, increased evaporation, and water needs of plants suffering hot, dry conditions in the region are amplifying the problem. “With the ongoing threat of drought,” Hall said, “farmers downstream often can’t get enough water.”

This is a map of the western United States. Blocks over the souther portion of California are colored in shades of red to indicate the decline in groundwater levels in the regions since 2002.
Gravity measurements from the GRACE series of satellites show that the decline in water levels in the Great Basin region from April 2002 to September 2023 has most severely affected portions of southern California (indicated in red).
D.K. Hall et al./Geophysical Research Letters 2024

While measurements of the water table in the Great Basin — including the depths required to connect wells to depleted aquifers — have hinted at declining groundwater, data from the joint German DLR-NASA GRACE missions provide a clearer picture of the total loss of water supply in the region. The original GRACE satellites, which flew from March 2002 to October 2017, and the successor GRACE–Follow On (GRACE–FO) satellites, which launched in May 2018 and are still active, track changes in Earth’s gravity due primarily to shifting water mass.

GRACE-based maps of fluctuating water levels have improved recently as the team has learned to parse more and finer details from the dataset. “Improved spatial resolution helped in this study to distinguish the location of the mass trends in the Western U.S. roughly ten times better than prior analyses,” said Bryant Loomis, who leads GRACE data analysis at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The diminishing water supplies of the U.S. Southwest could have consequences for both humans and wildlife, Hall said. In addition to affecting municipal water supplies and limiting agricultural irrigation, “It exposes the lake beds, which often harbor toxic minerals from agricultural runoff, waste, and anything else that ends up in the lakes.”

In Utah, a century of industrial chemicals accumulated in the Great Salt Lake, along with airborne pollutants from present-day mining and oil refinement, have settled in the water. The result is a hazardous muck that is uncovered and dried as the lake shrinks. Dust blown from dry lake beds, in turn, exacerbates air pollution in the region. Meanwhile, shrinking lakes are putting a strain on bird populations that rely on the lakes as stopovers during migration.

According to the new findings, Hall said, “The ultimate solution will have to include wiser water management.”

By James R. Riordon
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated
Jun 17, 2024
Editor
Rob Garner
Contact
James R. Riordon
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read Five Facts About NASA’s Moon Bound Technology
      A view of the Moon from Earth, zooming up to IM-2's landing site at Mons Mouton, which is visible in amateur telescopes. Credits: NASA/Scientific Visualization Studio NASA is sending revolutionary technologies to the Moon aboard Intuitive Machines’ second lunar delivery as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term presence on the lunar surface. 
      As part of this CLPS flight to the Moon, NASA’s Space Technology Mission Directorate will test novel technologies to learn more about what lies beneath the lunar surface, explore its challenging terrain, and improve in-space communication.  
      The launch window for Intuitive Machines’ second CLPS delivery, IM-2, opens no earlier than Wednesday, Feb. 26 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After the Intuitive Machines’ Nova-C class lunar lander reaches Mons Mouton, a lunar plateau near the Moon’s South Pole region, it will deploy several NASA and commercial technologies including a drill and mass spectrometer, a new cellular communication network, and a small drone that will survey difficult terrain before returning valuable data to Earth.

      Caption: The Intuitive Machines lunar lander that will deliver NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign is encapsulated in the fairing of the SpaceX Falcon 9 rocket. Credit: SpaceX Here are five things to know about this unique mission to the Moon, the technologies we are sending, and the teams making it happen!  

      1. Lunar South Pole Exploration 
      IM-2’s landing site is known as one of the flatter regions in the South Pole region, suitable to meet Intuitive Machines’ requirement for a lit landing corridor and acceptable terrain slope. The landing location was selected by Intuitive Machines using data acquired by NASA’s Lunar Reconnaissance Orbiter.  
      An illustration of Mons Mouton, a mesa-like lunar mountain that towers above the landscape carved by craters near the Moon’s South Pole.Credit: NASA/Scientific Visualization Studio 2. New Technology Demonstrations 

      NASA’s Polar Resources Ice Mining Experiment, known as PRIME-1, is a suite of two instruments – a drill and mass spectrometer – designed to demonstrate our capability to look for ice and other resources that could be extracted and used to produce propellant and breathable oxygen for future explorers. The PRIME-1 technology will dig up to about three feet below the surface into the lunar soil where it lands, gaining key insight into the soil’s characteristics and temperature while detecting other resources that may lie beneath the surface.  
      Data from the PRIME-1 technology demonstration will be made available to the public following the mission, enabling partners to accelerate the development of new missions and innovative technologies.   
      The Polar Resources Ice Mining Experiment-1 (PRIME-1) will help scientists search for water at the lunar South Pole.Credit: NASA/Advanced Concepts Lab 3. Mobile Robots

      Upon landing on the lunar surface, two commercial Tipping Point technology demonstrations will be deployed near Intuitive Machines’ lander, Tipping Points are collaborations between NASA’s Space Technology Mission Directorate and industry that foster the development of commercial space capabilities and benefit future NASA missions. 
      The first is a small hopping drone developed by Intuitive Machines. The hopper, named Grace, will deploy as a secondary payload from the lander and enable high-resolution surveying of the lunar surface, including permanently shadowed craters around the landing site. Grace is designed to bypass obstacles such as steep inclines, boulders, and craters to cover a lot of terrain while moving quickly, which is a valuable capability to support future missions on the Moon and other planets, including Mars. 
      Artist rendering of the Intuitive Machines Micro Nova Hopper.Credit: Intuitive Machines 4. Lunar Surface Communication
      The next Tipping Point technology will test a Lunar Surface Communications System developed by Nokia. This system employs the same cellular technology used here on Earth, reconceptualized by Nokia Bell Labs to meet the unique requirements of a lunar mission. The Lunar Surface Communications System will demonstrate proximity communications between the lander, a Lunar Outpost rover, and the hopper. 

      Artist rendering of Nokia’s Lunar Surface Communication System (LSCS), which aims to demonstrate cellular-based communications on the lunar surface. Credit: Intuitive Machines 5. Working Together
      NASA is working with several U.S. companies to deliver technology and science to the lunar surface through the agency’s CLPS initiative.  
      NASA’s Space Technology Mission Directorate plays a unique role in the IM-2 mission by strategically combining CLPS with NASA’s Tipping Point mechanism to maximize the potential benefit of this mission to NASA, industry, and the nation.  
      NASA’s Lunar Surface Innovation Initiative and Game Changing Development program within the agency’s Space Technology Mission Directorate led the maturation, development, and implementation of pivotal in-situ resource utilization, communication, and mobility technologies flying on IM-2.  
      Join NASA to watch full mission updates, from launch to landing on NASA+, and share your experience on social media. Mission updates will be made available on NASA’s Artemis blog.  

      A team of engineers from NASA’s Johnson Space Center in Houston and Honeybee Robotics in Altadena, California inspect TRIDENT – short for The Regolith Ice Drill for Exploring New Terrain – shortly after its arrival at the integration and test facility.Credit: NASA/Robert Markowitz Artist’s rendering of Intuitive Machines’ Athena lunar lander on the Moon. Credit: Intuitive Machines
      Artist conception: Earth emerges from behind Mons Mouton on the horizon.Credit: NASA/Scientific Visualization Studio Explore More
      3 min read NASA’s Polar Ice Experiment Paves Way for Future Moon Missions 
      Article 2 weeks ago 6 min read Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander
      Article 1 month ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      Polar Resources Ice Mining Experiment 1 (PRIME-1)
      Commercial Lunar Payload Services (CLPS)
      The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
      NASA Partners with American Companies on Key Moon, Exploration Tech
      NASA has selected 11 U.S. companies to develop technologies that could support long-term exploration on the Moon and in space…
      Share
      Details
      Last Updated Feb 24, 2025 EditorStefanie PayneContactAnyah Demblinganyah.dembling@nasa.govLocationNASA Headquarters Related Terms
      Space Technology Mission Directorate Artemis Commercial Lunar Payload Services (CLPS) Game Changing Development Program Kennedy Space Center Lunar Surface Innovation Initiative Missions NASA Headquarters Research and Technology at Kennedy Space Center Science Mission Directorate
      View the full article
    • By NASA
      The unpiloted Roscosmos Progress spacecraft pictured on Aug. 13, 2024, from the International Space Station.Credit: NASA NASA will provide live launch and docking coverage of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies for the crew aboard the International Space Station.
      The unpiloted Roscosmos Progress 91 spacecraft is scheduled to launch at 4:24 p.m. EST, Thursday, Feb. 27 (2:24 a.m. Baikonur time, Friday, Feb. 28), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
      Live launch coverage will begin at 4 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      After a two-day in-orbit journey to the station, the spacecraft will dock autonomously to the aft port of the Zvezda service module at 6:03 p.m. Saturday, March 1. NASA’s rendezvous and docking coverage will begin at 5:15 p.m. on NASA+.
      The Progress 91 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
      Get breaking news, images and features from the space station on Instagram, Facebook, and X.
      Learn more about the International Space Station, its research, and its crew, at:
      https://www.nasa.gov/station
      -end-
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Feb 24, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space ISS Research Johnson Space Center Space Operations Mission Directorate View the full article
    • By NASA
      Live High-Definition Views from the International Space Station (Official NASA Stream)
    • By NASA
      Live Video from the International Space Station (Official NASA Stream)
    • By NASA
      Drone pilot Brayden Chamberlain flashes a “good to go” signal to the command tent, indicating that the NASA Alta X quadcopter is prepped for takeoff during a FireSense uncrewed aerial system (UAS) Technology Demonstration test in 2023 in Missoula, Montana. The instruments on board collected data on wind speed and direction, humidity, temperature, and pressure.NASA/Milan Loiacono NASA’s Kennedy Space Center in Florida invites media to attend a prescribed fire campaign event hosted by the NASA FireSense Project, the Department of Defense (DOD), and the U.S. Fish and Wildlife Service. Campaign activities will occur from Monday, April 7, to Monday, April 21.
      The FireSense campaign activities will test cutting-edge models and demonstrate new technologies to measure fire behavior and smoke dynamics. The Fish and Wildlife Service will conduct the prescribed fire as part of their land management responsibilities on the Merritt Island National Wildlife Refuge, which shares a boundary with NASA Kennedy.
      The event also will demonstrate how NASA, DOD, and the Fish and Wildlife Service work with interagency and private sector partners to reduce the risk from wildland fires and benefit ecosystem health, ultimately preventing catastrophic impacts on critical national infrastructure, the economy, and local communities, while increasing the safety of wildland fire response operations.
      Credentialing is open to U.S. and international media. International media must apply by 11:59 EDT p.m. Sunday, March 16, and U.S. media must apply by 11:59 p.m. EDT Sunday, March 23.
      More details on the specific date of the prescribed fire, weather permitting, will be provided in the coming weeks. Media wishing to take part in person must apply for credentials at:
      https://media.ksc.nasa.gov
      Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation or to request special logistical support, please email by Friday, March 28 to: ksc-media-accreditat@mail.nasa.gov.
      For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Messod Bendayan, messod.c.bendayan@nasa.gov.
      NASA coordinates field and airborne sampling with academic and agency partners, including the DOD Strategic Environmental Research and Development Program and DOD Environmental Security Technology Certification Program. The Fish and Wildlife Service oversees all prescribed burn activities on the Merritt Island National Wildlife Refuge.
      NASA Kennedy is one of the most biologically diverse areas in the United States, counting over 1,000 species of plants, 117 kinds of fish, 68 types of amphibians and reptiles, 330 kinds of birds, and 31 different mammals within its more than 144,000 acres.
      For more information about NASA’s FireSense Project, please visit:
      https://cce.nasa.gov/firesense
      -end-
      Milan Loiacono
      Ames Research Center, California
      650-450-7575
      milan.p.loiacono@nasa.gov
      Harrison Raine
      Ames Research Center, California
      310-924-0030
      harrison.s.raine@nasa.gov
      Messod Bendayan
      Kennedy Space Center, Florida
      256-930-1371
      messod.c.bendayan@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...