Jump to content

Sols 4214–4215: The Best Laid Plans…


NASA

Recommended Posts

  • Publishers

3 min read

Sols 4214–4215: The Best Laid Plans…

MAHLI image of
MAHLI image of “Mammoth Lakes,” which we had hoped would become our 41st drill hole after today’s plan.
NASA/JPL-Caltech/MSSS

Earth planning date: Wednesday, June 12, 2024

Planning today was defined by the decision about whether or not to drill at “Mammoth Lakes,” the potential drill target that we selected on Monday. This decision is made based on the answer to two questions. First, does this location meet our science objectives? On Monday, we undertook some exploratory contact science (primarily with APXS) to answer this question by determining the likely elemental composition of Mammoth Lakes. Second, is it safe to drill here? Monday’s plan also included a “preload test” to determine the safety of drilling by using the arm to place some pressure on Mammoth Lakes. We do these activities to measure the forces we expect on the arm while drilling and to see if the rock is stable enough to drill into. Although the APXS data indicated that this location meets our science objectives, the preload test was unsuccessful. Consequently, we had to pull the drill activities from the plan. 

The drill activities had been scheduled to consume the entire first sol of this two sol plan. Unfortunately, the assessment of the preload data came too late to properly pivot from a drilling sol, so we were unable to plan any observations to replace the pulled drill activities. This means that Curiosity gets to take an unplanned vacation with just REMS and RAD observations on the first sol.

The second sol looks more like a typical plan, though we had to pull a number of drill-related activities here as well, so it’s a bit emptier than usual. We begin with a Mastcam tau observation looking at the amount of dust in the atmosphere, then move on to a set of Mastcam and Navcam photometry images. These photometry observations take several images of the ground near the rover at different times of day to help us understand how sunlight scatters off of the rocks around us. We take a quick break from science to let the rover communicate with Earth through the Mars Relay Network, then get right back to work with ChemCam. LIBS will be used on the target “Golden Trout Lake,” then we’ll get an RMI mosaic of an area about 15 metres away from the rover.

Once ChemCam is done, we’ll have our second set of Mastcam and Navcam photometry observations to complement those taken earlier in the sol. We’ll then take Mastcam images of the Golden Trout Lake LIBS target, one of ChemCam’s AEGIS targets, and some light-toned rocks at “Camp Four.” Mastcam will also be monitoring “Walker Lake,” a nearby patch of sand, to see how the wind is moving the sand around.

Today’s plan wraps up with a collection of environmental science activities, including a dust devil survey, suprahorizon movie, and a line-of-sight mosaic of the north crater rim, as well as our usual suite of REMS, DAN, and RAD observations.

Despite the challenges of today, we’re not giving up just yet. This isn’t our first failed preload test, so the team is now looking for somewhere else in this area to drill. Hopefully we won’t have the same difficulties as when we were trying to drill at the Marker Band, but nobody ever said that drilling a hole in a rock from over 270 million kilometres away was easy!

Written by Conor Hayes, Graduate Student at York University

Share

Details

Last Updated
Jun 13, 2024

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read
      Sols 4234-4235: And That’s (Nearly) a Wrap on Mammoth Lakes!
      This image was taken by Mast Camera (Mastcam) onboard NASA’s Mars rover Curiosity on Sol 4219 (2024-06-19 02:21:12 UTC). Earth Planning Date: Wednesday, July 3, 2024
      We received the data from our SAM analysis of the Mammoth Lakes sample late Monday afternoon. After chewing over the results, the team declared we are very happy with all of the analyses we’ve done with this sample, and we are ready to move on to greener pastures… er, redder rocks! This decision means that we will go ahead and clear out the drill assembly in today’s plan, and subsequently use the arm to collect MAHLI and APXS observations of the pile of drill tailings around the drill hole.
      We’ll also have some time for remote sensing activities that use our mast-mounted instruments. Even though we’ve been parked at this location for several weeks, we’re still finding lots of things to look at! ChemCam will collect LIBS observations on a light-toned rock target named “Finger Peaks,” as well as a bumpy rock named “Glen Aulin.” We’ll also collect some additional Mastcam images of interesting features in the area, and a long-distance RMI mosaic of a target named “Rock Island Pass.” Several kinds of environmental monitoring activities will round out the plan.
      It’s been a very productive drill sampling campaign here at Mammoth Lakes, our first after crossing into Gediz Vallis channel, and I’m excited to start getting ready to move on. What’s around the corner in this fascinating area of Mt. Sharp?
      Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Jul 03, 2024 Related Terms
      Blogs Explore More
      5 min read Sols 4232-4233: Going For a Ride, Anyone?


      Article


      2 days ago
      2 min read Sols 4229-4231: More Analyses of the Mammoth Lakes 2 Sample!


      Article


      2 days ago
      2 min read Sols 4226-4228: A Powerful Balancing Act


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources



      Rover Basics



      Mars Exploration Science Goals


      View the full article
    • By NASA
      Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 5 min read
      Sols 4232-4233: Going For a Ride, Anyone?
      This image shows some of the sand ripples we spot all around the rover between the rocks. It was taken by Mast Camera (Mastcam) onboard NASA’s Mars rover Curiosity on Sol 4225 (2024-06-25 01:10:39 UTC). Earth planning date: Monday, July 1, 2024
      Have you ever wondered what it might look like to ride along with the rover? Probably not as much as we have here on the planning team, where we are looking at the images on a daily basis. I always wish I could walk around there myself, or drive around in a vehicle, maybe. As you likely know, we don’t even get video, “just” images. But of course those images are stunning and the landscape is unique and – apart from being scientifically interesting – so very, very beautiful. And some cameras record images so often that it’s actually possible to create the impression of a movie. The front hazard camera is among them. And that can create a stunning impression of looking out of the front window! If you want to see that for yourself, you can! If you go to the NASA interactive tool called “Eyes on the Solar System” there is a Curiosity Rover feature that allows you to do just that: simulate a drive between waypoints and look out of the window, which is the front hazard camera. Here is the link to “Experience Curiosity.” The drive there is a while back, but the landscape is just so fascinating, I can watch and rewatch that any number of times!
      Now, after reminiscing about the past, what did we do today? First of all: change all plans we ever had. We don’t have – as scheduled – the SAM data on Earth just yet. But we have a good portion of the sample still in the drill, and if SAM gets their data and wants to do more analysis with that sample, then we can’t move the arm as we originally had planned. Why didn’t we consider that to begin with? Normally, there isn’t enough sample for all the analysis; you may have seen this blog post: “Sols 4118-4119: Can I Have a Second Serving, Please? Oh, Me Too!” But it’s the sample that dictates how much we get to begin with, and how much we need, which only becomes clear as the data come in. And there is an unusually lucky combination here that would avoid us having to drill a second hole for getting the second helping. Instead, we just sit here carefully holding the arm still so we do not lose sample. That saves a lot of rover resources. But then, once we had settled how we adjust to keeping our current position, we also learnt that the uplink time might shift from the original slot we had been allocated to a later one… And all of this with a pretty new-to-the-role Science Operations Working Group (SOWG) chair (me) and a similarly new Geology and Mineralogy theme group science lead. Well, we managed, with lots of help from the great team around us.
      Those sudden-change planning days are so tricky because there is so much more to remember. It’s not, “This is what we came to do…,” and it had been carefully pre-planned, and it is all in the notes. Instead, the pre-planning preparation doesn’t fit the new reality anymore, and all that work has to be redone. So we have to do all the pre-planning work, and the actual planning work, and sometimes also account for some “if… then…” scenarios in the same amount of time we usually have to do the planning on the basis of all the pre-planning work. 
      Sounds stressful? Yes, I can tell you it is!
      Once we had changed all the skeleton plans, the team got very excited about the extra time. This is such an interesting area, there are rocks that are almost white, there are darker rocks, very interesting sand features with beautiful ripples, so much to look at! Mars has much to offer here, so the team got to work swiftly and the plan filled up with a great set of observations. ChemCam used LIBS on the target “Tower Peak,” which is one of those white-ish rocks, and on “Quarry Peak.” Mastcam delivers all the pictures to go along with these two activities and gets its own science, too. These are mainly so-called “change detection” images, where the same area is pictured repeatedly to see what particles might move in the time between the two images. ChemCam uses its long-distance imaging capability to add to the stunning images they are getting from faraway rocks. They have two mosaics on a target called “Edge Bench.” There is also a lot of atmospheric science in the plan; looking for dust devils and the opacity of the atmosphere are just two examples. REMS and DAN are also active throughout, to assess the wind, and the water underground, respectively. And as if that weren’t enough, CheMin also performs another night of analysis. We get to uplink a full plan, and we’ll see what the data say and what decisions we’ll make for next Wednesday.
      Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Share








      Details
      Last Updated Jul 02, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4229-4231: More Analyses of the Mammoth Lakes 2 Sample!


      Article


      11 hours ago
      2 min read Sols 4226-4228: A Powerful Balancing Act


      Article


      4 days ago
      2 min read Interesting Rock Textures Galore at Bright Angel


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources



      Rover Basics



      Mars Exploration Science Goals


      View the full article
    • By NASA
      Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read
      Sols 4229-4231: More Analyses of the Mammoth Lakes 2 Sample!
      The inlet into to the SAM instrument open and awaiting sample delivery. This image was taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4226 (2024-06-26 11:06:46 UTC). Earth Planning Date: Friday, June 28, 2024
      After reviewing results from the Evolved Gas Analysis (EGA) experiment that were downlinked yesterday afternoon (Sols 4226-4228: A Powerful Balancing Act), the SAM team decided they’d like to go ahead with a second experiment to analyze the Mammoth Lakes 2 drilled sample. This experiment is known as the Gas Chromatograph/Mass Spectrometer (GCMS) experiment.
      SAM, whose full name is Sample Analysis at Mars, is actually a suite of three different analytical instruments that are used to measure the composition of gases which come off drilled samples as we bake them in SAM’s ovens. The three analytical instruments are called a gas chromatograph, quadrupole mass spectrometer, and tunable laser spectrometer. Each one is particularly suited for measuring specific kinds of compounds in the gases, and these include things like water, methane, carbon, or organic (carbon-containing) molecules. In the EGA experiment that we ran in our last plan, we baked the Mammoth Lakes 2 sample and measured the gas compositions using the tunable laser spectrometer and quadrupole mass spectrometer. In this plan, we’ll deliver a new pinch of sample to the SAM oven and then measure the composition of the gases that are released using the gas chromatograph and quadrupole mass spectrometer. By running both experiments, we’ll have a more thorough understanding of the materials that are in this rock.
      The SAM GCMS experiment takes a lot of power to run, so it will be the focus of today’s three-sol plan. However, we still managed to fit in some other science activities around the experiment, including a ChemCam RMI mosaic of some far-off ridges, a ChemCam LIBS observation of a nodular target named “Trail Lakes,” environmental monitoring activities, and a couple Mastcam mosaics to continue imaging the terrain around the rover. Should be another fun weekend of science in Gale crater!
      Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Jul 01, 2024 Related Terms
      Blogs Explore More
      2 min read Sols 4226-4228: A Powerful Balancing Act


      Article


      4 days ago
      2 min read Interesting Rock Textures Galore at Bright Angel


      Article


      4 days ago
      2 min read Sol 4225: Sliding Down Horsetail Falls


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources



      Rover Basics



      Mars Exploration Science Goals


      View the full article
    • By NASA
      Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read
      Sols 4226-4228: A Powerful Balancing Act
      NASA’s Mars rover Curiosity acquired this image about 10 inches (25 centimeters) from the “Loch Leven” target using its Mars Hand Lens Imager (MAHLI) close-up camera, located on the turret at the end of the rover’s robotic arm, in daylight on June 16, 2024, sol 4216 (or Martian day 4,216) of the Mars Science Laboratory Mission, at 05:12:12 UTC. Earth planning date: Tuesday, June 25, 2024
      As documented in a previous blog last week, we continue to juggle power constraints as we focus on analyzing our newest drilled sample on Mars: “Mammoth Lakes 2.” Today, the star of the show is a planned dropoff to SAM (Sample Analysis at Mars instrument suite) and evolved gas analysis of the drill sample. This activity requires significant power so the team had to be judicious in planning other science observations and balancing the power needs of the different activities.
      While the team eagerly awaits the outcome of the SAM and CheMin (Chemistry and Mineralogy X-Ray Diffraction instrument) analyses of Mammoth Lakes 2, we continue to acquire other observations in this fascinating area that will assist in our interpretations of the mineralogical data. ChemCam (the Chemistry and Camera instrument) will fire its laser at the “Loch Leven” target to get more chemical data on a target that was previously analyzed by APXS (the Alpha Particle X-Ray Spectrometer). “Loch Leven” is an example of gray material that rims the Mammoth Lakes drill block. The remote imaging capabilities of the ChemCam instrument will also be utilized to acquire a mosaic of a nearby area with interesting lighter- and darker-toned patches within the exposed rocks. Mastcam (Mast camera, for color stills and video) will document the ChemCam “Loch Leven” target and image the Mammoth Lakes 2 drill hole and surrounding fines to monitor any changes resulting from wind. We will also acquire extensions to two previous Mastcam mosaics: “Camp Four” and “Falls Ridge.”
      To continue monitoring atmospheric conditions, the team also planned a Navcam (grayscale, stereoscopic Navigation cameras) large dust devil survey and Mastcam tau observation, an overhead image to measure dust in the atmosphere above Curiosity. Standard DAN (Dynamic Albedo of Neutrons instrument), REMS (Rover Environmental Monitoring Station), and RAD (Radiation Assessment Detector) activities round out the plan.
      Written by Lucy Thompson, Planetary Geologist at University of New Brunswick
      Share








      Details
      Last Updated Jun 27, 2024 Related Terms
      Blogs Explore More
      2 min read Interesting Rock Textures Galore at Bright Angel


      Article


      48 mins ago
      2 min read Sol 4225: Sliding Down Horsetail Falls


      Article


      2 days ago
      3 min read Sols 4222-4224: A Particularly Prickly Power Puzzle


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources



      Rover Basics



      Mars Exploration Science Goals


      View the full article
    • By NASA
      Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 3 min read
      Sols 4222-4224: A Particularly Prickly Power Puzzle
      This image was taken by Mast Camera (Mastcam) onboard NASA’s Mars rover Curiosity on Sol 4219 (2024-06-19 02:22:26 UTC). Earth planning date: Friday, June 21, 2024
      All our patient waiting has been rewarded, as we were greeted with the news that our drill attempt of “Mammoth Lakes 2” was successful! You can see the drill hole in the image above, as well as the first place we attempted just to the left. The actual drilling is only the beginning – we want to see what it is we’ve drilled. We’re starting that process this weekend by using our laser spectrometer (LIBS) to check out the drill hole before delivering some of the drilled material to CheMin (the Chemistry & Mineralogy X-Ray Diffraction instrument) to do its own investigations.
      The next step in a drill campaign is usually to continue the analysis with SAM (the Sample Analysis at Mars instrument suite), which tends to be quite power hungry. As a result, we want to make sure we’re going into the next plan with enough power for that. That meant that even though we’ve got a lot of free time this weekend, with three sols and CheMin taking up only the first overnight, we needed to think carefully about how we used that free time. Sometimes, when the science teams deliver our plans, we’re overly optimistic. At times this optimism is rewarded, and we’re allowed to keep the extra science in the plan. Today we needed to strategize a bit more, and the midday science operations working group meeting (or SOWG, as it’s known) turned into a puzzle session, as we figured out what could move around and what we had to put aside for the time being.
      An unusual feature of this weekend’s plan was a series of short change-detection observations on “Walker Lake” and “Finch Lake,” targets we’ve looked at in past plans to see wind-driven movement of the Martian sand. These were peppered through the three sols of the plan, to see any changes during the course of a single sol. While these are relatively short observations – only a few minutes – we do have to wake the rover to take them, which eats into our power. Luckily, the science team had considered this, and classified the observations as high, middle, or low priority. This made it easy to take out the ones that were less important, to save a bit of power.
      Another power-saving strategy is considering carefully where observations go. A weekend plan almost always includes an “AM ENV Science Block” – dedicated time for morning observations of the environment and atmosphere. Usually, this block goes on the final sol of the plan, but we already had to wake up the morning of the first sol for CheMin to finish up its analysis. This meant we could move the morning ENV block to the first sol, and Curiosity got a bit more time to sleep in, at the end of the plan.
      Making changes like these meant not only that we were able to finish up the plan with enough power for Monday’s activities, but we were still able to fit in plenty of remote science. This included a number of mosaics from both Mastcam and ChemCam on past targets such as “Whitebark Pass” and “Quarry Peak.” We also had two new LIBS targets: “Broken Finger Peak” and “Shout of Relief Pass.” Aside from our morning block, ENV was able to sneak in a few more observations: a dust-devil movie, and a line-of-sight and tau to keep an eye on the changing dust levels in the atmosphere.
      Written by Alex Innanen, Atmospheric Scientist at York University
      Share








      Details
      Last Updated Jun 21, 2024 Related Terms
      Blogs Explore More
      2 min read A Bright New Abrasion
      Last week, Perseverance arrived at the long-awaited site of Bright Angel, named for being a…


      Article


      1 day ago
      6 min read Sols 4219-4221: It’s a Complex Morning…


      Article


      3 days ago
      2 min read Perseverance Finds Popcorn on Planet Mars
      After months of driving, Perseverance has finally arrived at ‘Bright Angel’, discovering oddly textured rock…


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars…


      All Mars Resources



      Rover Basics



      Mars Exploration Science Goals


      View the full article
  • Check out these Videos

×
×
  • Create New...