Jump to content

Recommended Posts

  • Publishers
Posted
The Virginia Tech team, winners of first place overall in the RASC-AL 2024 competition.
The Virginia Tech team, winners of first place overall in the RASC-AL 2024 competition.
NASA

Out of 14 finalist teams that encompassed collegiate and university representation from across the globe, the Virginia Polytechnic Institute and State University team with their concept, “Project Draupnir,” in the AI-Powered Self-Replicating Probe theme, took home top prize in NASA’s Revolutionary Aerospace Systems Concepts – Academic Linkage (RASC-AL) competition.  

The University of Maryland took second place overall for their concept, “SITIS: Subsurface Ice and Terrain In-situ Surveyor,” while South Dakota State University took third place overall with “POSEID-N: Prospecting Observation System for Exploration, Investigation, Discovery, and Navigation,” both in the Large-Scale Lunar Crater Prospector theme.  

The first and second place overall winning teams will receive a travel stipend to present their work at the 2024 AIAA Accelerating Space Commerce, Exploration, and New Discovery (ASCEND) Conference in Las Vegas, Nevada in July. 

The University of Maryland team, winners of second place overall in the RASC-AL 2024 competition pose for a photo.
The University of Maryland team, winners of second place overall in the RASC-AL 2024 competition.
NASA

In its 23rd year, RASC-AL is one of NASA’s longest running higher education competitions.  

“It’s an engaging engineering design challenge that fosters collaboration, innovation, and hard work. Finalist teams also enjoy the comradery and networking opportunities at our annual forum in Cocoa Beach, Florida,” said Pat Troutman, program assistant, technical for NASA’s Strategy and Architecture Office. “Each year, the competition grows as more and more students want to contribute to NASA’s mission of improving humanity’s ability to operate on the Moon, Mars and beyond.”  

The forum is attended by NASA and industry subject matter experts who judge the presentations and offer valuable feedback. New this year, RASC-AL teams based in the United States were encouraged to work with universities from countries that have signed The Artemis Accords – a set of principles designed to guide civil space exploration and use in the 21st century. 

Finalist teams responded to one of four themes, ranging from developing large-scale lunar surface architectures enabling long-term off-world habitation, to designing new systems that leverage in-situ resources for in-space travel and exploration. 

The South Dakota State team, winners of third place overall in the RASC-AL 2024 competition pose for a photo.
The South Dakota State team, winners of third place overall in the RASC-AL 2024 competition.
NASA

Additional 2024 Forum awards include: 

Best in Theme: 

  • AI-Powered Self-Replicating Probes – an Evolutionary Approach:  
  • Virginia Polytechnic Institute and State University, “Project Draupnir” 
  • Large-Scale Lunar Crater Prospector: 
  • University of Maryland, “SITIS: Subsurface Ice and Terrain In-situ Surveyor” 
  • Sustained Lunar Evolution: University of Puerto Rico, Mayaguez, “Permanent Outpost Lunar Architecture for Research and Innovative Services (POLARIS)” 
  • Long Duration Mars Simulation at the Moon: Massachusetts Institute of Technology (MIT) with École Polytechnique Fédérale de Lausanne (EPFL) and the National Higher French Institute of Aeronautics and Space (ISAE-SUPAERO), “MARTEMIS: Mars Architecture Research using Taguchi Experiments on the Moon with International Solidarity” 

Other Awards: 

  • Best Prototype: South Dakota State University, “POSEID-N: Prospecting Observation System for Exploration, Investigation, Discovery, and Navigation” 

RASC-AL is open to undergraduate and graduate students studying disciplines related to human exploration, including aerospace, bio-medical, electrical, and mechanical engineering, and life, physical, and computer sciences. RASC-AL projects allow students to incorporate their coursework into space exploration objectives in a team environment and help bridge strategic knowledge gaps associated with NASA’s vision. Students have the opportunity to interact with NASA officials and industry experts and develop relationships that could lead to participation in other NASA student research programs.  

RASC-AL is sponsored by the Strategies and Architectures Office within the Exploration Systems Development Mission Directorate at NASA Headquarters, and by the Space Mission Analysis Branch within the Systems Analysis and Concepts Directorate at NASA Langley. It is administered by the National Institute of Aerospace.  

For more information about the RASC-AL competition, including complete theme and submission guidelines, visit: http://rascal.nianet.org

Share

Details

Last Updated
Jun 13, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Expert Answers Your Questions About Asteroid 2024 YR4
    • By NASA
      Explore This SectionEarth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries NewsScience in the News Calendars In Memoriam MoreArchives 3 min read
      In Memoriam: Jeff Dozier [1944–2024]
      Jeff Dozier [1944–2024]Photo credit: Dozier’s family obituary Jeff Dozier, an environmental scientist, snow hydrologist, researcher, academic – and former Earth Observing System Project Scientist – died on November 17, 2024. Jeff’s research focused on snow hydrology and biogeochemistry in mountain environments and addressed the role of stored and melting snow in the hydrologic cycle as well as the economic and social impact on water resources. In these efforts, he embraced remote sensing with satellites to measure snow properties and energy balance. He was a Project Scientist with the Earth Observing System (EOS) Data and Information System, contributing to the design and management of very large information systems that would impact spatial modeling and environmental informatics.
      Jeff served as the second EOS Project Scientist from 1990–1992. During that time, he worked with the NASA science community to – in his own words – “accomplish the goals of EOS, the most important of which is to develop the capability to predict or assess plausible environmental changes – both natural and human-induced – that will occur in the future. Meeting this challenge for the next decade to century requires the integration of knowledge from the traditional disciplines and information from many different sources into a coherent view of the Earth system. EOS is the largest project in the history of NASA and arguably the most important national and international scientific mission of the next two decades.”
      Jeff’s work alongside Michael Matson, was featured in a 2019 NASA Earth Science news article: “NASA Tracks Wildfires From Above to Aid Firefighters Below.” While working at NOAA’s National Environmental Satellite, Data, and Information Service building in Camp Springs, MD, the pair detected methane fires in the Persian Gulf using the Advanced Very High Resolution Radiometer (AVHRR) instrument on the NOAA-6 satellite – marking the first time that such a small fire had been seen from space. Jeff went on to develop a mathematical method to distinguish small fires from other sources of heat, which become the foundation for nearly all subsequent satellite fire-detection algorithms. 
      At the time of his death, Jeff was Principal Investigator of a NASA-funded project with the objective of testing whether data from the Earth Surface Mineral Dust Source Investigation (EMIT) mission could be used to help refine the estimate for the snowpack melting rate. In the 2024 Earth Science news article, “NASA’s EMIT Will Explore Diverse Science Questions on Extended Mission,” Jeff indicated that EMIT’s ability to ‘see’ well into the infrared (IR) spectrum of light is key to his group’s efforts because ice is “pretty absorptive at near-IR and shortwave-IR wavelengths.” The results from this research will help inform water management decisions in states, such as California, where meltwater makes up the majority of the agricultural water supply.
      Jeff earned a Bachelor’s of Science degree from California State University, Hayward (now California State University, East Bay) and a Master’s of Science degree and Ph.D. from the University of Michigan. He spent his career teaching at the University of California, Santa Barbara (UCSB), where he was named the founding Dean of the Bren School of Environmental Science and Management at UCSB in 1994. As the Dean, he recruited renowned faculty and developed one of the top environmental programs in the country. After his role as Dean, Jeff returned as a professor at Bren, educating the next generation of Earth scientists.
      Jeff Dozier [1944–2024]Photo credit: Dozier’s family obituaryView the full article
    • By NASA
      Explore This SectionEarth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries NewsScience in the News Calendars In Memoriam MoreArchives 3 min read
      In Memoriam: Berrien Moore III [1941–2024]
      Berrien Moore III [1941–2024]Photo credit: Moore’s obituary on the University of Oklahoma’s (OU) website Berrien Moore III, Dean of the College of Atmospheric and Geographic Sciences at the University of Oklahoma (OU), director of the National Weather Center in Norman, OK, and Vice President for Weather and Climate Programs, died on December 17, 2024. Berrien earned an undergraduate degree from the University of North Carolina in 1963 and a doctorate degree from the University of Virginia in 1969. After graduating, he taught mathematics at the University of New Hampshire (UNH) and became tenured in 1976. 
      In 1987, Berrien became director of the Institute for the Study of Earth, Oceans, and Space (ISEOS) at UNH. NASA chose ISEOS to be one of the 24 founding members of the “Working Prototype Federation” of Earth Science Information Partners (ESIP) in 1998. Still active more than 25 years later, ESIP is now a thriving nonprofit entity funded by cooperative agreements with NASA, the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Geological Survey, which brings together interdisciplinary collaborations (among over 170 partners) to share technical knowledge and engage with data users.
      Berrien left UNH in 2008, to serve as the founding Executive Director of Climate Central, a think-tank based in Princeton, NJ, which is dedicated to providing objective and understandable information about climate change
      Berrien moved to OU in 2010. Given his diverse academic, research, and career experience in global carbon cycle, biogeochemistry, remote sensing, environmental and space policy, and mathematics, Berrien was a natural choice to become the architect and principal investigator for the Geostationary Carbon Cycle Observatory (GeoCARB), a proposed NASA Earth Venture Mission that would have monitored plant health and vegetation stress throughout the Americas from geostationary orbit, probing natural sources, sinks, and exchange processes that control carbon dioxide, carbon monoxide, and methane in the atmosphere. While the mission was ultimately cancelled, the lessons learned are being applied to similar current and future Earth observing endeavors, e,g, NASA’s ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission.
      Berrien served on and chaired numerous government-affiliated scientific committees throughout his career. From 1995–1998 he served on the National Research Council’s Committee on Global Change Research, which produced the landmark report, “Global Environment Change: Research Pathways for the Next Decade.” In 2011, he was an author on the National Research Council’s (NRC) decadal survey, “Earth Science and Applications from Space: A Community Assessment and Strategies for the Future.”
      Berrien participated on international scientific committees as well. From 1998–2002, he was the chair of the Science Committee of the International Geosphere Biosphere Programme (IGBP). He was also a lead author within the Intergovernmental Panel on Climate Change’s Third Assessment Report, which was released in 2001.
      Berrien served in several roles specific to NASA, including as a committee member and later chair of the organization’s Space and Earth Science Advisory Committee. He served as Chair of the Earth Observing System (EOS) Payload Advisory Committee, member and Chair of NASA’s Earth Science and Applications Committee, and member of the NASA Advisory Council. He was also active at NOAA, having chaired the agency’s Research Review Team and served on the Research and Development Portfolio Review Team for NOAA’s Science Advisory Board. 
      Berrien received NASA’s highest civilian honor, the Distinguished Public Service Medal, for outstanding service and the NOAA Administrator’s Recognition Award. He also received the 2007 Dryden Lectureship in Research Medal from the American Institute of Aeronautics and Astronautics and was honored for his contributions to the IPCC when the organization received the 2007 Nobel Peace Prize.
      View the full article
    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 3 min read
      In Memoriam: Pierre Morel [1933–2024]
      Pierre Morel [1933–2024] Photo Credit: Morel’s obituary on the Ecole Normale Supérieure website Pierre Morel, the first director of the World Climate Research Programme (WCRP) and founding member of WCRP’s Global Energy and Water Exchanges (GEWEX) Core project, died on December 10, 2024.
      Pierre began his research as a theoretical physicist. His doctoral thesis examined the existence and properties of a condensed superfluid state of liquid Helium 3 at very low temperature. He lectured on basic physics, geophysical fluid dynamics, and climate science. As his career progressed, he focused his research on studying the circulation of the atmosphere. He was devoted to the development of numerical modelling of atmospheric flow that laid the groundwork for the study of climatology.
      Pierre’s work played an integral role in the development of tools used to study the atmosphere, many of which are still active today. Examples include Project Éole – an experimental wind energy plant conceived in the 1980s and created in Quebec, Canada that closed down in 1993; the ARGOS satellite, a collaboration between the Centre National d’Études Spatiale (CNES) [French Space Agency], National Oceanic and Atmospheric Administration (NOAA), and NASA, to collect and relay meteorological and oceanographic data around the world that launched in 1978; the Search and Rescue Satellite Aided Tracking (SARSAT) system, which was developed by the U.S. – specifically NOAA, NASA, and the U.S. Coast Guard and Air Force – Canada, and France, with the first satellite launch in 1982; and the European Organization for the Exploitation of Meteorological Satellites’ METEOSAT series of geostationary satellites, which launched in 1977 and remain active today. The launch of Meteosat–12 in 2022 was the first METEOSAT Third Generation (MTG) launch.
      Early in his career, Pierre was the director of the French Laboratoire de Météorologie Dynamique (LMD) before he became the director of the Centre National d’Études Spatiales (CNES). In 1980 he became the first chairman of the WCRP, where he steered a broad interdisciplinary research program in global climate and Earth system science that involved the participation of atmospheric, oceanic, hydrological, and polar scientists worldwide. Pierre was later in charge of planetary programs at NASA and was involved in discussions about the future of NASA’s Earth Observing System (EOS) in the mid-to-late 1990s. As an example, the Earth Observer article, “Minutes Of The Fourteenth Earth Science Enterprise/Earth Observing System (ESE/EOS) Investigators Working Group Meeting,” includes a summary of a presentation Pierre gave that focused on flight mission planning for the EOS “second series,” which was NASA’s plan at the time although ultimately not pursued, with the “first series” (i.e., Terra, Aqua, Aura) enduring much longer than anticipated.
      Pierre was the recipient of the 2008 Alfred Wegener Medal & Honorary Membership for his outstanding contributions to geophysical fluid dynamics, his leadership in the development of climate research, and the applications of space observation to meteorology and the Earth system science.
      View the full article
    • By Space Force
      The U.S. Space Force announced the winners of the third annual Polaris Awards, recognizing individuals and teams who embody the four Guardian Values: Character, Connection, Commitment, and Courage.
      View the full article
  • Check out these Videos

×
×
  • Create New...