Members Can Post Anonymously On This Site
Ariane 6 launches RAMI: the interplanetary deployer
-
Similar Topics
-
By NASA
A SpaceX Falcon 9 rocket lifts off from Vandenberg Space Force Base, carrying NASA’s EZIE spacecraft into orbit. SpaceX Under the nighttime California sky, NASA’s EZIE (Electrojet Zeeman Imaging Explorer) mission launched aboard a SpaceX Falcon 9 rocket at 11:43 p.m. PDT on March 14.
Taking off from Vandenberg Space Force Base near Santa Barbara, the EZIE mission’s trio of small satellites will fly in a pearls-on-a-string configuration approximately 260 to 370 miles above Earth’s surface to map the auroral electrojets, powerful electric currents that flow through our upper atmosphere in the polar regions where auroras glow in the sky.
At approximately 2 a.m. PDT on March 15, the EZIE satellites were successfully deployed. Within the next 10 days, the spacecraft will send signals to verify they are in good health and ready to embark on their 18-month mission.
“NASA has leaned into small missions that can provide compelling science while accepting more risk. EZIE represents excellent science being executed by an excellent team, and it is delivering exactly what NASA is looking for,” said Jared Leisner, program executive for EZIE at NASA Headquarters in Washington.
The electrojets — and their visible counterparts, theauroras — are generated duringsolar storms when tremendous amounts of energy get transferred into Earth’s upper atmosphere from the solar wind. Each of the EZIE spacecraft will map the electrojets, advancing our understanding of the physics of how Earth interacts with its surrounding space. This understanding will apply not only to our own planet but also to any magnetized planet in our solar system and beyond. The mission will also help scientists create models for predicting space weather to mitigate its disruptive impacts on our society.
“It is truly incredible to see our spacecraft flying and making critical measurements, marking the start of an exciting new chapter for the EZIE mission,” said Nelli Mosavi-Hoyer, project manager for EZIE at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “I am very proud of the dedication and hard work of our team. This achievement is a testament to the team’s perseverance and expertise, and I look forward to the valuable insights EZIE will bring to our understanding of Earth’s electrojets and space weather.”
Instead of using propulsion to control their polar orbit, the spacecraft will actively use drag experienced while flying through the upper atmosphere to individually tune their spacing. Each successive spacecraft will fly over the same region 2 to 10 minutes after the former.
“Missions have studied these currents before, but typically either at the very large or very small scales,” said Larry Kepko, EZIE mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “EZIE will help us understand how these currents form and evolve, at scales we’ve never probed.”
The mission team is also working to distribute magnetometer kits called EZIE-Mag, which are available to teachers, students, and science enthusiasts who want to take their own measurements of the Earth-space electrical current system. EZIE-Mag data will be combined with EZIE measurements made from space to assemble a clear picture of this vast electrical current circuit.
The EZIE mission is funded by the Heliophysics Division within NASA’s Science Mission Directorate and is managed by the Explorers Program Office at NASA Goddard. The Johns Hopkins Applied Physics Laboratory leads the mission for NASA. Blue Canyon Technologies in Boulder, Colorado, built the CubeSats, and NASA’s Jet Propulsion Laboratory in Southern California built the Microwave Electrojet Magnetogram, which will map the electrojets, for each of the three satellites.
For the latest mission updates, follow NASA’s EZIE blog.
By Brett Molina
Johns Hopkins Applied Physics Laboratory
Share
Details
Last Updated Mar 15, 2025 Editor Vanessa Thomas Contact Sarah Frazier sarah.frazier@nasa.gov Location Goddard Space Flight Center Related Terms
Heliophysics Auroras CubeSats EZIE (Electrojet Zeeman Imaging Explorer) Goddard Space Flight Center Heliophysics Division Missions Small Satellite Missions The Sun Explore More
5 min read NASA’s EZIE Launching to Study Magnetic Fingerprints of Earth’s Aurora
Article
3 weeks ago
5 min read NASA Rockets to Fly Through Flickering, Vanishing Auroras
Article
2 months ago
5 min read How NASA Tracked the Most Intense Solar Storm in Decades
Article
10 months ago
View the full article
-
By NASA
A SpaceX Falcon 9 rocket propelled the Dragon spacecraft into orbit carrying NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov. (Credit: NASA) Four crew members of NASA’s SpaceX Crew-10 mission launched at 7:03 p.m. EDT Friday from Launch Complex 39A at NASA’s Kennedy Space Center in Florida for a science expedition aboard the International Space Station.
A SpaceX Falcon 9 rocket propelled the Dragon spacecraft into orbit carrying NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov. The spacecraft will dock autonomously to the forward-facing port of the station’s Harmony module at approximately 11:30 p.m. on Saturday, March 15. Shortly after docking, the crew will join Expedition 72/73 for a long-duration stay aboard the orbiting laboratory.
“Congratulations to our NASA and SpaceX teams on the 10th crew rotation mission under our commercial crew partnership. This milestone demonstrates NASA’s continued commitment to advancing American leadership in space and driving growth in our national space economy,” said NASA acting Administrator Janet Petro. “Through these missions, we are laying the foundation for future exploration, from low Earth orbit to the Moon and Mars. Our international crew will contribute to innovative science research and technology development, delivering benefits to all humanity.”
During Dragon’s flight, SpaceX will monitor a series of automatic spacecraft maneuvers from its mission control center in Hawthorne, California. NASA will monitor space station operations throughout the flight from the Mission Control Center at the agency’s Johnson Space Center in Houston.
NASA’s live coverage resumes at 9:45 p.m., March 15, on NASA+ with rendezvous, docking, and hatching opening. After docking, the crew will change out of their spacesuits and prepare cargo for offload before opening the hatch between Dragon and the space station’s Harmony module around 1:05 a.m., Sunday, March 16. Once the new crew is aboard the orbital outpost, NASA will broadcast welcome remarks from Crew-10 and farewell remarks from the agency’s SpaceX Crew-9 crew, beginning at about 1:40 a.m.
Learn how to watch NASA content through a variety of platforms, including social media.
The number of crew aboard the space station will increase to 11 for a short time as Crew-10 joins NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Don Pettit, as well as Roscosmos cosmonauts Aleksandr Gorbunov, Alexey Ovchinin, and Ivan Vagner. Following a brief handover period, Hague, Williams, Wilmore, and Gorbunov will return to Earth no earlier than Wednesday, March 19.Ahead of Crew-9’s departure from station, mission teams will review weather conditions at the splashdown sites off the coast of Florida.
During their mission, Crew-10 is scheduled to conduct material flammability tests to contribute to future spacecraft and facility designs. The crew will engage with students worldwide via the ISS Ham Radio program and use the program’s existing hardware to test a backup lunar navigation solution. The astronauts also will serve as test subjects, with one crew member conducting an integrated study to better understand physiological and psychological changes to the human body to provide valuable insights for future deep space missions.
With this mission, NASA continues to maximize the use of the orbiting laboratory, where people have lived and worked continuously for more than 24 years, testing technologies, performing science, and developing the skills needed to operate future commercial destinations in low Earth orbit and explore farther from our home planet. Research conducted at the space station benefits people on Earth and paves the way for future long-duration missions to the Moon under NASA’s Artemis campaign and beyond.
More about Crew-10
McClain is the commander of Crew-10 and is making her second trip to the orbital outpost since her selection as an astronaut in 2013. She will serve as a flight engineer during Expeditions 72/73 aboard the space station. Follow McClain on X.
Ayers is the pilot of Crew-10 and is flying her first mission. Selected as an astronaut in 2021, Ayers will serve as a flight engineer during Expeditions 72/73. Follow Ayers on X and Instagram.
Onishi is a mission specialist for Crew-10 and is making his second flight to the space station. He will serve as a flight engineer during Expeditions 72/73. Follow Onishi on X.
Peskov is a mission specialist for Crew-10 and is making his first flight to the space station. Peskov will serve as a flight engineer during Expeditions 72/73.
Learn more about NASA’s SpaceX Crew-10 mission and the agency’s Commercial Crew Program at:
https://www.nasa.gov/commercialcrew
-end-
Josh Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
Steven Siceloff / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
Kenna Pell / Sandra Jones
Johnson Space Center, Houston
281-483-5111
kenna.m.pell@nasa.gov / sandra.p.jones@nasa.gov
Share
Details
Last Updated Mar 14, 2025 LocationNASA Headquarters Related Terms
Humans in Space International Space Station (ISS) View the full article
-
By NASA
NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) observatory and PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites lift off on a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California on March 11, 2025.Credit: SpaceX NASA’s newest astrophysics observatory, SPHEREx, is on its way to study the origins of our universe and the history of galaxies, and to search for the ingredients of life in our galaxy. Short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer, SPHEREx lifted off at 8:10 p.m. PDT on March 11 aboard a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.
Riding with SPHEREx aboard the Falcon 9 were four small satellites that make up the agency’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission, which will study how the Sun’s outer atmosphere becomes the solar wind.
“Everything in NASA science is interconnected, and sending both SPHEREx and PUNCH up on a single rocket doubles the opportunities to do incredible science in space,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Congratulations to both mission teams as they explore the cosmos from far-out galaxies to our neighborhood star. I am excited to see the data returned in the years to come.”
Ground controllers at NASA’s Jet Propulsion Laboratory in Southern California, which manages SPHEREx, established communications with the space observatory at 9:31 p.m. PDT. The observatory will begin its two-year prime mission after a roughly one-month checkout period, during which engineers and scientists will make sure the spacecraft is working properly.
“The fact our amazing SPHEREx team kept this mission on track even as the Southern California wildfires swept through our community is a testament to their remarkable commitment to deepening humanity’s understanding of our universe,” said Laurie Leshin, director, NASA JPL. “We now eagerly await the scientific breakthroughs from SPHEREx’s all-sky survey — including insights into how the universe began and where the ingredients of life reside.”
The PUNCH satellites successfully separated about 53 minutes after launch, and ground controllers have established communication with all four PUNCH spacecraft. Now, PUNCH begins a 90-day commissioning period where the four satellites will enter the correct orbital formation, and the instruments will be calibrated as a single “virtual instrument” before the scientists start to analyze images of the solar wind.
The two missions are designed to operate in a low Earth, Sun-synchronous orbit over the day-night line (also known as the terminator) so the Sun always remains in the same position relative to the spacecraft. This is essential for SPHEREx to keep its telescope shielded from the Sun’s light and heat (both would inhibit its observations) and for PUNCH to have a clear view in all directions around the Sun.
To achieve its wide-ranging science goals, SPHEREx will create a 3D map of the entire celestial sky every six months, providing a wide perspective to complement the work of space telescopes that observe smaller sections of the sky in more detail, such as NASA’s James Webb Space Telescope and Hubble Space Telescope.
The mission will use a technique called spectroscopy to measure the distance to 450 million galaxies in the nearby universe. Their large-scale distribution was subtly influenced by an event that took place almost 14 billion years ago known as inflation, which caused the universe to expand in size a trillion-trillionfold in a fraction of a second after the big bang. The mission also will measure the total collective glow of all the galaxies in the universe, providing new insights about how galaxies have formed and evolved over cosmic time.
Spectroscopy also can reveal the composition of cosmic objects, and SPHEREx will survey our home galaxy for hidden reservoirs of frozen water ice and other molecules, like carbon dioxide, that are essential to life as we know it.
“Questions like ‘How did we get here?’ and ‘Are we alone?’ have been asked by humans for all of history,” said James Fanson, SPHEREx project manager at JPL. “I think it’s incredible that we are alive at a time when we have the scientific tools to actually start to answer them.”
NASA’s PUNCH will make global, 3D observations of the inner solar system and the Sun’s outer atmosphere, the corona, to learn how its mass and energy become the solar wind, a stream of charged particles blowing outward from the Sun in all directions. The mission will explore the formation and evolution of space weather events such as coronal mass ejections, which can create storms of energetic particle radiation that can endanger spacecraft and astronauts.
“The space between planets is not an empty void. It’s full of turbulent solar wind that washes over Earth,” said Craig DeForest, the mission’s principal investigator, at the Southwest Research Institute. “The PUNCH mission is designed to answer basic questions about how stars like our Sun produce stellar winds, and how they give rise to dangerous space weather events right here on Earth.”
More About SPHEREx, PUNCH
The SPHEREx mission is managed by NASA JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive.
Southwest Research Institute (SwRI) leads the PUNCH mission and built the four spacecraft and Wide Field Imager instruments at its headquarters in San Antonio, Texas. The Narrow Field Imager instrument was built by the Naval Research Laboratory in Washington. The mission is operated from SwRI’s offices in Boulder, Colorado, and is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington.
NASA’s Launch Services Program, based out of the agency’s Kennedy Space Center in Florida, provided the launch service for SPHEREx and PUNCH.
For more about NASA’s science missions, visit:
http://science.nasa.gov
-end-
Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov
Calla Cofield – SPHEREx
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
Sarah Frazier – PUNCH
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov
Share
Details
Last Updated Mar 12, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Heliophysics Launch Services Program Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate View the full article
-
By European Space Agency
Europe’s newest rocket, Ariane 6, took flight for the second time from Europe’s Spaceport in French Guiana at 13:24 local time on 6 March (16:24 GMT, 17:24 CET). This was the first commercial flight for Ariane 6, flight VA263, delivering the CSO-3 satellite to orbit. Arianespace was the operator and launch service provider for the French Procurement agency (DGA) and France’s space agency CNES on behalf of the French Air and Space Force’s Space Command (CDE).
View the full article
-
By European Space Agency
Europe’s newest rocket, Ariane 6, took flight for the second time from Europe’s Spaceport in French Guiana at 13:24 local time on 6 March (16:24 GMT, 17:24 CET). This was the first commercial flight for Ariane 6, flight VA263, delivering the CSO-3 satellite to orbit. Arianespace was the operator and launch service provider for the French Procurement agency (DGA) and France’s space agency CNES on behalf of the French Air and Space Force’s Space Command (CDE).
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.