Members Can Post Anonymously On This Site
Ed Stone, Former Director of JPL and Voyager Project Scientist, Dies
-
Similar Topics
-
By NASA
Titans Space Industries, a commercial space company, selected a new cohort of astronaut candidates this spring – and among them is NASA citizen scientist, Benedetta Facini. She has participated in not one, but many NASA citizen science projects: Cloudspotting on Mars, Active Asteroids, Daily Minor Planet, GLOBE, Exoasteroids and International Astronomical Collaboration (IASC). We asked her a few questions about her work with NASA and her path to becoming an astronaut candidate.
Benedetta Facini visiting Kennedy Space Center in 2023 Credit: B.F. Q: How did you learn about NASA Citizen Science?
A: Through colleagues and social media, I often came across people talking about Citizen Science, and this immediately caught my curiosity. I did some online research on the subject, and I asked some colleagues already involved in it. Finally, I managed to find the way to participate by exploring the programs offered by NASA Citizen Science, which impressed me with their variety.
Q: What would you say you have gained from working on these NASA projects?
A: Curiosity in discovering new things and a lot of patience: many projects indeed require attention and, as mentioned, patience. I was pleased to discover that even NASA relies on “ordinary people” to carry out research, giving them the opportunity to learn new things using simple tools.
I also gained hands-on experience in analyzing real data and identifying celestial objects to contribute to real research efforts. My favorite part was to learn to recognize the pattern of clouds in data collected by the Mars Climate Sounder on the Mars Reconnaissance Orbiter.
I have learned the importance of international collaboration: I know many citizen scientists now, and interacting with them teaches me a lot every day.
Q. What do you do when you’re not working on citizen science?
A: I am a student and a science communicator. I share my knowledge and enthusiasm through social media, schools, webinars around the world, and space festivals across Italy where I have the opportunity to engage with a wide audience, from young students to adults.
Recently, I achieved a major milestone: I was selected as an Astronaut Candidate by the commercial space company, Titans Space Industries. I am thrilled to soon begin the basic training, which marks the first step toward realizing my dream of becoming an astronaut and contributing directly to human spaceflight and scientific research.
Q. What do you need to do to become an astronaut?
A: Gain as much experience as possible. During astronaut selection, not only academic achievements are evaluated, but also professional and personal experiences.
Every skill can be useful during the selection process: the ability to work in a team, which is essential during space missions; survival skills; experience as a diver, skydiver, or pilot; knowledge of other languages; and the ability to adapt to different situations.
I would also like to debunk a myth: you don’t need to be Einstein and fit as an Olympic level athlete; you just need to be good at what you do and be healthy.
Q: How has citizen science helped you with your career?
A: Citizen Science was very helpful for my career as a science communicator, as it gave me the opportunity to show people that anyone can contribute to the space sector. At the same time, it has allowed me to become a mentor and a point of reference for many students (mainly with the IASC project).
The hands-on experience I gained in analyzing real data was also very helpful for my academic career, too. I had never had real data to work with before, and this experience proved extremely valuable for the practical courses in my physics degree program.
Q. Do you have any advice you’d like to share for other citizen scientists or for people who want to become astronauts?
A: For other citizen scientists my advice is to stay curious and persistent.
Don’t be afraid to ask for help and interact with other colleagues because the goal of the NASA Citizen Science program is international collaboration and every small contribution can make a difference.
For aspiring astronauts, my advice is to gain as much experience as possible. Academic results are important but hands-on skills, teamwork, adaptability, and real experiences are also important.
Stay passionate and never lose your curiosity; the astronaut path is challenging; don’t give up after an eventual first rejection. You will always meet people trying to make you change your mind and your dream, even people from your family, but don’t stop in front of obstacles. The greatest regret is knowing you didn’t try to make your dream come true.
Quoting my inspiration, Italian astronaut Paolo Nespoli: “You need to have the ability and the courage to dream of impossible things. Everyone can dream of things that are possible. Dream of something impossible, one of those things that, when you say it out loud, people look at you and say: “Sure, study hard and you’ll make it,” but deep down no one really believes it. Those are the impossible things that are worth trying to do!”
Q: Thank you for sharing your story with us! Is there anything else you would like to add?
A: I would like to thank the team behind NASA Citizen Science.
These projects play a crucial role in keeping students’ passion for science alive and guiding them toward a potential career in this field.
Knowing that I have contributed to helping scientists is incredibly motivating and encourages me and students around the world to keep going, stay curious, and continue pursuing our path in the science field.
The opportunity to participate in these projects while learning is inspiring and it reinforces the idea that everyone, regardless of their background, can make a real impact in the scientific community.
Share
Details
Last Updated Aug 25, 2025 Related Terms
Astrophysics Citizen Science Earth Science Planetary Science Explore More
5 min read Astronomers Map Stellar ‘Polka Dots’ Using NASA’s TESS, Kepler
Article
59 minutes ago
9 min read Harmonized Landsat and Sentinel-2: Collaboration Drives Innovation
Article
1 hour ago
2 min read Hubble Observes Noteworthy Nearby Spiral Galaxy
Article
3 days ago
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
An image of Betelgeuse, the yellow-red star, and the signature of its close companion, the faint blue object.Data: NASA/JPL/NOIRlab. Visualization: NOIRLAB. A century-old hypothesis that Betelgeuse, the 10th brightest star in our night sky, is orbited by a very close companion star was proved true by a team of astrophysicists led by a scientist at NASA’s Ames Research Center in California’s Silicon Valley.
The research published in The Astrophysical Journal Letters in the paper “Probable Direct Imaging Discovery of the Stellar Companion to Betelgeuse.”
Fluctuations in the brightness and measured velocity of Betelgeuse, the closest red supergiant star to Earth, had long presented clues that it may have a partner, but the bigger star’s intense glow made direct observations of any fainter neighbors nearly impossible.
Two recent studies by other teams of astronomers reignited the companion star hypothesis by using more than 100 years of Betelgeuse observations to provide predictions of the companion’s location and brightness.
If the smaller star did exist, the location predictions suggested that scientists had a window of just a few months to observe the companion star at its widest separation from Betelgeuse, as it orbited near the visible edge of the supergiant. After that, they would have to wait another three years for it to orbit to the other side and again leave the overpowering glow of its larger companion.
Searches for the companion were initially made using space-based telescopes, because observing through Earth’s atmosphere can blur images of astronomical objects. But these efforts did not detect the companion.
Steve Howell, a senior research scientist at Ames, recognized the ground-based Gemini North telescope in Hawai’i, one of the largest in the world, paired with a special, high-resolution camera built by NASA, had the potential to directly observe the close companion to Betelgeuse, despite the atmospheric blurring.
Officially called the ‘Alopeke speckle instrument, the advanced imaging camera let them obtain many thousands of short exposures to measure the atmospheric interference in their data and remove it with detailed image processing, providing an image of Betelgeuse and its companion.
Howell’s team detected the very faint companion star right where it was predicted to be, orbiting very close to the outer edge of Betelgeuse.
“I hope our discovery excites other astrophysicists about the robust power of ground-based telescopes and speckle imagers – a key to opening new observational windows,” said Howell. “This can help unlock the great mysteries in our universe.”
To start, this discovery of a close companion to Betelgeuse may explain why other similar red supergiant stars undergo periodic changes in their brightness on the scale of many years.
Howell plans to continue observations of Betelgeuse’s stellar companion to better understand its nature. The companion star will again return to its greatest separation from Betelgeuse in November 2027, a time when it will be easiest to detect.
Having found the long-anticipated companion star, Howell turned to giving it a name. The traditional star name “Betelgeuse” derives from Arabic, meaning “the hand of al-Jawza’,” a female figure in old Arabian legend. Fittingly, Howell’s team named the orbiting companion “Siwarha,” meaning “her bracelet.”
Photo of the constellation Orion, showing the location of Betelgeuse – and its newfound companion star.NOIRLab/Eckhard Slawik The NASA–National Science Foundation Exoplanet Observational Research Program (NN-EXPLORE) is a joint initiative to advance U.S. exoplanet science by providing the community with access to cutting-edge, ground-based observational facilities. Managed by NASA’s Exoplanet Exploration Program, NN-EXPLORE supports and enhances the scientific return of space missions such as Kepler, TESS (Transiting Exoplanet Survey Satellite), Hubble Space Telescope, and James Webb Space Telescope by enabling essential follow-up observations from the ground—creating strong synergies between space-based discoveries and ground-based characterization. NASA’s Exoplanet Exploration Program is located at the agency’s Jet Propulsion Laboratory.
To learn more about NN-EXPLORE, visit:
https://exoplanets.nasa.gov/exep/NNExplore/overview
Share
Details
Last Updated Jul 23, 2025 Related Terms
Astrophysics Ames Research Center Ames Research Center's Science Directorate Astrophysics Division Exoplanet Exploration Program General Science & Research Science Mission Directorate Explore More
4 min read NASA Tests 5G-Based Aviation Network to Boost Air Taxi Connectivity
Article 1 hour ago 3 min read NASA Tests Mixed Reality Pilot Simulation in Vertical Motion Simulator
Article 3 hours ago 2 min read Radio JOVE Volunteers Tune In to the Sun’s Low Notes
As the Sun approaches the most active part of its eleven-year magnetic cycle this summer,…
Article 5 hours ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Portrait of Dr. Makenzie Lystrup, director of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.Credit: NASA On Monday, NASA announced Dr. Makenzie Lystrup, director of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is set to leave the agency on Friday, Aug. 1.
As center director of Goddard, a role she has held since April 2023, Lystrup also was responsible for guiding the direction and management of multiple other NASA field installations including Wallops Flight Facility in Virginia, Katherine Johnson Independent Verification & Validation Facility in West Virginia, the White Sands Complex in New Mexico, and the Columbia Scientific Balloon Facility in Texas.
“Having served in a variety of science and aerospace civilian and government roles in her career, Makenzie has led development of, and/or contributed to a variety of NASA’s priority science missions including successful operations of our James Webb Space Telescope and Imaging X-Ray Polarimetry Explorer, as well as development of the agency’s Roman Space Telescope, and more,” said Vanessa Wyche, acting NASA associate administrator. “We’re grateful to Makenzie for her leadership at NASA Goddard for more than two years, including her work to inspire a Golden Age of explorers, scientists, and engineers.”
Throughout her time at NASA, Lystrup led Goddard’s workforce, which consists of more than 8,000 civil servants and contractors. Before joining the agency, Lystrup served as senior director for Ball’s Civil Space Advanced Systems and Business Development, where she managed new business activities for NASA, National Oceanic and Atmospheric Administration (NOAA), and other civilian U.S. government agencies as well as for academia and other science organizations. In addition, she served in the company’s Strategic Operations organization, based in Washington where she led Ball’s space sciences portfolio.
Prior to joining Ball, Lystrup worked as an American Institute of Physics – Acoustical Society of American Congressional Fellow from 2011 to 2012 where she managed a portfolio including technology, national defense, nuclear energy, and nuclear nonproliferation.
Lystrup also has served on boards and committees for several organizations to include the University Corporation for Atmospheric Research, International Society for Optics and Photonic, the University of Colorado, and the American Astronomical Society. She was named an American Association for the Advancement of Science fellow in 2019 for her distinguished record in the fields of planetary science and infrared astronomy, science policy and advocacy, and aerospace leadership. Lystrup also served as an AmeriCorps volunteer focusing on STEM education.
Lystrup holds a bachelor’s in physics from Portland State University and attended graduate school at University College London earning her doctorate in astrophysics. She was a National Science Foundation Astronomy & Astrophysics Postdoctoral Research Fellow spending time at the Laboratory for Atmospheric & Space Physics in Boulder, Colorado, and University of Liege in Belgium. As a planetary scientist and astronomer, Lystrup’s scientific work has been in using ground- and space-based astronomical observatories to understand the interactions and dynamics of planetary atmospheres and magnetospheres – the relationships between planets and their surrounding space environments.
Following Lystrup’s departure, NASA’s Cynthia Simmons will serve as acting center director. Simmons is the current deputy center director.
For more information about NASA’s work, visit:
https://www.nasa.gov
-end-
Cheryl Warner / Kathryn Hambleton
Headquarters, Washington
202-358-1600
cheryl.m.warner@nasa.gov / kathryn.hambleton@nasa.gov
Katy Mersmann
Goddard Space Flight Center, Greenbelt, Md.
301-377-1724
katy.mersmann@nasa.gov
Share
Details
Last Updated Jul 21, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Goddard Space Flight Center Leadership View the full article
-
By NASA
Former Johnson Director Jefferson Howell July 3, 2025
Jefferson Davis Howell, Jr., former director of NASA’s Johnson Space Center in Houston, died July 2, in Bee Cave, Texas. He was 85 years old.
Howell was a champion of the construction of the International Space Station, working on a deadline to complete the orbiting lab by 2004. He oversaw four space shuttle crews delivering equipment and hardware to reach that goal. He also served as director during a pivotal moment for the agency: the loss of STS-107 and the crew of space shuttle Columbia. He made it his personal responsibility to meet with the families, look after them, and attend memorial services, all while keeping the families informed of the accident investigation as it unfolded.
“Gen. Howell led NASA Johnson through one of the most difficult chapters in our history, following the loss of Columbia and her crew,” said acting associate administrator Vanessa Wyche. “He brought strength and steady direction, guiding the workforce with clarity and compassion. He cared deeply for the people behind the mission and shared his leadership skills generously with the team. We extend our heartfelt condolences to his family and all who knew and loved him.”
At the time of his selection as director, he was serving as senior vice president with Science Applications International Corporation (SAIC) as the program manager for the safety, reliability, and quality assurance contract at Johnson. Following the accident, he made it his mission to improve the relationship between the civil servant and contractor workforce. He left his position and the agency, in October 2005, shortly after the Return-to-Flight mission of STS-114.
“General Howell stepped into leadership at Johnson during a pivotal time, as the International Space Station was just beginning to take shape. He led and supported NASA’s successes not only in space but here on the ground — helping to strengthen the center’s culture and offering guidance through both triumph and tragedy,” said Steve Koerner, Johnson Space Center’s acting director. “On behalf of NASA’s Johnson Space Center, we offer our deepest sympathies to his family, friends, and all those who had the privilege of working alongside him. The impact of his legacy will continue to shape Johnson for decades to come.”
The Victoria, Texas, native was a retired lieutenant general in the U.S. Marine Corps with a decorated military career prior to his service at NASA. He flew more than 300 combat missions in Vietnam and Thailand.
Howell is survived by his wife Janel and two children. A tree dedication will be held at NASA Johnson’s memorial grove in the coming year.
-end-
Chelsey Ballarte
Johnson Space Center, Houston
281-483-5111
chelsey.n.ballarte@nasa.gov
View the full article
-
By USH
In 1992, Dr. Gregory Rogers a NASA flight surgeon and former Chief of Aerospace Medicine witnessed an event that would stay with him for more than three decades. Now, after years of silence, he’s finally revealing the details of a 15-minute encounter that shattered everything he thought he knew about aerospace technology.
With a distinguished career that includes support for 31 space shuttle launches, training as an F-16 pilot, and deep involvement in classified aerospace programs, Dr. Rogers brings unmatched credibility to the conversation. His firsthand account of observing what appeared to be a reverse-engineered craft, emblazoned with "U.S. Air Force" markings, raises profound questions about the true timeline of UAP development and disclosure.
The full interview spans nearly two hours. To help navigate the discussion, here’s a timeline so you can jump to the segments that interest you most.
00:00 Introduction and Dr. Rogers' Unprecedented Credentials 07:25 The 1992 Cape Canaveral Encounter Begins 18:45 Inside the Hangar: First Glimpse of the Craft 26:30 "We Got It From Them" - The Shocking Revelation 35:15 Technical Analysis: Impossible Flight Characteristics 43:40 Electromagnetic Discharges and Advanced Propulsion 52:20 The Cover Story and 33 Years of Silence 1:01:10 Why He's Speaking Out Now: Grush and Fravor's Influence 1:08:45 Bob Lazar Connections and Reverse Engineering Timeline 1:17:20 Flight Surgeon Stories: The Human Side of Classified Work 1:25:50 G-Force Brain Injuries: An Unreported Military Crisis 1:34:30 Columbia Disaster: When Safety Warnings Are Ignored 1:43:15 The Bureaucratic Resistance to Truth 1:50:40 Congressional Testimony and The Path Forward 1:58:25 Final Thoughts: Legacy vs. Truth
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.