Jump to content

NASA Glenn Visits Duluth for Air and Aviation Expo, STEAM Festival  


NASA

Recommended Posts

  • Publishers

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Air show visitors walk through the Journey to Tomorrow traveling exhibit, stopping to look at kiosk screens on both sides of center walkway.
During the Duluth Air and Aviation Expo, visitors enjoy NASA Glenn Research Center’s Journey to Tomorrow traveling exhibit. The 53-foot trailer serves as an interactive informal learning environment that brings the excitement of exploration in air and space to an event.
Credit: NASA/Heather Brown 

NASA’s Glenn Research Center public engagement staff arrived in Minnesota for the Duluth Air and Aviation Expo, May 17-18, with several exhibits and two hometown stars who joined as part of a larger NASA presence. Duluthian Heather McDonald met with local students to talk about living and working in space and how she became the first female chief engineer of the International Space Station.

Astronaut stands in front of a gym full of grade-school students seated on the floor and shares her experiences on the International Space Station. A large screen in the background shows highlights from space.
During the STEAM Festival in Duluth, Heather McDonald talks with students about living and working in space and how she became the first female chief engineer of the International Space Station.
Credit: NASA/Heather Brown 

She and fellow Minnesotan Jennifer Dooren, deputy news chief at NASA, engaged with more than 1,000 students and their families at the Depot STEAM Festival on May 18. NASA Glenn’s Chris Giuffre, an aerospace engineer, and Emily Timko, an icing cloud characterization engineer, shared their icing research work with aviation fans at the Duluth Air and Aviation Expo. Anchoring NASA’s presence was the Journey to Tomorrow traveling exhibit, which was such a hit, families came through multiple times throughout the weekend. An estimated 4,000 people attended the air and aviation exposition.  

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA and Boeing welcomed Starliner back to Earth following the uncrewed spacecraft’s successful landing at 10:01 p.m. MDT Sept. 6, 2024, at the White Sands Space Harbor in New Mexico. Credit: NASA NASA and Boeing safely returned the uncrewed Starliner spacecraft following its landing at 10:01 p.m. MDT Sept. 6 at White Sands Space Harbor in New Mexico, concluding a three-month flight test to the International Space Station.
      “I am extremely proud of the work our collective team put into this entire flight test, and we are pleased to see Starliner’s safe return,” said Ken Bowersox, associate administrator, Space Operations Mission Directorate at NASA Headquarters in Washington. “Even though it was necessary to return the spacecraft uncrewed, NASA and Boeing learned an incredible amount about Starliner in the most extreme environment possible. NASA looks forward to our continued work with the Boeing team to proceed toward certification of Starliner for crew rotation missions to the space station.”
      The flight on June 5 was the first time astronauts launched aboard the Starliner. It was the third orbital flight of the spacecraft, and its second return from the orbiting laboratory. Starliner now will ship to NASA’s Kennedy Space Center in Florida for inspection and processing.
      NASA’s Commercial Crew Program requires a spacecraft to fly a crewed test flight to prove the system is ready for regular flights to and from the orbiting laboratory. Following Starliner’s return, the agency will review all mission-related data.
      “We are excited to have Starliner home safely. This was an important test flight for NASA in setting us up for future missions on the Starliner system,” said Steve Stich, manager of NASA’s Commercial Crew Program. “There was a lot of valuable learning that will enable our long-term success. I want to commend the entire team for their hard work and dedication over the past three months.”
      NASA astronauts Butch Wilmore and Suni Williams launched on June 5 aboard Starliner for the agency’s Boeing Crewed Flight Test from Cape Canaveral Space Force Station in Florida. On June 6, as Starliner approached the space station, NASA and Boeing identified helium leaks and experienced issues with the spacecraft’s reaction control thrusters. Following weeks of in-space and ground testing, technical interchange meetings, and agency reviews, NASA made the decision to prioritize safety and return Starliner without its crew. Wilmore and Williams will continue their work aboard station as part of the Expedition 71/72 crew, returning in February 2025 with the agency’s SpaceX Crew-9 mission.
      The crew flight test is part of NASA’s Commercial Crew Program. The goal of NASA’s Commercial Crew Program is safe, reliable, and cost-effective transportation to and from the International Space Station and low Earth orbit. This already is providing additional research time and has increased the opportunity for discovery aboard humanity’s microgravity testbed, including helping NASA prepare for human exploration of the Moon and Mars.
      Learn more about NASA’s Commercial Crew program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Leah Cheshier
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov
      Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Share
      Details
      Last Updated Sep 07, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew International Space Station (ISS) ISS Research View the full article
    • By NASA
      The Roscosmos Soyuz MS-26 spacecraft will launch from the Baikonur Cosmodrome in Kazakhstan to the International Space Station with (pictured left to right) NASA astronaut Don Pettit and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner.Credit: Gagarin Cosmonaut Training Center NASA astronaut Don Pettit will launch aboard the Roscosmos Soyuz MS-26 spacecraft, accompanied by cosmonauts Alexey Ovchinin and Ivan Vagner, to the International Space Station where they will join the Expedition 71 crew in advancing scientific research.
      Pettit, Ovchinin, and Vagner will lift off at 12:23 p.m. EDT Wednesday, Sept. 11 (9:23 p.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
      Coverage will stream on NASA+, the NASA app, and the agency’s website. Learn how to stream NASA content through a variety of platforms including social media.
      After a two-orbit, three-hour trajectory to the station, the spacecraft will automatically dock at 3:33 p.m. at the orbiting laboratory’s Rassvet module. Shortly after, hatches will open between the spacecraft and the station.
      Once aboard, the trio will join NASA astronauts Tracy C. Dyson, Mike Barratt, Matthew Dominick, Jeanette Epps, Butch Wilmore, and Suni Williams, as well as Roscosmos cosmonauts Nikolai Chub, Alexander Grebenkin, and Oleg Kononenko.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      11:15 a.m. – Launch coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      12:23 p.m. – Launch
      2:30 p.m. – Rendezvous and docking coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      3:33 p.m. – Docking
      5:30 p.m. – Hatch opening and welcome remarks coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      5:50 p.m. – Hatch opening
      The trio will spend approximately six months aboard the orbital laboratory as Expedition 71 and 72 crew members before returning to Earth in the spring of 2025. This will be the fourth spaceflight for Pettit and Ovchinin, and the second for Vagner.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future human missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Sep 06, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Astronauts Donald R. Pettit Humans in Space ISS Research Johnson Space Center View the full article
    • By NASA
      Learn Home NASA Summer Camp Inspires… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   2 min read
      NASA Summer Camp Inspires Future Climate Leaders
      From July 15-19, 2024, the Coastal Equity and Resilience Hub at the Georgia Institute of Technology collaborated with the University of Georgia (UGA) Marine Extension and Georgia Sea Grant to host a week-long NASA Sea Level Changemakers Summer Camp. The camp introduced 14 rising 7th-8th graders to how coastal areas are changing due to sea level rise. Set at the UGA Marine Education Center and Aquarium on Skidaway Island, the camp offered students hands-on activities and outdoor educational experiences, where they analyzed real data collected by NASA scientists and learned about community adaptations to flooding. Students interacted with experts from NASA’s Jet Propulsion Laboratory, UGA, and Georgia Tech, gaining insights into satellite observations, green infrastructure, environmental sensors, and careers related to sea level rise. The camp also included a visit to the Pin Point Heritage Museum, where students engaged with leaders from the historic Gullah Geechee community of Pin Point. The camp concluded with a boat trip to Wassaw Island, where students observed the effects of sea level rise on an undeveloped barrier island and compared these observations with earlier findings from urban environments. Funding from the NASA’s Science Activation Program and its Sea Level Education, Awareness, and Literacy (SEAL) team ensured that the camp was accessible to all students, eliminating financial barriers for groups traditionally underrepresented in STEM education.
      “This investment from NASA has provided an amazing opportunity for youth in coastal Georgia to utilize NASA data and resources on a critical issue affecting their communities,” said Jill Gambill, executive director of the Coastal Equity and Resilience (CEAR) Hub at Georgia Tech. “They have more confidence now in their knowledge of sea level rise and potential solutions.”
      The Sea Level Education, Awareness, and Literacy (SEAL) team is supported by NASA under cooperative agreement award number NNH21ZDA001N-SCIACT and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Participants of the 2024 NASA Sea Level Changemakers Summer Camp in Savannah, GA Share








      Details
      Last Updated Sep 06, 2024 Editor NASA Science Editorial Team Location Jet Propulsion Laboratory Related Terms
      Earth Science NOAA (National Oceanic and Atmospheric Administration) Opportunities For Students to Get Involved Science Activation Sea Level Rise Explore More
      2 min read Leveraging Teacher Leaders to Share the Joy of NASA Heliophysics


      Article


      2 days ago
      2 min read NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects


      Article


      3 days ago
      2 min read Co-creating authentic STEM learning experiences with Latino communities


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A National Advisory Committee for Aeronautics researcher notes the conditions on the P-39L after its first test run in the Icing Research Tunnel on Sept. 13, 1944. The aircraft was too large to fit in the test section, so it was installed downstream in a larger area of the tunnel. The initial tests analyzed ice buildup on the nose, propeller blades, and antennae. In the summer of 1945, the P-39L was used to demonstrate the effectiveness of a thermal pneumatic boot ice-prevention system and heated propeller blades.Credit: NASA On Sept. 13, 1944, researchers subjected a Bell P-39L Airacobra to frigid temperatures and a freezing water spray in the National Advisory Committee for Aeronautics (NACA)’s new Icing Research Tunnel (IRT) to study inflight ice buildup. Since that first run at the Aircraft Engine Research Laboratory (now NASA’s Glenn Research Center) in Cleveland, the facility has operated on a regular basis for 80 years and remains the oldest and one of the largest icing tunnels in the world.
      Water droplets in clouds can freeze on aircraft surfaces in certain atmospheric conditions. Ice buildup on the forward edges of wings and tails causes significant decreases in lift and rapid increases in drag. Ice can also block engine intakes and add weight. NASA has a long tradition of working to understand the conditions that cause icing and developing systems that prevent and remove ice buildup.
      The NACA decided to build its new icing tunnel adjacent to the lab’s Altitude Wind Tunnel to take advantage of its powerful cooling equipment and unprecedented refrigeration system. The system, which can reduce air temperature to around –30 degrees Fahrenheit, produces realistic and repeatable icing conditions using a spray nozzle system that creates small, very cold droplets and a drive fan that generates airspeeds up to 374 miles per hour.
      View upstream of the Icing Research Tunnel’s 25-foot-diameter drive fan in 1944. The original 12-bladed wooden fan and its 4,100-horsepower motor could produce air speeds up to 300 miles per hour. The motor and fan were replaced in 1987 and 1993, respectively.Credit: NASA Two rudimentary icing tunnels had briefly operated at the NACA’s Langley Memorial Aeronautical Laboratory in Hampton, Virginia, but icing research primarily relied on flight testing. The sophisticated new tunnel in Cleveland offered a safer way to study icing physics, test de-icing systems, and develop icing instrumentation.
      During World War II, inlet icing was a key contributor to the heavy losses suffered by C-46s flying supply missions to allied troops in China. In February 1945, a large air scoop from the C-46 Commando was installed in the tunnel, where researchers determined the cause of the issue and redesigned the scoop to prevent freezing water droplets entering. The modifications were later incorporated into the C–46 and Convair C–40.
      A National Advisory Committee for Aeronautics engineer experiments with an Icing Research Tunnel water spray system design in September 1949. Researchers used data taken from research flights to determine the proper droplet sizes. The atomizing spray system was perfected in 1950.Credit: NASA Despite these early successes, NACA engineers struggled to improve the facility’s droplet spray system because of a lack of small nozzles able to produce sufficiently small droplets. After years of dogged trial and error, the breakthrough came in 1950 with an 80-nozzle system that produced the uniform microscopic droplets needed to properly simulate a natural icing cloud. 
      Usage of the IRT increased in the 1950s, and the controlled conditions produced by the facility helped researchers define specific atmospheric conditions that produce icing. The Civil Aeronautics Authority (the precursor to the Federal Aviation Administration) used this data to establish regulations for all-weather aircraft. The facility also contributed to new icing protections for antennae and jet engines and the development of cyclical heating de-icing systems.
      The success of the NACA’s icing program, along with the increased use of jet engines – which permitted cruising above the weather – reduced the need for additional icing research. In early 1957, just before the NACA transitioned to NASA, the center’s icing program was terminated. Nonetheless, the IRT remained active throughout the 1960s and 1970s supporting industry testing.
      The Icing Research Tunnel is highlighted in this 1973 aerial photograph. The larger Altitude Wind Tunnel (AWT) is located behind it, and the Refrigeration Building that supported both tunnels is immediately to the left of the AWT.Credit: NASA By the mid-1970s, new icing issues were arising due to the increased use of helicopters, regional airliners, and general aviation aircraft. The center held an icing workshop in July 1978 where over 100 icing experts from across the world converged and lobbied for a reinstatement of NASA’s icing research program.
      The agency agreed to provide funding to support a small team of researchers and increase operation of the icing facility. In 1982, a deadly icing-related airline crash spurred NASA to bring back a full-fledged icing research program.
      Nearly all the tunnel’s major components were subsequently upgraded. Use of the IRT skyrocketed, and there was at least a one-year wait for new tests during this period. In 1988, the facility operated more hours than any year since 1950.
      This model was installed in the Icing Research Tunnel in 2023 as part of the Advanced Air Mobility Rotor Icing Evaluation Study, which sought to refine testing of rotating models in the tunnel, validate 3D computational models, and study propeller icing issues.Credit: NASA The facility was used in a complementary way with the Twin Otter aircraft and computer simulation to improve de-icing systems, predictive tools, and instrumentation. IRT testing also accelerated the all-weather certification of the OH-60 Black Hawk helicopter. In the 1990s, the icing program turned its attention to combatting super-cooled large droplets, which can cause ice buildup in areas not protected by leading edge de-icing systems, and tailplane icing, which can cause commuter aircraft to pitch forward.
      The IRT was one of the busiest facilities at the center in the 2000s and continues to maintain a steady test schedule today, investigating icing on turbofan engines and propellers, refining testing of rotating models, validating 3D models, and much more. The IRT been used to develop nearly every modern ice protection system, provided key icing environment data to regulatory agencies, and validated leading ice prediction software. After 80 years, it remains a critical tool for sustaining NASA’s leadership in the icing field.
      More Resources:
      “We Freeze to Please”: A History of NASA’s Icing Research Tunnel and the Quest for Flight Safety Icing Research Tunnel Website International Historic Mechanical Engineering Landmark NASA Glenn’s Aeronautics Research NASA’s Aeronautics Research Mission Directorate Explore More
      4 min read Research Plane Dons New Colors for NASA Hybrid Electric Flight Tests 
      Article 1 day ago 8 min read 40 Years Ago: STS-41D – First Flight of Space Shuttle Discovery
      Article 2 days ago 6 min read 235 Years Ago: Herschel Discovers Saturn’s Moon Enceladus
      Article 7 days ago View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Students take a tour of NASA Glenn’s Telescience Support Center, where researchers operate International Space Station experiments. Credit: NASA/Jef Janis School is back in session, and the joy of learning is back on students’ minds. Teachers and parents seeking ways to extend students’ academic excitement outside of the classroom should know NASA’s Glenn Research Center in Cleveland offers various opportunities to engage with NASA.
      NASA educators encourage Ohio students and teachers to take part in the incredible space and aeronautics research happening right in their backyards.

      “We have lofty goals to send the first woman and first person of color to the Moon, on to Mars, and beyond. To get there, we’ll need all the creativity and talent available to us,” said Darlene Walker, Glenn’s Office of STEM Engagement director. “We offer programs, events, and experiences at Glenn to inspire and attract students to NASA careers.”
      Throughout the year, NASA Glenn offers in-person and virtual events for students and schools.
      6 Ways Students Can Engage With NASA Glenn
      One-day events are open to students and teachers who are U.S. citizens as well as Ohio schools or other youth-serving organizations. Registration generally opens one to two months prior to the event. “Event dates may be subject to change. Check the Glenn STEM Engagement webpage for the most up-to-date information.”
      Events are designed to inspire students and spark their interest in STEM fields. These events feature NASA experts, engaging STEM activities, and tours of Glenn facilities.
      1. High School Shadowing Days | High school students

      Offered in fall and spring, this one-day event allows high school students to explore career opportunities in STEM, as well as business.
      Fall Event Date – Nov. 14, 2024
      Registration Opens – Sept. 16, 2024
      Spring Event Date – May 15, 2025
      Registration Opens – March 14, 2025
      2. Girls in STEM | 5-8th grade students

      To inspire an interest in STEM fields among middle school students, Girls in STEM features female Glenn employees, STEM activities, and tours of center facilities.
      Event Date – April 10, 2025
      Registration Opens – Feb. 10, 2025
      3. Aviation Day | Middle and high school students

      This one-day event celebrates advancements in aviation and encourages middle and high school students’ interest in aeronautics.
      Event Date – Aug. 28, 2025
      Registration Opens – June 27, 2025
      4. TECH Day | Middle school students

      TECH is short for Tours of NASA, Engineering challenge, Career exploration, and Hands-on activity. This event includes tours of center facilities, a student engineering design challenge, and career exploration opportunities.
      Event Date – May 1, 2025
      Registration Opens – Feb. 28, 2025
      5. Manufacturing Day | High school students

      Manufacturing Day aims to educate high school students about careers in the manufacturing field while encouraging an interest in STEM. Students will see how teams of engineers, researchers, and technicians work together to design and prototype aeronautics and space hardware.
      Event Date – Sept. 18, 2025
      Registration Opens – July 18, 2025
      6. NASA STEM Kids Virtual Events | K-4th grade students

      These virtual events are designed to engage kindergarten through fourth grade students by sharing the excitement of NASA’s missions of exploration and discovery through virtual tours, conversations with NASA experts, and hands-on activities.
      Event Dates – Dec. 5, 2024; March 8, 2025; June 7, 2025; and Sept. 13, 2025
      Registration Opens – 60 days prior to each event
      “Through these opportunities, we want students to see astronauts, scientists, engineers, and role models who look like them and grew up like them work toward NASA’s missions and goals,” Walker said. “We hope they see themselves achieving these things too. We have all kinds of careers at NASA. Any career you can find outside of NASA, you can find here as well.”

      Additional programs and projects
      Glenn offers additional programs and projects for schools, teachers, and students looking for other ways to engage with NASA:
      High School Capstones Glenn Engineering Design Challenges MUREP Precollege Summer Institute MUREP Aerospace Academy For more information about these opportunities, reach out the NASA contact listed on the correlating web page.
      Learn more about NASA’s Office of STEM Engagement.

      Jacqueline Minerd 
      NASA’s Glenn Research Center 
      View the full article
  • Check out these Videos

×
×
  • Create New...