Jump to content

From Psychology to Space: Alexandra Whitmire’s Journey and Impact in NASA’s Human Research Program


Recommended Posts

  • Publishers
Posted

From navigating the depths of the human mind to exploring the vastness of space, Dr. Alexandra (Sandra) Whitmire helps lead research on the effects of prolonged isolation and confinement as NASA prepares to voyage to the Moon and eventually Mars. 

Whitmire is the lead scientist for the Human Factors and Behavioral Performance element (HFBP) within NASA’s Human Research Program, or HRP. HFBP selects, supports, and helps design studies for Johnson Space Center’s HERA (Human Exploration Research Analog), which conducts missions simulating isolation and confinement to further understand psychological effects on humans.  

These studies evaluate how crews work as a team and overcome stressors, bringing to light the potential effects of prolonged isolation on behavioral health. They also help reveal strategies for keeping crew members cohesive and engaged on long-duration missions. With greater workloads, higher stress, and more isolation anticipated in future spaceflight missions, especially with communication delays, this research is crucial. 

A woman with long dark hair, wearing a dark top, stands in front of the U.S. flag and a NASA logo on a beige wall.
Alexandra Whitmire at a Human Resources swearing-in ceremony at NASA’s Johnson Space Center.
Credit: NASA/Robert Markowitz

Strategies that support astronauts’ mental health have been around since the early days of spaceflight, and a strong team at NASA is in place to support the behavioral health of crews on the International Space Station. This team facilitates services such as communication with family, regular provision of crew care packages, and guidance on the optimal use of onboard methods that seek to counter adverse effects of spaceflight. For instance, lighting systems that simulate daytime and nighttime can help maintain circadian rhythms in the dark of deep space. HFBP learns from the astronauts’ current psychological support teams, while also planning a research strategy that aims to maintain this level of care in future missions beyond low Earth orbit.  

Initially working through KBR as a research coordinator, Whitmire played a key role in establishing NASA’s behavioral health and performance research group in 2006. Over time, this small group advocated for dedicated research facilities, leading to the creation of HERA in 2013 and a Behavioral Health and Performance Laboratory in 2016. HFBP also initiates and oversees studies in Antarctica, and also created and managed studies previously conducted through the Scientific International Research In a Unique terrestrial Station, or SIRIUS, a series of international missions that were held inside a ground-based analog facility in Moscow, Russia. 

Whitmire’s role now involves managing projects aimed at mitigating risks for future spaceflight. She specializes in fatigue management, performance measurement, and strategies to counter behavioral changes that may result from spaceflight.  

“My journey to NASA was quite unexpected,” she said. “With a background in psychology and writing, I never imagined I’d find an opportunity working in space exploration.” 

Whitmire began her career supporting the state of Texas and MD Anderson Cancer Center on organizational development. She joined NASA’s HRP in 2006 as a research coordinator for the Human Health and Performance element. 

Whitmire completed her bachelor’s degree in English and Psychology from the University of Texas at Austin. She then earned her master’s in psychology, with a focus on experimental psychology, from the University of Texas in San Antonio, and years later, while continuing her full-time work with KBR, she completed her doctorate in psychology from Capella University. 

A woman in a black uniform pours dried vegetables from a large container into a measuring cup at a table. The table has multiple jars of dried vegetables, and the background features a habitat with storage boxes, a blue exercise bike, and various equipment.
Katie Koube, a HERA (Human Exploration Research Analog) crew member from Campaign 6 Mission 4, prepares food inside the ground-based habitat.

Through HERA missions, HRP conducts studies that seek to evaluate how crew health and performance can be affected by stressors anticipated in future exploration missions.  One example study, led by Dr. Grace Douglas, a food technology scientist at Johnson, explored a restricted food system in which meals were replaced with compact bars. Douglas found that limited food options were associated with reduced eating and caloric intake, as well as decrements in mood, highlighting the importance of an acceptable food system for mental well-being on long duration missions.  

Another study led by Dr. Leslie DeChurch, a professor of Communication and Psychology from Northwestern University in Evanston, Ill., revealed that teams performed worse on a complex, conceptual task at the end of a mission compared to earlier on, highlighting the need to maintain team cohesion and performance over time. Still more studies seek to evaluate the effects of communications delays of up to five minutes each way between crew and HERA’s mission control, which sits just outside the HERA facility.   

As NASA prepares to launch the first crewed Artemis missions, HRP’s behavioral health team is also incorporating studies to address Moon-specific challenges. The team is focused on the unique demands of lunar landings, such as high-tempo operations and seconds-long communication delays. The current goal is to increase the fidelity of HERA to future Artemis missions to ensure that more meaningful, operationally-relevant results emerge from future investigations.  

A group of four NASA astronauts in black uniforms are smiling and posing for a photo inside a space station module. One of the astronauts is holding a cake with a NASA logo on it. The background includes various equipment and a U.S. flag.
The HERA Campaign 7 Mission 1 crew members inside the analog environment at NASA’s Johnson Space Center in Houston.

Through these studies, scientists learn valuable lessons about resilience and coping mechanisms that can benefit future space missions. Their findings emphasize the importance of maintaining social connections, adequate work-rest schedules, and opportunities for exercise to support mental health. Being intentional and reflective with gratitude and positive emotions has also shown significant value, Whitmire notes, adding that during her time at NASA, she has learned more about the importance of relationships, communication, and resolving problems together as a team. 

“Overall, our goal is to ensure that astronauts are well-prepared for and supported through the psychological demands of space exploration. We seek to apply these insights to improve mental health support for everyone,” Whitmire said. “All of us can learn from these crew members in their periods of isolation to get insights on how to live happier, healthier lives here on Earth.” 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      ESA (European Space Agency) astronaut Samantha Cristoforetti pictured aboard the International Space Station on Dec. 20, 2014, during Expedition 42.Credit: NASA Crew members aboard the International Space Station celebrate the holiday season in a unique way while living and working at the orbiting laboratory. Each crew member, including the current Expedition 72, spends time enjoying the view of Earth from the space station, privately communicating with their friends and families, and sharing a joint meal with their expedition crewmates, while continuing experiments and station maintenance.
      This view of the rising Earth greeted the Apollo 8 astronauts William Ander, Frank Borman, and James Lovell on Dec. 24, 1968, as they approached from behind the Moon after the fourth nearside lunar orbit.Credit: NASA As the first crew to spend Christmas in space and leave Earth orbit, Apollo 8 astronauts Frank Borman, James Lovell, and William Anders, celebrated while circling the Moon in December 1968. The crew commemorated Christmas Eve by reading opening verses from the Bible’s Book of Genesis as they broadcast scenes of the lunar surface below. An estimated one billion people across 64 countries tuned in to the crew’s broadcast.
      Skylab 4 astronauts Gerald Carr, Edward Gibson, and William Pogue trim their homemade Christmas tree in December 1973. Credit: NASA In 1973, Skylab 4 astronauts Gerald Carr, Edward Gibson, and William Pogue celebrated Thanksgiving, Christmas, and New Year’s in space, as the first crew to spend the harvest festival and ring in the new year while in orbit. The crew built a homemade tree from leftover food containers, used colored decals as decorations, and topped it with a cardboard cutout in the shape of a comet. Carr and Pogue conducted a seven-hour spacewalk to change out film canisters and observe the passing Comet Kohoutek on Dec. 15, 1973. Once back inside the space station, the crew enjoyed a holiday dinner complete with fruitcake, communicated with their families, and opened presents.

      NASA astronaut Jeffrey Hoffman pictured with a dreidel during Hanukkah in December 1993.Credit: NASA After NASA launched the agency’s Hubble Space Telescope into Earth’s orbit in 1990, NASA sent a space shuttle crew on a mission, STS-61, to service the telescope. In 1993, NASA astronaut Jeffrey Hoffman celebrated Hanukkah after completing the third spacewalk of the servicing mission. Hoffman celebrated with a traveling menorah and dreidel.
      STS103-340-036 (19-27 December 1999) — Wearing Santa hats, astronauts John M. Grunsfeld and Steven L. Smith blend with the season for a brief celebration on the mid deck of the Space Shuttle Discovery. The interruption was very brief as the two mission specialists shortly went about completing their suit-up process in order to participate in STS-103 space walk activity, performing needed work on the Hubble Space Telescope (HST).Credit: NASA As NASA continued to support another Hubble Space Telescope servicing mission, the STS-103 crew celebrated the first space shuttle Christmas aboard Discovery in 1999. NASA astronauts Curtis Brown, Scott Kelly, Steven Smith, John Grunsfeld, and Michael Foale, along with ESA (European Space Agency) astronauts Jean-François Clervoy and Claude Nicollier enjoyed duck foie gras on Mexican tortillas, cassoulet, and salted pork with lentils. Smith and Grunsfeld completed repairs on the telescope during a spacewalk on Dec. 24, 1999, and at least one American astronaut has celebrated Christmas in space every year since.

      Expedition 1 crew members Yuri Gidzenko of Roscosmos, left, NASA astronaut William Shepherd, and Sergei Krikalev of Roscosmos reading a Christmas message in December 2000.
      Credit: NASA In November 2000, the arrival of Expedition 1 crew members, NASA astronaut William Shepherd and Roscosmos cosmonauts Yuri Gidzenko and Sergei Krikalev, aboard the International Space Station, marked the beginning of a continuous presence in space. As the first crew to celebrate the holiday season at the laboratorial outpost, they began the tradition of reading a goodwill message to those back on Earth. Shepherd honored a naval tradition of writing a poem as the first entry of the new year in the ship’s log.

      For more than 24 years, NASA has supported a continuous U.S. human presence aboard the International Space Station, through which astronauts have learned to live and work in space for extended periods of time. As NASA supports missions to and from the station, crew members have continued to celebrate the holidays in space.
      Expedition 4 crew members, NASA astronauts Daniel Bursch and Carl Walz, along with Roscosmos cosmonaut Yuri Onufriyenko, pose for a Christmas photo in December 2001. Credit: NASA Expedition 8 crew members, NASA astronaut Michael Foale, left, and Roscosmos cosmonaut Aleksandr Kaleri, right, celebrate Christmas in December 2003. Credit: NASA Expedition 10 crew members, Roscosmos cosmonaut Salizhan Sharipov, left, and NASA astronaut Leroy Chiao, right, celebrate New Year’s Eve in December 2004.Credit: NASA Expedition 12 crew members, Roscosmos cosmonaut Tokarev, left, and NASA astronaut William McArthur, pose with Christmas stockings in December 2005. NASA Expedition 14 crew members, Roscosmos cosmonaut Mikhail Tyurin, left, and NASA astronauts Michael Lopez-Alegria and Suni Williams pose wearing Santa hats in December 2006.Credit: NASA Expedition 16 crew members, Roscosmos cosmonaut Yuri Malenchenko, left, and NASA astronauts Peggy Whitson and Daniel Tani, with Christmas stockings and presents in December 2007. Expedition 18 crew members enjoy Christmas dinner in December 2008. Expedition 22 crew members gather around the dinner table in December 2009.Credit: NASA Expedition 26 crew members celebrates New Year’s Eve in December 2010.Credit: NASA Expedition 30 crew members pictured in December 2011.Credit: NASA Expedition 34 crew members pictured in December 2012. Credit: NASA Expedition 42 crew members leave milk and cookies for Santa and hang stockings using the airlock as a makeshift chimney in December 2013.Credit: NASA Expedition 50 crew members celebrate New Year’s Eve in December. Credit: NASA Expedition 54 crew member NASA astronaut Mark Vande Hei pictured as an elf for Christmas in December 2017.Credit: NASA Expedition 58 crew members inspect stockings for presents in December 2018 Expedition 61 crew member NASA astronaut Jessica Meir pictured with Hanukkah-themed socks in the cupola in December 2019. Expedition 61 crew members NASA astronauts Andrew Morgan, Christina Koch, and Jessica Meir, along with ESA (European Space Agency) astronaut Luca Parmitano share a holiday message on Dec. 23, 2019, from the International Space Station.Credit: NASA NASA astronaut Kayla Barron pictured with presents she wrapped for her crewmates in December 2021.Credit: NASA Expedition 68 crew members wear holiday outfits in December 2022.Credit: NASA Expedition 70 flight engineer NASA astronaut Jasmin Moghbeli’s husband and daughters made a felt menorah for her to celebrate Hanukkah during her mission. Since astronauts can’t light real candles aboard the space station, Moghbeli pinned felt “lights” for each night of the eight-day holiday. A dreidel spun in weightlessness will continue spinning until it comes in contact with another object but can’t land on any of its four faces. Expedition 70 crew members recorded a holiday message for those back on Earth.

      Expedition 70 NASA astronaut Jasmin Moghbeli’s felt menorah and dreidel that she used to celebrate Hanukkah in December 2023. Credit: NASA NASA astronauts Don Pettit and Suni Williams, Expedition 72 flight engineer and commander respectively, pose for a fun holiday season portrait while speaking on a ham radio inside the International Space Station’s Columbus laboratory module. Credit: NASA To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Expedition 72 video holiday message from the International Space Station. Credit: NASA The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. The orbiting laboratory is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under the Artemis campaign and, ultimately, human exploration of Mars.

      Go here for more holiday memories onboard the space station. To learn more about the International Space Station, its research, and its crew, at:

      https://www.nasa.gov/station

      News Media Contacts:
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov

      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov

      View the full article
    • By NASA
      Space Station Astronauts Deliver a Christmas Message for 2024
    • By European Space Agency
      Don’t miss the final ESA Impact of the year!
      Your interactive gateway to the most captivating stories and stunning visuals from ESA.
      View the full article
    • By NASA
      5 Min Read NASA’s Ames Research Center Celebrates 85 Years of Innovation
      The NACA Ames laboratory in 1944 Credits: NASA Ames Research Center in California’s Silicon Valley pre-dates a lot of things. The center existed before NASA – the very space and aeronautics agency it’s a critical part of today. And of all the marvelous advancements in science and technology that have fundamentally changed our lives over the last 85 years since its founding, one aspect has remained steadfast; an enduring commitment to what’s known by some on-center simply as, “an atmosphere of freedom.” 
      Years before breaking ground at the site that would one day become home to the world’s preeminent wind tunnels, supercomputers, simulators, and brightest minds solving some of the world’s toughest challenges, Joseph Sweetman Ames, the center’s namesake, described a sentiment that would guide decades of innovation and research: 
      My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere
      Joseph sweetman ames
      Founding member of the N.A.C.A.
      “My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere,” he said in an address to the graduates of Johns Hopkins University in June 1935.
      That spirit and the people it attracted and retained are a crucial part of how Ames, along with other N.A.C.A. research centers, ultimately made technological breakthroughs that enabled humanity’s first steps on the Moon, the safe return of spacecraft through Earth’s atmosphere, and many other discoveries that benefit our day-to-day lives.
      Russell Robinson momentarily looks to the camera while supervising the first excavation at what would become Ames Research Center.NACA “In the context of my work, an atmosphere of freedom means the freedom to pursue high-risk, high-reward, innovative ideas that may take time to fully develop and — most importantly — the opportunity to put them into practice for the benefit of all,” said Edward Balaban, a researcher at Ames specializing in artificial intelligence, robotics, and advanced mission concepts.
      Balaban’s career at Ames has involved a variety of projects at different stages of development – from early concept to flight-ready – including experimenting with different ways to create super-sized space telescopes in space and using artificial intelligence to help guide the path a rover might take to maximize off-world science results. Like many Ames researchers over the years, Balaban shared that his experience has involved deep collaborations across science and engineering disciplines with colleagues all over the center, as well as commercial and academic partners in Silicon Valley where Ames is nestled and beyond. This is a tradition that runs deep at Ames and has helped lead to entirely new fields of study and seeded many companies and spinoffs.
      Before NASA, Before Silicon Valley: The 1939 Founding of Ames Aeronautical Laboratory “In the fields of aeronautics and space exploration the cost of entry can be quite high. For commercial enterprises and universities pursuing longer term ideas and putting them into practice often means partnering up with an organization such as NASA that has the scale and multi-disciplinary expertise to mature these ideas for real-world applications,” added Balaban.
      “Certainly, the topics of inquiry, the academic freedom, and the benefit to the public good are what has kept me at Ames,” reflected Ross Beyer, a planetary scientist with the SETI Institute at Ames. “There’s not a lot of commercial incentive to study other planets, for example, but maybe there will be soon. In the meantime, only with government funding and agencies like NASA can we develop missions to explore the unknown in order to make important fundamental science discoveries and broadly share them.”
      For Beyer, his boundary-breaking moment came when he searched – and found – software engineers at Ames capable and passionate about open-source software to generate accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. He and other teams of NASA scientists have since applied that software to study and better understand everything from changes in snow and ice characteristics on Earth, as well as features like craters, mountains, and caves on Mars or the Moon. This capability is part of the Artemis campaign, through which NASA will establish a long-term presence at the Moon for scientific exploration with commercial and international partners. The mission is to learn how to live and work away from home, promote the peaceful use of space, and prepare for future human exploration of Mars. 
      “As NASA and private companies send missions to the Moon, they need to plan landing sites and understand the local environment, and our software is freely available for anyone to use,” Beyer said. “Years ago, our management could easily have said ‘No, let’s keep this software to ourselves; it gives us a competitive advantage.’ They didn’t, and I believe that NASA writ large allows you to work on things and share those things and not hold them back.” 
      When looking forward to what the next 85 years might bring, researchers shared a belief that advancements in technology and opportunities to innovate are as expansive as space itself, but like all living things, they need a healthy atmosphere to thrive. Balaban offered, “This freedom to innovate is precious and cannot be taken for granted. It can easily fall victim if left unprotected. It is absolutely critical to retain it going forward, to ensure our nation’s continuing vitality and the strength of the other freedoms we enjoy.”
      Ames Aeronautical Laboratory.NACAView the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA/Quincy Eggert NASA’s Armstrong Flight Research Center in Edwards, California, is preparing today for tomorrow’s mission. Supersonic flight, next generation aircraft, advanced air mobility, climate changes, human exploration of space, and the next innovation are just some of the topics our researchers, engineers, and mission support teams focused on in 2024.
      NASA Armstrong began 2024 with the public debut of the X-59 quiet supersonic research aircraft. Through the unique design of the X-59, NASA aims to reduce the sonic boom to make it much quieter, potentially opening the future to commercial supersonic flight over land. Throughout the first part of the year, NASA and international researchers studied air quality across Asia as part of a global effort to better understand the air we breathe. Later in the year, for the first time, a NASA-funded researcher conducted an experiment aboard a commercial suborbital rocket, studying how changes in gravity during spaceflight affect plant biology.
      Here’s a look at more NASA Armstrong accomplishments throughout 2024:
      Our simulation team began work on NASA’s X-66 simulator, which will use an MD-90 cockpit and allow pilots and engineers to run real-life scenarios in a safe environment. NASA Armstrong engineers completed and tested a model of a truss-braced wing design, laying the groundwork for improved commercial aircraft aerodynamics. NASA’s Advanced Air Mobility mission and supporting projects worked with industry partners who are building innovative new aircraft like electric air taxis. We explored how these new designs may help passengers and cargo move between and inside cities efficiently. The team began testing with a custom virtual reality flight simulator to explore the air taxi ride experience. This will help designers create new aircraft with passenger comfort in mind. Researchers also tested a new technology that will help self-flying aircraft avoid hazards. A NASA-developed computer software tool called OVERFLOW helped several air taxi companies predict aircraft noise and aerodynamic performance. This tool allows manufacturers to see how new design elements would perform, saving the aerospace industry time and money. Our engineers designed a camera pod with sensors at NASA Armstrong to help advance computer vision for autonomous aviation and flew this pod at NASA’s Kennedy Space Center in Florida. NASA’s Quesst mission marked a major milestone with the start of tests on the engine that will power the quiet supersonic X-59 experimental aircraft. In February and March, NASA joined international researchers in Asia to investigate pollution sources. The now retired DC-8 and NASA Langley Gulfstream III aircraft collected air measurements over the Philippines, South Korea, Malaysia, Thailand, and Taiwan. Combined with ground and satellite observations, these measurements continue to enrich global discussions about pollution origins and solutions. The Gulfstream IV joined NASA Armstrong’s fleet of airborne science platforms. Our teams modified the aircraft to accommodate a next-generation science instrument that will collect terrain information of the Earth in a more capable, versatile, and maintainable way. The ER-2 and the King Air supported the development of spaceborne instruments by testing them in suborbital settings. On the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment mission (PACE-PAX), the ER-2 validated data collected by the PACE satellite about the ocean, atmosphere, and surfaces. Operating over several countries, researchers onboard NASA’s C-20A collected data and images of Earth’s surface to understand global ecosystems, natural hazards, and land surface changes. Following Hurricane Milton, the C-20A flew over affected areas to collect data that could help inform disaster response in the future. We also tested nighttime precision landing technologies that safely deliver spacecraft to hazardous locations with limited visibility. With the goal to improve firefighter safety, NASA, the U.S. Forest Service, and industry tested a cell tower in the sky. The system successfully provided persistent cell coverage, enabling real-time communication between firefighters and command posts. Using a 1960s concept wingless, powered aircraft design, we built and tested an atmospheric probe to better and more economically explore giant planets. NASA Armstrong hosted its first Ideas to Flight workshop, where subject matter experts shared how to accelerate research ideas and technology development through flight. These are just some of NASA Armstrong’s many innovative research efforts that support NASA’s mission to explore the secrets of the universe for the benefit of all.
      Share
      Details
      Last Updated Dec 20, 2024 EditorDede DiniusContactSarah Mannsarah.mann@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Mobility Aeronautics C-20A DC-8 Earth Science ER-2 Flight Opportunities Program Quesst (X-59) Sustainable Flight Demonstrator Explore More
      2 min read NASA, Notre Dame Connect Students to Inspire STEM Careers
      Article 5 hours ago 2 min read NASA Flight Rerouting Tool Curbs Delays, Emissions
      Article 5 hours ago 5 min read NASA Technologies Aim to Solve Housekeeping’s Biggest Issue – Dust
      During the flight test with Blue Origin, seven technologies developed by NASA’s Game Changing Development…
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Programs & Projects
      Armstrong Technologies
      Armstrong Capabilities & Facilities
      View the full article
  • Check out these Videos

×
×
  • Create New...