Jump to content

Recommended Posts

  • Publishers
Posted

2 min read

Bright Rocks and “Bright Angel”

Images of large rocks on Mars. NASA's Mars Perseverance rover acquired this image using its Right Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover's mast.
NASA’s Mars Perseverance rover acquired this image using its Right Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover’s mast.

This image was acquired on May 29, 2024 (Sol 1164) at the local mean solar time of 12:40:40.

NASA/JPL-Caltech/ASU

Last week the Perseverance rover descended into Neretva Vallis, an ancient river channel that brought water into Jezero Crater billions of years ago. Rocks found in Neretva Vallis could have come from far upstream, giving us the opportunity to examine material which may have come from many kilometers away. Turning north into the channel has allowed us to complete longer drives, a refreshing change of pace from the rugged terrain we tackled in the Western Margin.

Dodging dunes at Dunraven Pass, we approached Mount Washburn, an outcrop which our Mastcam-Z camera identified from a distance as having spectrally diverse boulders and patches of lighter-toned bedrock. Upon arriving, we were amazed by the variety of colors and textures in the rocks around the rover and immediately got to work planning observations with our remote sensing instruments. Much of our focus was on “Atoko Point”, a bright boulder with dark speckles. After acquiring numerous Mastcam-Z multispectral images and zapping Atoko Point with our SuperCam laser, we began to look towards our next goal: “Bright Angel”. This exposure of light-toned rock, northwest of our current location, stands out vividly in orbital imagery. By examining outcrops at Bright Angel and assessing stratigraphic relationships (i.e. the vertical sequence and stacking of different sets of rocks), it is hoped that we can understand its connection to Neretva Vallis and the crater rim.

Intrigued by what we have found at Mount Washburn, our first stop in the channel, we have now turned to the terrain to the north, where we will add yet another chapter to Perseverance’s story at “Bright Angel”.

Written by Henry Manelski, PhD Student at Purdue University

Share

Details

Last Updated
Jun 10, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Mars Home Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates 2 min read
      Gardens on Mars? No, Just Rocks!
      NASA’s Mars Perseverance rover acquired this image of the area in front of it, showing the Serpentine Lake abrasion patch on the right-hand-side of the rock, with the Green Gardens sampling location on the left. The rover used its onboard Front Right Hazard Avoidance Camera A, and captured the image on Feb. 16, 2025 (sol 1420, or Martian day 1,420 of the Mars 2020 mission) at the local mean solar time of 16:45:19. NASA/JPL-Caltech Over the past week, Perseverance has been parked at a location called “Tablelands,” an area containing the “Serpentine Lake” abrasion patch acquired a few weeks ago. The Mars 2020 team has been diligently analyzing the data from the abrasion patch, and these findings led to the decision to return to Tablelands and attempt a sample at this location. Due to the disaggregated material thwarting our last sample attempt at “Cat Arm Reservoir,” the team was eagerly awaiting results from this sampling attempt at a target called “Green Gardens.”
      Then, very early Monday morning, the CacheCam images came down confirming that Perseverance had collected another core on Mars! The team will be working next on sealing this sample tube.
      NASA’s Mars Perseverance rover acquired this image using its onboard Sample Caching System Camera (CacheCam), located inside the rover underbelly. It looks down into the top of a sample tube to take close-up pictures of the sampled material and the tube as it’s prepared for sealing and storage. The material seen inside the coring bit is the Green Gardens sample. This image was acquired on Feb. 17, 2025 (sol 1420, or Martian day 1,420 of the Mars 2020 mission) at the local mean solar time of 19:16:24. NASA/JPL-Caltech Tablelands, the rock from which the Green Gardens core comes, is exciting to the Science Team because it contains serpentine minerals. These serpentine minerals likely formed several billion years ago when water interacted with rocks before Jezero crater formed. Water altered the minerals originally present in the rock into serpentine, which is often green in color. This characteristic green color is why the team chose the name “Green Gardens” for this sample target. These minerals are especially exciting because their structure and composition can tell us about the history of water on Mars. The formation of serpentine on Earth can support microbial communities, and the same might have been true on Mars. A sample like this from the Jezero crater rim is an important piece of the puzzle to Jezero’s watery past!
      Perseverance is planning to conclude its time at Serpentine Lake with more science observations of the Tablelands outcrop. These measurements could include a reexamination of the Serpentine Lake abrasion patch and analysis of the tailings pile produced by the Green Gardens drill. After snaking around this area for a couple weeks, our next drives will take us further down the slope of the crater rim. We’ll head toward our next stop at a site called “Broom Point,” where more exciting discoveries await!
      Written by Eleanor Moreland, Ph.D. Student Collaborator at Rice University
      Share








      Details
      Last Updated Feb 24, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4458-4460: Winter Schminter


      Article


      4 days ago
      3 min read Cookies, Cream, and Crumbling Cores


      Article


      7 days ago
      2 min read Sols 4454-4457: Getting Ready to Fill the Long Weekend with Science


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
      Sols 4398-4401: Holidays Ahead, Rocks Under the Wheels
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on Dec. 17, 2024, at 23:24:13 UTC — Sol 4396, or Martian day 4,396, or the Mars Science Laboratory mission. NASA/JPL-Caltech Earth planning date: Wednesday, Dec. 18, 2024
      It’s almost holiday time, and preparations are going ahead on Earth and Mars! For myself that means having a packed suitcase sitting behind me to go on my holiday travels tomorrow morning. For Curiosity that means looking forward to a long semi-rest, as we will not do our usual planning for the geology and mineralogy, but will still be monitoring the atmospheric conditions throughout. Today should have been a normal planning day with lots of contact and remote science. Well, Mars had other ideas.
      The regular readers of this blog know that we are driving through quite difficult terrain. The image above gives a good impression on what the rover is dealing with: lots of rocks embedded in sand. I think even hiking would be quite difficult there, let alone driving autonomously. Curiosity, thanks to our excellent rover drivers, makes it successfully most of the time, but here and there Mars just doesn’t play nice. Thus, the rover stopped after 14 meters (about 46 feet) of a planned much longer drive. One of the wheels had caught a low spot between two rocks, and — safety first — the rover stopped and waited for our assessment. The rover drivers found no major problem, as it’s just the middle wheel that hit a bit of a rough patch, and driving can continue in this plan. But better safe than sorry, especially on another planet where there are no tow trucks to get us out of difficulty!
      There was, however, quite a bit of discussion before we decided that course of action. Not because of the wheels themselves, but because the rover also stands in a position where it can only communicate directly with Earth in limited ways as the antenna is not facing the expected direction after the sudden stop. Of course, we still have the orbiters to talk to our rover, so we know it’s all fine. And — all things are three — this all happened on the penultimate plan of the year! Friday we’ll be planning a large set of sols that the rover will be executing on its own on Mars, monitoring the atmosphere and taking regular images of its surroundings, while the Earth-based team enjoys the well-deserved break. We really want to make sure to have everything going right on a day like today, so we all can enjoy the holidays without worrying about the rover!
      With today being the last day of normal science planning, we had lots of ideas, but had to keep the arm stowed. The drive fault also meant that we had to forego arm movements, as the rover was sitting on a few rocks, and one of the wheels in that little depression that stopped us, all in ways that meant that a shift of rover weight (such as occurs when we move the arm) could make the rover move. Avoiding this situation, the team kept the arm stowed and focused on remote observations today. ChemCam observes a vein target called “Monrovia Peak” and takes remote images on the target “Jawbone Canyon” and up Mount Sharp toward the yardang unit. Mastcam looks at the target “Circle X Ranch” to investigate the material around the rocks embedded in the sand, looks at “Anacapa Island,” which is a vein target, “Channel Islands,” which is an aeolian ripple, and target “Gould Mesa,” which gets the team especially excited as this is the first glimpse of the so-called boxwork structures, which we saw from orbit even before Curiosity landed. Finally, we drive away from the spot that held us up today. Let’s hope Mars has read the script this time!
      For the looooong break, we are planning autonomous and remote investigations only, and this starts before Friday’s planning, so that we know all is ok! Thus, the other three sols in today’s planning have Aegis, the automated ChemCam LIBS observation, a Mastcam 360° mosaic, and many, many atmospheric observations. It’s going to be a feast for DAN, REMS, and generally the atmospheric science on Mars, while here on Earth we enjoy the treats of the season. The Curiosity team hopes you do, too. See you in 2025!
      Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Share








      Details
      Last Updated Dec 20, 2024 Related Terms
      Blogs Explore More
      3 min read Perseverance Blasts Past the Top of Jezero Crater Rim


      Article


      11 hours ago
      3 min read Sols 4396-4397: Roving in a Martian Wonderland


      Article


      2 days ago
      2 min read Sols 4393-4395: Weekend Work at the Base of Texoli Butte


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Red Rocks with Green Spots at ‘Serpentine Rapids’
      NASA’s Mars Perseverance rover acquired this image, a nighttime mosaic of the Malgosa Crest abrasion patch at “Serpentine Rapids,” using its SHERLOC WATSON camera, located on the turret at the end of the rover’s robotic arm. The diameter of the abrasion patch is 5 centimeters (about 2 inches) and the large green spot in the upper center left of the image is approximately 2 millimeters (about 0.08 inch) in diameter. Mosaic source images have been debayered, flat-fielded, and linearly color stretched. This image was acquired on Aug. 19, 2024 (sol 1243, or Martian day 1,243 of the Mars 2020 mission) at the local mean solar time of 19:45:30. NASA/JPL-Caltech After discovering and sampling the “leopard spots” of “Bright Angel,” it became apparent that Perseverance’s journey of discovery in this region was not yet finished. Approximately 20 sols (Martian days) after driving south across Neretva Vallis from Bright Angel, the rover discovered the enigmatic and unique red rocks of “Serpentine Rapids.”
      At Serpentine Rapids, Perseverance used its abrading bit to create an abrasion patch in a red rock outcrop named “Wallace Butte.” The 5-cm diameter abrasion patch revealed a striking array of white, black, and green colors within the rock. One of the biggest surprises for the rover team was the presence of the drab-green-colored spots within the abrasion patch, which are composed of dark-toned cores with fuzzy, light green rims.
      On Earth, red rocks — sometimes called “red beds” — generally get their color from oxidized iron (Fe3+), which is the same form of iron that makes our blood red, or the rusty red color of metal left outside. Green spots like those observed in the Wallace Butte abrasion are common in ancient “red beds” on Earth and form when liquid water percolates through the sediment before it hardens to rock, kicking off a chemical reaction that transforms oxidized iron to its reduced (Fe2+) form, resulting in a greenish hue. On Earth, microbes are sometimes involved in this iron reduction reaction. However, green spots can also result from decaying organic matter that creates localized reducing conditions. Interactions between sulfur and iron can also create iron-reducing conditions without the involvement of microbial life.
      Unfortunately, there was not enough room to safely place the rover arm containing the SHERLOC and PIXL instruments directly atop one of the green spots within the abrasion patch, so their composition remains a mystery. However, the team is always on the lookout for similar interesting and unexpected features in the rocks.
      The science and engineering teams are now dealing with incredibly steep terrain as Perseverance ascends the Jezero Crater rim. In the meantime, the Science Team is hanging on to the edge of their seats with excitement and wonder as Perseverance makes the steep climb out of the crater it has called home for the past two years. There is no shortage of wonder and excitement across the team as we contemplate what secrets the ancient rocks of the Jezero Crater rim may hold.
      Written by Adrian Broz, Postdoctoral Scientist, Purdue University/University of Oregon
      Share








      Details
      Last Updated Oct 25, 2024 Related Terms
      Blogs Explore More
      4 min read Sols 4341-4342: A Bumpy Road


      Article


      22 hours ago
      3 min read Sols 4338-4340: Decisions, Decisions


      Article


      3 days ago
      2 min read Sols 4336-4337: Where the Streets Have No Name


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      2 min read
      ESA/NASA’s SOHO Spies Bright Comet Making Debut in Evening Sky
      The tail of comet C/2023 A3 Tsuchinshan-ATLAS spanned the view of the Solar and Heliospheric Observatory (SOHO) on Oct. 10, 2024. ESA/NASA The ESA (European Space Agency) and NASA Solar and Heliospheric Observatory (SOHO) has captured images of the second-brightest comet to ever pass through its field of view during the spacecraft’s nearly 29-year career.
      The bright comet is C/2023 A3 Tsuchinshan-ATLAS, which has been garnering a lot of attention from skywatchers recently, displaying a long, dusty tail in pre-dawn skies throughout late September and early October. (Comet McNaught, viewed in 2007, holds the record as the brightest comet SOHO has seen.)
      Between Oct. 7 and 11, the comet blazed through the view of SOHO’s LASCO (Large Angle and Spectrometric Coronagraph Experiment) instrument, which uses a disk to block out the bright light of the Sun so it’s easier to see details and objects near the Sun. This image, taken by SOHO on Oct. 10, 2024, shows the comet and its bright tail streaming from the upper left to the right. Mercury appears as a bright dot on the left.
      After crossing through SOHO’s field of view, the comet will begin putting on an evening show for skywatchers around the world just after sunset starting Saturday, Oct. 12. Each day throughout October, the comet will gradually rise higher and higher in the western sky as it moves farther away from the Sun. But as it does, it will become fainter and fainter. Eagle-eyed skywatchers may be able to spot it with the naked eye for a few days, but after that, observers will likely need binoculars or a telescope to see it as it grows fainter.
      Even if you are unable to spot this comet yourself, you can help SOHO search for others. Scientists and members of the general public have discovered more than 5,000 comets in SOHO imagery, and you can help find even more by visiting the Sungrazer Project.
      By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Oct 11, 2024 Related Terms
      Comets Goddard Space Flight Center Heliophysics Heliophysics Division Skywatching SOHO (Solar and Heliospheric Observatory) The Sun The Sun & Solar Physics Explore More
      2 min read Hubble Spots a Grand Spiral of Starbursts


      Article


      8 hours ago
      2 min read Sail Along with NASA’s Solar Sail Tech Demo in Real-Time Simulation


      Article


      22 hours ago
      6 min read NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Sols 4307-4308: Bright Rocks Catch Our Eyes
      NASA’s Mars rover Curiosity captured this image while exploring a rock-strewn channel of Gediz Vallis on the Red Planet. Mission scientists were particularly intrigued to investigate several bright-toned rocks (at the middle-right, bottom-right and bottom-center of the image), similar to rocks that Curiosity had encountered previously that were unexpectedly rich in sulfur. This image was taken by Left Navigation Camera aboard Curiosity on Sol 4306 — Martian day 4,306 of the Mars Science Laboratory Mission — on Sept. 16, 2024 at 12:47:18 UTC. NASA/JPL-Caltech Earth planning date: Monday, Sept. 16, 2024
      We made good progress through Gediz Vallis in the weekend drive, landing in a segment of the channel containing a mix of loose rubble and other channel-filling debris. Amongst the jumbled scene, though, particular objects of interest caught our eye: bright rocks. In past workspaces in Gediz Vallis, similar bright rocks have been associated with very high to almost pure sulfur contents. As all good geologists know, however, color is not diagnostic, so we cannot assume these are the same as sulfur-rich rocks we have encountered previously. The only way to know is to collect data, and that was a significant focus of today’s plan.
      We planned multiple mosaics across the examples of bright rocks visible in the image above. Mastcam and ChemCam RMI will cover “Bright Dot Lake” and “Sheep Creek” both in the right midfield of the image. Mastcam imaged the example in the bottom right corner of the image at “Marble Falls,” and ChemCam LIBS targeted one of the small bright fragments along the bottom of the image at “Blanc Lake.” There was also a small bit of bright material in the workspace, but unfortunately, it was not reachable by APXS. APXS analyzed a spot near the bright material, at target “Frog Lake,” and MAHLI was able to tack on a few extra images around that target that should capture the bright material. MAHLI also imaged a vuggy target in the workspace at “Grasshopper Flat.”  The wider context of the channel was also of interest for imaging, so we captured the full expanse of the channel with one Mastcam mosaic, and focused another on mounds distributed through the channel at target “Copper Creek.”
      Even with all this rock imaging, we did not miss a beat with our environmental monitoring. We planned regular RAD, REMS, and DAN measurements, mid and late day atmospheric dust observations, a cloud movie, and dust devil imaging. 
      Our drive is planned to take us up onto one of the ridges in the channel. Will we find more bright rocks there? Or something new and unexpected that was delivered down Gediz Vallis by some past Martian flood or debris flow? Only the channel knows!
      Written by Michelle Minitti, Planetary Geologist at Framework
      Share








      Details
      Last Updated Sep 17, 2024 Related Terms
      Blogs Explore More
      2 min read Reaching New Heights to Unravel Deep Martian History!


      Article


      22 hours ago
      5 min read Sols 4304-4006: 12 Years, 42 Drill Holes, and Now… 1 Million ChemCam Shots!


      Article


      4 days ago
      3 min read Sols 4302-4303: West Side of Upper Gediz Vallis, From Tungsten Hills to the Next Rocky Waypoint


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...