Members Can Post Anonymously On This Site
North Carolina Volunteers Work Toward Cleaner Well Water
-
Similar Topics
-
By European Space Agency
Image: This new image from the NASA/ESA Hubble Space Telescope showcases NGC 346, a dazzling young star cluster in the Small Magellanic Cloud. The Small Magellanic Cloud is a satellite galaxy of the Milky Way, located 210 000 light-years away in the constellation Tucana. The Small Magellanic Cloud is less rich in elements heavier than helium — what astronomers call metals — than the Milky Way. This makes conditions in the galaxy similar to what existed in the early Universe.
Although several images of NGC 346 have been released previously, this view includes new data and is the first to combine Hubble observations made at infrared, optical, and ultraviolet wavelengths into an intricately detailed view of this vibrant star-forming factory.
NGC 346 is home to more than 2500 newborn stars. The cluster’s most massive stars, which are many times more massive than our Sun, blaze with an intense blue light in this image. The glowing pink nebula and snakelike dark clouds are the remnant of the birthplace of the stars in the cluster.
The inhabitants of this cluster are stellar sculptors, carving out a bubble from the nebula. NGC 346’s hot, massive stars produce intense radiation and fierce stellar winds that pummel the billowing gas of their birthplace and begin to disperse the surrounding nebula.
The nebula, named N66, is the brightest example of an H II (pronounced ‘H-two’) region in the Small Magellanic Cloud. H II regions are set aglow by ultraviolet light from hot young stars like those in NGC 346. The presence of the brilliant nebula indicates the young age of the star cluster, as an H II region shines only as long as the stars that power it — a mere few million years for the massive stars pictured here.
[Image description: A star cluster within a nebula. The background is filled with thin, pale blue clouds. Parts are thicker and pinker in colour. The cluster is made up of bright blue stars that illuminate the nebula around them. Large arcs of dense dust curve around, before and behind the clustered stars, pressed together by the stars’ radiation. Behind the clouds of the nebula can be seen large numbers of orange stars.]
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Crew Module Test Article (CMTA), a full scale mockup of the Orion spacecraft, is seen in the Pacific Ocean as teams practice Artemis recovery operations during Underway Recovery Test-12 onboard USS Somerset off the coast of California, Saturday, March 29, 2025. NASA/Bill Ingalls Preparations for NASA’s next Artemis flight recently took to the seas as a joint NASA and Department of Defense team, led by NASA’s Exploration Ground Systems Program, spent a week aboard the USS Somerset off the coast of California practicing procedures for recovering the Artemis II spacecraft and crew.
Following successful completion of Underway Recovery Test-12 (URT-12) on Monday, NASA’s Landing and Recovery team and their Defense Department counterparts are certified to recover the Orion spacecraft as part of the upcoming Artemis II test flight that will send NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon.
“This will be NASA’s first crewed mission to the Moon under the Artemis program,” said Lili Villarreal, the landing and recovery director for Artemis II. “A lot of practice led up to this week’s event, and seeing everything come together at sea gives me great confidence that the air, water, ground, and medical support teams are ready to safely recover the spacecraft and the crew for this historic mission.”
A wave breaks inside the well deck of USS Somerset as teams work to recover the Crew Module Test Article (CMTA), a full scale replica of the Orion spacecraft, as they practice Artemis recovery operations during Underway Recovery Test-12 off the coast of California, Thursday, March 27, 2025.NASA/Joel Kowsky Once Orion reenters Earth’s atmosphere, the capsule will keep the crew safe as it slows from nearly 25,000 mph to about 325 mph. Then its system of 11 parachutes will deploy in a precise sequence to slow the capsule and crew to a relatively gentle 20 mph for splashdown off the coast of California. From the time it enters Earth’s atmosphere, the Artemis II spacecraft will fly 1,775 nautical miles to its landing spot in the Pacific Ocean. This direct approach allows NASA to control the amount of time the spacecraft will spend in extremely high temperature ranges.
The Artemis II astronauts trained during URT-11 in February 2024, when they donned Orion Crew Survival System suits and practiced a range of recovery operations at sea using the Crew Module Test Article, a stand -in for their spacecraft.
For the 12th training exercise, NASA astronauts Deniz Burnham and Andre Douglas, along with ESA (European Space Agency) astronaut Luca Parmitano, did the same, moving from the simulated crew module to USS Somerset, with helicopters, a team of Navy divers in small boats, NASA’s open water lead – a technical expert and lead design engineer for all open water operations – as well as Navy and NASA medical teams rehearsing different recovery scenarios.
Grant Bruner, left, and Gary Kirkendall, right, Orion suit technicians, are seen with ESA (European Space Agency) astronaut Luca Parmitano, second from left, and NASA astronauts Deniz Burnham, center, and Andre Douglas, as they prepare to take part in Artemis recovery operations as part of Underway Recovery Test-12 onboard USS Somerset off the coast of California, Thursday, March 27, 2025. NASA/Joel Kowsky “Allowing astronauts to participate when they are not directly involved in a mission gives them valuable experience by exposing them to a lot of different scenarios,” said Glover, who will pilot Artemis II. “Learning about different systems and working with ground control teams also broadens their skillsets and prepares them for future roles. It also allows astronauts like me who are assigned to the mission to experience other roles – in this case, I am serving in the role of Joe Acaba, Chief of the Astronaut Office.”
NASA astronaut and Artemis II pilot Victor Glover, right, speaks to NASA astronauts Andre Douglas and Deniz Burnham as they prepare to take part in practicing Artemis recovery procedures during Underway Recovery Test-12 onboard USS Somerset off the coast of California, Friday, March 28, 2025.NASA/Joel Kowsky NASA astronaut Deniz Burnham smiles after landing in a Navy helicopter onboard USS Somerset during Underway Recovery Test-12 off the coast of California, Thursday, March 27, 2025.NASA/Bill Ingalls As the astronauts arrive safely at the ship for medical checkouts, recovery teams focus on returning the spacecraft and its auxiliary ground support hardware to the amphibious transport dock.
Navy divers attach a connection collar to the spacecraft and an additional line to a pneumatic winch inside the USS Somerset’s well deck, allowing joint NASA and Navy teams to tow Orion toward the ship. A team of sailors and NASA recovery personnel inside the ship manually pull some of the lines to help align Orion with its stand, which will secure the spacecraft for its trip to the shore. Following a safe and precise recovery, sailors will drain the well deck of water, and the ship will make its way back to Naval Base San Diego.
The Artemis II test flight will confirm the foundational systems and hardware needed for human deep space exploration, taking another step toward missions on the lunar surface and helping the agency prepare for human missions to Mars.
About the Author
Allison Tankersley
Public Affairs Specialist
Share
Details
Last Updated Mar 31, 2025 Related Terms
Missions Artemis 2 Exploration Ground Systems Exploration Systems Development Mission Directorate Orion Multi-Purpose Crew Vehicle Explore More
5 min read Old Missions, New Discoveries: NASA’s Data Archives Accelerate Science
Every NASA mission represents a leap into the unknown, collecting data that pushes the boundaries…
Article 2 hours ago 5 min read 20-Year Hubble Study of Uranus Yields New Atmospheric Insights
The ice-giant planet Uranus, which travels around the Sun tipped on its side, is a…
Article 5 hours ago 6 min read She Speaks for the Samples: Meet Dr. Juliane Gross, Artemis Campaign Sample Curation Lead
Article 8 hours ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Located off the coast of Ecuador, Paramount seamount is among the kinds of ocean floor features that certain ocean-observing satellites like SWOT can detect by how their gravitational pull affects the sea surface.NOAA Okeanos Explorer Program More accurate maps based on data from the SWOT mission can improve underwater navigation and result in greater knowledge of how heat and life move around the world’s ocean.
There are better maps of the Moon’s surface than of the bottom of Earth’s ocean. Researchers have been working for decades to change that. As part of the ongoing effort, a NASA-supported team recently published one of the most detailed maps yet of the ocean floor, using data from the SWOT (Surface Water and Ocean Topography) satellite, a collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales).
Ships outfitted with sonar instruments can make direct, incredibly detailed measurements of the ocean floor. But to date, only about 25% of it has been surveyed in this way. To produce a global picture of the seafloor, researchers have relied on satellite data.
This animation shows seafloor features derived from SWOT data on regions off Mexico, South America, and the Antarctic Peninsula. Purple denotes regions that are lower relative to higher areas like seamounts, depicted in green. Eötvös is the unit of measure for the gravity-based data used to create these maps.
NASA’s Scientific Visualization Studio Why Seafloor Maps Matter
More accurate maps of the ocean floor are crucial for a range of seafaring activities, including navigation and laying underwater communications cables. “Seafloor mapping is key in both established and emerging economic opportunities, including rare-mineral seabed mining, optimizing shipping routes, hazard detection, and seabed warfare operations,” said Nadya Vinogradova Shiffer, head of physical oceanography programs at NASA Headquarters in Washington.
Accurate seafloor maps are also important for an improved understanding of deep-sea currents and tides, which affect life in the abyss, as well as geologic processes like plate tectonics. Underwater mountains called seamounts and other ocean floor features like their smaller cousins, abyssal hills, influence the movement of heat and nutrients in the deep sea and can attract life. The effects of these physical features can even be felt at the surface by the influence they exert on ecosystems that human communities depend on.
This map of seafloor features like abyssal hills in the Indian Ocean is based on sea surface height data from the SWOT satellite. Purple denotes regions that are lower relative to higher areas like abyssal hills, depicted in green. Eötvös is the unit of measure for the gravity-based data used to create these maps.NASA Earth Observatory This global map of seafloor features is based on ocean height data from the SWOT satellite. Purple denotes regions that are lower compared to higher features such as seamounts and abyssal hills, depicted in green. Eötvös is the unit of measure for the gravity-based data used to create these maps.NASA Earth Observatory This map of ocean floor features like seamounts southwest of Acapulco, Mexico, is based on sea surface height data from SWOT. Purple denotes regions that are lower relative to higher areas like seamounts, indicated with green. Eötvös is the unit of measure for the gravity-based data used to create these maps.NASA Earth Observatory Mapping the seafloor isn’t the SWOT mission’s primary purpose. Launched in December 2022, the satellite measures the height of water on nearly all of Earth’s surface, including the ocean, lakes, reservoirs, and rivers. Researchers can use these differences in height to create a kind of topographic map of the surface of fresh- and seawater. This data can then be used for tasks such as assessing changes in sea ice or tracking how floods progress down a river.
“The SWOT satellite was a huge jump in our ability to map the seafloor,” said David Sandwell, a geophysicist at Scripps Institution of Oceanography in La Jolla, California. He’s used satellite data to chart the bottom of the ocean since the 1990s and was one of the researchers responsible for the SWOT-based seafloor map, which was published in the journal Science in December 2024.
How It Works
The study authors relied the fact that because geologic features like seamounts and abyssal hills have more mass than their surroundings, they exert a slightly stronger gravitational pull that creates small, measurable bumps in the sea surface above them. These subtle gravity signatures help researchers predict the kind of seafloor feature that produced them.
Through repeated observations — SWOT covers about 90% of the globe every 21 days — the satellite is sensitive enough to pick up these minute differences, with centimeter-level accuracy, in sea surface height caused by the features below. Sandwell and his colleagues used a year’s worth of SWOT data to focus on seamounts, abyssal hills, and underwater continental margins, where continental crust meets oceanic crust.
Previous ocean-observing satellites have detected massive versions of these bottom features, such as seamounts over roughly 3,300 feet (1 kilometer) tall. The SWOT satellite can pick up seamounts less than half that height, potentially increasing the number of known seamounts from 44,000 to 100,000. These underwater mountains stick up into the water, influencing deep sea currents. This can concentrate nutrients along their slopes, attracting organisms and creating oases on what would otherwise be barren patches of seafloor.
Looking Into the Abyss
The improved view from SWOT also gives researchers more insight into the geologic history of the planet.
“Abyssal hills are the most abundant landform on Earth, covering about 70% of the ocean floor,” said Yao Yu, an oceanographer at Scripps Institution of Oceanography and lead author on the paper. “These hills are only a few kilometers wide, which makes them hard to observe from space. We were surprised that SWOT could see them so well.”
Abyssal hills form in parallel bands, like the ridges on a washboard, where tectonic plates spread apart. The orientation and extent of the bands can reveal how tectonic plates have moved over time. Abyssal hills also interact with tides and deep ocean currents in ways that researchers don’t fully understand yet.
The researchers have extracted nearly all the information on seafloor features they expected to find in the SWOT measurements. Now they’re focusing on refining their picture of the ocean floor by calculating the depth of the features they see. The work complements an effort by the international scientific community to map the entire seafloor using ship-based sonar by 2030. “We won’t get the full ship-based mapping done by then,” said Sandwell. “But SWOT will help us fill it in, getting us close to achieving the 2030 objective.”
More About SWOT
The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
To learn more about SWOT, visit:
https://swot.jpl.nasa.gov
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2025-040
Share
Details
Last Updated Mar 19, 2025 Related Terms
SWOT (Surface Water and Ocean Topography) Earth Jet Propulsion Laboratory Oceans Explore More
6 min read ESA Previews Euclid Mission’s Deep View of ‘Dark Universe’
Article 9 hours ago 5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet
Astrophysics observations at ultraviolet (UV) wavelengths often probe the most dynamic aspects of the universe.…
Article 1 day ago 3 min read Students Dive Into Robotics at Competition Supported by NASA JPL
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By Space Force
DAF guidance on Return to In-Person Work for the purpose of creating a more capable and lethal force.
View the full article
-
By NASA
NASA’s Worm logo is displayed in front of the agency’s headquarters in Washington.Credit: NASA For the 13th straight year, NASA has earned the title of Best Place to Work in the Federal Government – large agency – from the Partnership for Public Service. The ranking reflects employee satisfaction and workplace elements across the agency while executing NASA’s mission to explore the unknown and discover new knowledge for the benefit of humanity.
“NASA’s greatest asset has always been its people – those who rise to the challenge of leading in air and space,” said NASA acting Administrator Janet Petro. “This recognition reflects a culture of collaboration, innovation, and excellence that fuels our mission every day and defines NASA as the best place to work in the federal government. I’m honored to lead this remarkable team as we continue benefiting humanity and inspiring the world in the process.”
Throughout 2024, NASA’s workforce supported the agency’s groundbreaking accomplishments, including landing new science and technology on the Moon with an American company for the first time and launching a new mission to study Jupiter’s icy moon Europa. NASA teams also collaborated to maintain more than 24 years of continuous human exploration and scientific research aboard the International Space Station and unveiled its supersonic quiet aircraft.
The agency also shared the wonder of a total eclipse with millions of Americans, conducted the final flight of its Ingenuity helicopter on Mars, and announced the newest class of Artemis Generation astronauts. With the release of its latest Economic Impact Report, NASA demonstrated how its work impacts the U.S. economy, creates value to society, and returns investment to taxpayers.
The Partnership for Public Service began to compile the Best Places to Work rankings in 2003 to analyze federal employee’s viewpoints of leadership, work-life balance, and other factors of their job. A formula is used to evaluate employee responses to a federal survey, dividing submissions into four groups: large, midsize, and small agencies, in addition to their subcomponents.
Read about the Best Places to Work for 2024 online.
To learn more about NASA’s missions, visit:
https://www.nasa.gov
-end-
Share
Details
Last Updated Mar 07, 2025 Related Terms
People of NASA Life at NASA Missions NASA Centers & Facilities View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.