Jump to content

NASA Watches Mars Light Up During Epic Solar Storm


Recommended Posts

  • Publishers
Posted

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

In addition to producing auroras, a recent extreme storm provided more detail on how much radiation future astronauts could encounter on the Red Planet.

Mars scientists have been anticipating epic solar storms ever since the Sun entered a period of peak activity earlier this year called solar maximum. Over the past month, NASA’s Mars rovers and orbiters have provided researchers with front-row seats to a series of solar flares and coronal mass ejections that have reached Mars — in some cases, even causing Martian auroras.

This science bonanza has offered an unprecedented opportunity to study how such events unfold in deep space, as well as how much radiation exposure the first astronauts on Mars could encounter.

The biggest event occurred on May 20 with a solar flare later estimated to be an X12 — X-class solar flares are the strongest of several types — based on data from the Solar Orbiter spacecraft, a joint mission between ESA (European Space Agency) and NASA. The flare sent out X-rays and gamma rays toward the Red Planet, while a subsequent coronal mass ejection launched charged particles. Moving at the speed of light, the X-rays and gamma rays from the flare arrived first, while the charged particles trailed slightly behind, reaching Mars in just tens of minutes.

The unfolding space weather was closely tracked by analysts at the Moon to Mars Space Weather Analysis Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, which flagged the possibility of incoming charged particles following the coronal mass ejection.

If astronauts had been standing next to NASA’s Curiosity Mars rover at the time, they would have received a radiation dose of 8,100 micrograys — equivalent to 30 chest X-rays. While not deadly, it was the biggest surge measured by Curiosity’s Radiation Assessment Detector, or RAD, since the rover landed 12 years ago.

The purple color in this video shows auroras on Mars’ nightside as detected by the ultraviolet instrument aboard NASA’s MAVEN orbiter between May 14 and 20, 2024. The brighter the purple, the more auroras that were present.
NASA/University of Colorado/LASP

RAD’s data will help scientists plan for the highest level of radiation exposure that might be encountered by astronauts, who could use on the Martian landscape for protection.

“Cliffsides or lava tubes would provide additional shielding for an astronaut from such an event. In Mars orbit or deep space, the dose rate would be significantly more,” said RAD’s principal investigator, Don Hassler of Southwest Research Institute’s Solar System Science and Exploration Division in Boulder, Colorado. “I wouldn’t be surprised if this active region on the Sun continues to erupt, meaning even more solar storms at both Earth and Mars over the coming weeks.”

During the May 20 event, so much energy from the storm struck the surface that black-and-white images from Curiosity’s navigation cameras danced with “snow” — white streaks and specks caused by charged particles hitting the cameras.

Similarly, the star camera NASA’s 2001 Mars Odyssey orbiter uses for orientation was inundated with energy from solar particles, momentarily going out. (Odyssey has other ways to orient itself, and recovered the camera within an hour.) Even with the brief lapse in its star camera, the orbiter collected vital data on X-rays, gamma rays, and charged particles using its High-Energy Neutron Detector.

This wasn’t Odyssey’s first brush with a solar flare: In 2003, solar particles from a solar flare that was ultimately estimated to be an X45 fried Odyssey’s radiation detector, which was designed to measure such events.

Learn how NASA’s MAVEN and the agency’s Curiosity rover will study solar flares and radiation at Mars during solar maximum – a period when the Sun is at peak activity. Credit: NASA/JPL-Caltech/GSFC/SDO/MSSS/University of Colorado

Auroras Over Mars

High above Curiosity, NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) orbiter captured another effect of the recent solar activity: glowing auroras over the planet. The way these auroras occur is different than those seen on Earth.

Our home planet is shielded from charged particles by a robust magnetic field, which normally limits auroras to regions near the poles. (Solar maximum is the reason behind the recent auroras seen as far south as Alabama.) Mars lost its internally generated magnetic field in the ancient past, so there’s no protection from the barrage of energetic particles. When charged particles hit the Martian atmosphere, it results in auroras that engulf the entire planet.

During solar events, the Sun releases a wide range of energetic particles. Only the most energetic can reach the surface to be measured by RAD. Slightly less energetic particles, those that cause auroras, are sensed by MAVEN’s Solar Energetic Particle instrument.

Scientists can use that instrument’s data to rebuild a timeline of each minute as the solar particles screamed past, meticulously teasing apart how the event evolved.

“This was the largest solar energetic particle event that MAVEN has ever seen,” said MAVEN Space Weather Lead, Christina Lee of the University of California, Berkeley’s Space Sciences Laboratory. “There have been several solar events in past weeks, so we were seeing wave after wave of particles hitting Mars.”

New Spacecraft to Mars

The data coming in from NASA’s spacecraft won’t only help future planetary missions to the Red Planet. It’s contributing to a wealth of information being gathered by the agency’s other heliophysics missions, including Voyager, Parker Solar Probe, and the forthcoming ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) mission.

Targeting a late-2024 launch, ESCAPADE’s twin small satellites will orbit Mars and observe space weather from a unique dual perspective that is more detailed than what MAVEN can currently measure alone.

More About the Missions

Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.

MAVEN’s principal investigator is based at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder. LASP is also responsible for managing science operations and public outreach and communications. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN mission. Lockheed Martin Space built the spacecraft and is responsible for mission operations. NASA’s Jet Propulsion Laboratory in Southern California provides navigation and Deep Space Network support. The MAVEN team is preparing to celebrate the spacecraft’s 10th year at Mars in September 2024.

For more about these missions, visit:

http://mars.nasa.gov/msl

http://mars.nasa.gov/maven

News Media Contacts

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov

Karen Fox / Charles Blue
NASA Headquarters, Washington
202-358-1600 / 202-802-5345
karen.c.fox@nasa.gov / charles.e.blue@nasa.gov

2024-080

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read Five Facts About NASA’s Moon Bound Technology
      A view of the Moon from Earth, zooming up to IM-2's landing site at Mons Mouton, which is visible in amateur telescopes. Credits: NASA/Scientific Visualization Studio NASA is sending revolutionary technologies to the Moon aboard Intuitive Machines’ second lunar delivery as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term presence on the lunar surface. 
      As part of this CLPS flight to the Moon, NASA’s Space Technology Mission Directorate will test novel technologies to learn more about what lies beneath the lunar surface, explore its challenging terrain, and improve in-space communication.  
      The launch window for Intuitive Machines’ second CLPS delivery, IM-2, opens no earlier than Wednesday, Feb. 26 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After the Intuitive Machines’ Nova-C class lunar lander reaches Mons Mouton, a lunar plateau near the Moon’s South Pole region, it will deploy several NASA and commercial technologies including a drill and mass spectrometer, a new cellular communication network, and a small drone that will survey difficult terrain before returning valuable data to Earth.

      Caption: The Intuitive Machines lunar lander that will deliver NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign is encapsulated in the fairing of the SpaceX Falcon 9 rocket. Credit: SpaceX Here are five things to know about this unique mission to the Moon, the technologies we are sending, and the teams making it happen!  

      1. Lunar South Pole Exploration 
      IM-2’s landing site is known as one of the flatter regions in the South Pole region, suitable to meet Intuitive Machines’ requirement for a lit landing corridor and acceptable terrain slope. The landing location was selected by Intuitive Machines using data acquired by NASA’s Lunar Reconnaissance Orbiter.  
      An illustration of Mons Mouton, a mesa-like lunar mountain that towers above the landscape carved by craters near the Moon’s South Pole.Credit: NASA/Scientific Visualization Studio 2. New Technology Demonstrations 

      NASA’s Polar Resources Ice Mining Experiment, known as PRIME-1, is a suite of two instruments – a drill and mass spectrometer – designed to demonstrate our capability to look for ice and other resources that could be extracted and used to produce propellant and breathable oxygen for future explorers. The PRIME-1 technology will dig up to about three feet below the surface into the lunar soil where it lands, gaining key insight into the soil’s characteristics and temperature while detecting other resources that may lie beneath the surface.  
      Data from the PRIME-1 technology demonstration will be made available to the public following the mission, enabling partners to accelerate the development of new missions and innovative technologies.   
      The Polar Resources Ice Mining Experiment-1 (PRIME-1) will help scientists search for water at the lunar South Pole.Credit: NASA/Advanced Concepts Lab 3. Mobile Robots

      Upon landing on the lunar surface, two commercial Tipping Point technology demonstrations will be deployed near Intuitive Machines’ lander, Tipping Points are collaborations between NASA’s Space Technology Mission Directorate and industry that foster the development of commercial space capabilities and benefit future NASA missions. 
      The first is a small hopping drone developed by Intuitive Machines. The hopper, named Grace, will deploy as a secondary payload from the lander and enable high-resolution surveying of the lunar surface, including permanently shadowed craters around the landing site. Grace is designed to bypass obstacles such as steep inclines, boulders, and craters to cover a lot of terrain while moving quickly, which is a valuable capability to support future missions on the Moon and other planets, including Mars. 
      Artist rendering of the Intuitive Machines Micro Nova Hopper.Credit: Intuitive Machines 4. Lunar Surface Communication
      The next Tipping Point technology will test a Lunar Surface Communications System developed by Nokia. This system employs the same cellular technology used here on Earth, reconceptualized by Nokia Bell Labs to meet the unique requirements of a lunar mission. The Lunar Surface Communications System will demonstrate proximity communications between the lander, a Lunar Outpost rover, and the hopper. 

      Artist rendering of Nokia’s Lunar Surface Communication System (LSCS), which aims to demonstrate cellular-based communications on the lunar surface. Credit: Intuitive Machines 5. Working Together
      NASA is working with several U.S. companies to deliver technology and science to the lunar surface through the agency’s CLPS initiative.  
      NASA’s Space Technology Mission Directorate plays a unique role in the IM-2 mission by strategically combining CLPS with NASA’s Tipping Point mechanism to maximize the potential benefit of this mission to NASA, industry, and the nation.  
      NASA’s Lunar Surface Innovation Initiative and Game Changing Development program within the agency’s Space Technology Mission Directorate led the maturation, development, and implementation of pivotal in-situ resource utilization, communication, and mobility technologies flying on IM-2.  
      Join NASA to watch full mission updates, from launch to landing on NASA+, and share your experience on social media. Mission updates will be made available on NASA’s Artemis blog.  

      A team of engineers from NASA’s Johnson Space Center in Houston and Honeybee Robotics in Altadena, California inspect TRIDENT – short for The Regolith Ice Drill for Exploring New Terrain – shortly after its arrival at the integration and test facility.Credit: NASA/Robert Markowitz Artist’s rendering of Intuitive Machines’ Athena lunar lander on the Moon. Credit: Intuitive Machines
      Artist conception: Earth emerges from behind Mons Mouton on the horizon.Credit: NASA/Scientific Visualization Studio Explore More
      3 min read NASA’s Polar Ice Experiment Paves Way for Future Moon Missions 
      Article 2 weeks ago 6 min read Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander
      Article 1 month ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      Polar Resources Ice Mining Experiment 1 (PRIME-1)
      Commercial Lunar Payload Services (CLPS)
      The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
      NASA Partners with American Companies on Key Moon, Exploration Tech
      NASA has selected 11 U.S. companies to develop technologies that could support long-term exploration on the Moon and in space…
      Share
      Details
      Last Updated Feb 24, 2025 EditorStefanie PayneContactAnyah Demblinganyah.dembling@nasa.govLocationNASA Headquarters Related Terms
      Space Technology Mission Directorate Artemis Commercial Lunar Payload Services (CLPS) Game Changing Development Program Kennedy Space Center Lunar Surface Innovation Initiative Missions NASA Headquarters Research and Technology at Kennedy Space Center Science Mission Directorate
      View the full article
    • By NASA
      The unpiloted Roscosmos Progress spacecraft pictured on Aug. 13, 2024, from the International Space Station.Credit: NASA NASA will provide live launch and docking coverage of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies for the crew aboard the International Space Station.
      The unpiloted Roscosmos Progress 91 spacecraft is scheduled to launch at 4:24 p.m. EST, Thursday, Feb. 27 (2:24 a.m. Baikonur time, Friday, Feb. 28), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
      Live launch coverage will begin at 4 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      After a two-day in-orbit journey to the station, the spacecraft will dock autonomously to the aft port of the Zvezda service module at 6:03 p.m. Saturday, March 1. NASA’s rendezvous and docking coverage will begin at 5:15 p.m. on NASA+.
      The Progress 91 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
      Get breaking news, images and features from the space station on Instagram, Facebook, and X.
      Learn more about the International Space Station, its research, and its crew, at:
      https://www.nasa.gov/station
      -end-
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Feb 24, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space ISS Research Johnson Space Center Space Operations Mission Directorate View the full article
    • By NASA
      Live High-Definition Views from the International Space Station (Official NASA Stream)
    • By NASA
      Drone pilot Brayden Chamberlain flashes a “good to go” signal to the command tent, indicating that the NASA Alta X quadcopter is prepped for takeoff during a FireSense uncrewed aerial system (UAS) Technology Demonstration test in 2023 in Missoula, Montana. The instruments on board collected data on wind speed and direction, humidity, temperature, and pressure.NASA/Milan Loiacono NASA’s Kennedy Space Center in Florida invites media to attend a prescribed fire campaign event hosted by the NASA FireSense Project, the Department of Defense (DOD), and the U.S. Fish and Wildlife Service. Campaign activities will occur from Monday, April 7, to Monday, April 21.
      The FireSense campaign activities will test cutting-edge models and demonstrate new technologies to measure fire behavior and smoke dynamics. The Fish and Wildlife Service will conduct the prescribed fire as part of their land management responsibilities on the Merritt Island National Wildlife Refuge, which shares a boundary with NASA Kennedy.
      The event also will demonstrate how NASA, DOD, and the Fish and Wildlife Service work with interagency and private sector partners to reduce the risk from wildland fires and benefit ecosystem health, ultimately preventing catastrophic impacts on critical national infrastructure, the economy, and local communities, while increasing the safety of wildland fire response operations.
      Credentialing is open to U.S. and international media. International media must apply by 11:59 EDT p.m. Sunday, March 16, and U.S. media must apply by 11:59 p.m. EDT Sunday, March 23.
      More details on the specific date of the prescribed fire, weather permitting, will be provided in the coming weeks. Media wishing to take part in person must apply for credentials at:
      https://media.ksc.nasa.gov
      Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation or to request special logistical support, please email by Friday, March 28 to: ksc-media-accreditat@mail.nasa.gov.
      For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Messod Bendayan, messod.c.bendayan@nasa.gov.
      NASA coordinates field and airborne sampling with academic and agency partners, including the DOD Strategic Environmental Research and Development Program and DOD Environmental Security Technology Certification Program. The Fish and Wildlife Service oversees all prescribed burn activities on the Merritt Island National Wildlife Refuge.
      NASA Kennedy is one of the most biologically diverse areas in the United States, counting over 1,000 species of plants, 117 kinds of fish, 68 types of amphibians and reptiles, 330 kinds of birds, and 31 different mammals within its more than 144,000 acres.
      For more information about NASA’s FireSense Project, please visit:
      https://cce.nasa.gov/firesense
      -end-
      Milan Loiacono
      Ames Research Center, California
      650-450-7575
      milan.p.loiacono@nasa.gov
      Harrison Raine
      Ames Research Center, California
      310-924-0030
      harrison.s.raine@nasa.gov
      Messod Bendayan
      Kennedy Space Center, Florida
      256-930-1371
      messod.c.bendayan@nasa.gov
      View the full article
    • By NASA
      NASA logo. (Credit: NASA) NASA acting Administrator Janet Petro announced Monday Vanessa Wyche will serve as the acting associate administrator for the agency at NASA Headquarters in Washington, effective immediately. Wyche, who had been the director of NASA’s Johnson Space Center in Houston, is detailed as Petro’s senior advisor leading the agency’s center directors and mission directorate associate administrators. She will act as the agency’s chief operating officer for about 18,000 civil servant employees and an annual budget of more than $25 billion. Stephen Koerner will become the acting center director of NASA Johnson.
      The agency also named Jackie Jester as associate administrator for the Office of Legislative and Intergovernmental Affairs and announced Catherine Koerner, associate administrator for the agency’s Exploration Systems Development Mission Directorate will retire effective Friday, Feb. 28. Lori Glaze, currently the deputy associate administrator for Exploration Systems Development will become the mission directorate’s acting associate administrator.
      “As we continue to advance our mission, it’s crucial that we have strong, experienced leaders in place,” Petro said. “Vanessa will bring exceptional leadership to NASA’s senior ranks, helping guide our workforce toward the opportunities that lie ahead, while Steve will continue to provide steadfast leadership at NASA Johnson. Jackie’s return to the agency will ensure we remain closely aligned with national priorities as we work with Congress. Cathy’s legacy is one of unwavering dedication to human spaceflight, and we are grateful for her years of service. Lori’s leadership will continue to build on that legacy as we push forward in our exploration efforts. These appointments reflect NASA’s unwavering commitment to excellence, and I have full confidence that each of these leaders will carry our vision forward with purpose, integrity, and a relentless drive to succeed.”
      Prior to her new role, Wyche was the director NASA Johnson – home to America’s astronaut corps, Mission Control Center, International Space Station, Orion and Gateway Programs, and its more than 11,000 civil service and contractor employees. Her responsibilities included a broad range of human spaceflight activities, including development and operation of human spacecraft, NASA astronaut selection and training, mission control, commercialization of low Earth orbit, and leading NASA Johnson in exploring the Moon and Mars.
      During her 35-year career, Wyche has served in several leadership roles, including Johnson’s deputy center director, director of Exploration Integration and Science Directorate, flight manager of several Space Shuttle Program missions, and executive officer in the Office of the Administrator. A native of South Carolina, Wyche earned a Bachelor of Science in Engineering and Master of Science in Bioengineering from Clemson University. 
      As deputy director of NASA Johnson, Stephen Koerner, oversaw strategic workforce planning, serves as the Designated Agency Safety Health Officer, and supported the Johnson center director in mission reviews. Before his appointment in July 2021, Koerner held various leadership roles at NASA Johnson, including director of the Flight Operations Directorate, associate director, chief financial officer, deputy director of flight operations, and deputy director of mission operations.
      In her new role as the associate administrator for the Office of Legislative and Intergovernmental Affairs, Jester will direct a staff responsible for managing and coordinating all communication with the U.S. Congress, as well as serve as a senior advisor to agency leaders on legislative matters.  
      Jester rejoins the agency after serving as the senior director for government affairs at Relativity Space’s Washington office where she led policy engagement for the company. Prior to her time with Relativity, she served as a policy advisor at NASA and at the White House Office of Science and Technology Policy. She has served as a professional staff member for the U.S. Senate Committee on Commerce, Science, and Transportation. She has spent time in state government as the Chief Legislative Aide to a member of the Massachusetts House of Representatives. Jester has significant experience advising on space policy issues, aviation operations and safety policy, and has helped develop numerous pieces of legislation.
      With a 34-year career at NASA, Catherine Koerner has been instrumental in leading NASA’s Exploration Systems Development Mission Directorate, overseeing the development of the agency’s deep space exploration approach. Previously, she was the deputy associate administrator for the mission directorate. Her extensive career at NASA includes roles such as the Orion program manager, director of the Human Health and Performance Directorate, former NASA flight director, several leadership positions within the International Space Station Program during its assembly phase and helping to foster a commercial space industry in low Earth orbit.
      Glaze has a distinguished background in planetary science, previously serving as the director of NASA’s Planetary Science Division before joining Explorations Systems Development. Prior to her tenure at NASA Headquarters in Washington, she was the chief of the Planetary Geology, Geophysics and Geochemistry Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the Deputy Director of Goddard’s Solar System Exploration Division. She has been a leading advocate for Venus exploration, serving as the principal investigator for the Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging mission. Glaze earned her Bachelor of Arts and Master of Science degrees in Physics from the University of Texas at Arlington and a doctorate in Environmental Science from Lancaster University in the United Kingdom. Her prior experience includes roles at the Jet Propulsion Laboratory and at Proxemy Research as Vice President and Senior Research Scientist.
      For more about NASA’s missions, visit:
      http://www.nasa.gov
      -end-
      Amber Jacobson / Kathryn Hambleton
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / kathryn.a.hambleton@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...