Jump to content

Gateway’s HALO Making Moves


NASA

Recommended Posts

  • Publishers
A large cylindrical module, the HALO (Habitation and Logistics Outpost) for NASA's Gateway space station, is being carefully moved inside a spacious industrial facility by technicians at Thales Alenia Space in Turin, Italy. The module is suspended by cranes and surrounded by workers in white lab coats and safety gear, preparing it for a series of stress tests.
Technicians at a Thales Alenia Space industrial plant in Turin, Italy. guide Gateway’s HALO module to its stress testing location.
Thales Alenia Space

The Gateway space station’s HALO (Habitation and Logistics Outpost), one of four modules where astronauts will live, conduct science, and prepare for lunar surface missions, is a step closer to launch following welding completion in Turin, Italy, a milestone highlighted by NASA earlier this year.

Teams at Thales Alenia Space gently guide HALO to a new location in the company’s facility for a series of stress tests to ensure the module’s safety. Upon successful completion, the future home for astronauts will travel to Gilbert, Arizona, where Northrop Grumman will complete final outfitting ahead of launch to lunar orbit with Gateway’s Power and Propulsion Element.

NASA and its international partners will explore the scientific mysteries of deep space with Gateway, humanity’s first space station in lunar orbit supporting the Artemis campaign to return humans to the Moon and chart a path for the first human missions to Mars.

Learn more about Gateway at: https://nasa.gov/gateway.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read Making Mars’ Moons: Supercomputers Offer ‘Disruptive’ New Explanation
      A NASA study using a series of supercomputer simulations reveals a potential new solution to a longstanding Martian mystery: How did Mars get its moons? The first step, the findings say, may have involved the destruction of an asteroid. 
      The research team, led by Jacob Kegerreis, a postdoctoral research scientist at NASA’s Ames Research Center in California’s Silicon Valley, found that an asteroid passing near Mars could have been disrupted – a nice way of saying “ripped apart” – by the Red Planet’s strong gravitational pull.
      The team’s simulations show the resulting rocky fragments being strewn into a variety of orbits around Mars. More than half the fragments would have escaped the Mars system, but others would’ve stayed in orbit. Tugged by the gravity of both Mars and the Sun, in the simulations some of the remaining asteroid pieces are set on paths to collide with one another, every encounter further grinding them down and spreading more debris. 
      Many collisions later, smaller chunks and debris from the former asteroid could have settled into a disk encircling the planet. Over time, some of this material is likely to have clumped together, possibly forming Mars’ two small moons, Phobos and Deimos.
      To assess whether this was a realistic chain of events, the research team explored hundreds of different close encounter simulations, varying the asteroid’s size, spin, speed, and distance at its closest approach to the planet. The team used their high-performance, open-source computing code, called SWIFT, and the advanced computing systems at Durham University in the United Kingdom to study in detail both the initial disruption and, using another code, the subsequent orbits of the debris.
      In a paper published Nov. 20 in the journal Icarus, the researchers report that, in many of the scenarios, enough asteroid fragments survive and collide in orbit to serve as raw material to form the moons. 
      “It’s exciting to explore a new option for the making of Phobos and Deimos – the only moons in our solar system that orbit a rocky planet besides Earth’s,” said Kegerreis. “Furthermore, this new model makes different predictions about the moons’ properties that can be tested against the standard ideas for this key event in Mars’ history.”
      Two hypotheses for the formation of the Martian moons have led the pack. One proposes that passing asteroids were captured whole by Mars’ gravity, which could explain the moons’ somewhat asteroid-like appearance. The other says that a giant impact on the planet blasted out enough material – a mix of Mars and impactor debris – to form a disk and, ultimately, the moons. Scientists believe a similar process formed Earth’s Moon.
      The latter explanation better accounts for the paths the moons travel today – in near-circular orbits that closely align with Mars’ equator. However, a giant impact ejects material into a disk that, mostly, stays close to the planet. And Mars’ moons, especially Deimos, sit quite far away from the planet and probably formed out there, too. 
      “Our idea allows for a more efficient distribution of moon-making material to the outer regions of the disk,” said Jack Lissauer, a research scientist at Ames and co-author on the paper. “That means a much smaller ‘parent’ asteroid could still deliver enough material to send the moons’ building blocks to the right place.”
      It’s exciting to explore a new option for the making of Phobos and Deimos – the only moons in our solar system that orbit a rocky planet besides Earth’s.
      Jacob Kegerreis
      Postdoctoral research scientist at NASA’s Ames Research Center
      Testing different ideas for the formation of Mars’ moons is the primary goal of the upcoming Martian Moons eXploration (MMX) sample return mission led by JAXA (Japan Aerospace Exploration Agency). The spacecraft will survey both moons to determine their origin and collect samples of Phobos to bring to Earth for study. A NASA instrument on board, called MEGANE – short for Mars-moon Exploration with GAmma rays and Neutrons – will identify the chemical elements Phobos is made of and help select sites for the sample collection. Some of the samples will be collected by a pneumatic sampler also provided by NASA as a technology demonstration contribution to the mission. Understanding what the moons are made of is one clue that could help distinguish between the moons having an asteroid origin or a planet-plus-impactor source.
      Before scientists can get their hands on a piece of Phobos to analyze, Kegerreis and his team will pick up where they left off demonstrating the formation of a disk that has enough material to make Phobos and Deimos. 
      “Next, we hope to build on this proof-of-concept project to simulate and study in greater detail the full timeline of formation,” said Vincent Eke, associate professor at the Institute for Computational Cosmology at Durham University and a co-author on the paper. “This will allow us to examine the structure of the disk itself and make more detailed predictions for what the MMX mission could find.”  
      For Kegerreis, this work is exciting because it also expands our understanding of how moons might be born – even if it turns out that Mars’ own formed by a different route. The simulations offer a fascinating exploration, he says, of the possible outcomes of encounters between objects like asteroids and planets. These events were common in the early solar system, and simulations could help researchers reconstruct the story of how our cosmic backyard evolved. 
      This research is a collaborative effort between Ames and Durham University, supported by the Institute for Computational Cosmology’s Planetary Giant Impact Research group. The simulations used were run using the open-source SWIFT code, carried out on the DiRAC (Distributed Research Utilizing Advanced Computing) Memory Intensive service (“COSMA”), hosted by Durham University on behalf of the DiRAC High-Performance Computing facility.
      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      Share
      Details
      Last Updated Nov 20, 2024 Related Terms
      Mars Ames Research Center Ames Research Center's Science Directorate General High-Tech Computing Mars Moons Martian Moon Exploration (MMX) Missions NASA Centers & Facilities Planets Technology The Solar System Explore More
      5 min read NASA’s Swift Reaches 20th Anniversary in Improved Pointing Mode
      After two decades in space, NASA’s Neil Gehrels Swift Observatory is performing better than ever…
      Article 1 hour ago 2 min read Gateway Tops Off
      Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
      Article 2 hours ago 2 min read About the Office of the Chief Knowledge Officer (OCKO)
      Article 6 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By SpaceX
      Making Life Multi-Planetary
    • By European Space Agency
      ESA’s solar eclipse-making Proba-3 mission is about to leave Europe, to head to its launch site in India. The mission’s two spacecraft – which will manoeuvre precisely in Earth orbit so that one casts a shadow onto the other – have departed the facilities of Redwire Space in Kruibeke, Belgium. The pair will be flown to the Satish Dhawan Space Centre, near Chennai, for the launch campaign to begin. 
      View the full article
    • By European Space Agency
      ESA has signed a contract with OHB Italia SpA worth €63 million to begin preparatory work on the Agency’s proposed Ramses mission to the infamous asteroid Apophis.
      View the full article
    • By NASA
      2 min read
      ESA/NASA’s SOHO Spies Bright Comet Making Debut in Evening Sky
      The tail of comet C/2023 A3 Tsuchinshan-ATLAS spanned the view of the Solar and Heliospheric Observatory (SOHO) on Oct. 10, 2024. ESA/NASA The ESA (European Space Agency) and NASA Solar and Heliospheric Observatory (SOHO) has captured images of the second-brightest comet to ever pass through its field of view during the spacecraft’s nearly 29-year career.
      The bright comet is C/2023 A3 Tsuchinshan-ATLAS, which has been garnering a lot of attention from skywatchers recently, displaying a long, dusty tail in pre-dawn skies throughout late September and early October. (Comet McNaught, viewed in 2007, holds the record as the brightest comet SOHO has seen.)
      Between Oct. 7 and 11, the comet blazed through the view of SOHO’s LASCO (Large Angle and Spectrometric Coronagraph Experiment) instrument, which uses a disk to block out the bright light of the Sun so it’s easier to see details and objects near the Sun. This image, taken by SOHO on Oct. 10, 2024, shows the comet and its bright tail streaming from the upper left to the right. Mercury appears as a bright dot on the left.
      After crossing through SOHO’s field of view, the comet will begin putting on an evening show for skywatchers around the world just after sunset starting Saturday, Oct. 12. Each day throughout October, the comet will gradually rise higher and higher in the western sky as it moves farther away from the Sun. But as it does, it will become fainter and fainter. Eagle-eyed skywatchers may be able to spot it with the naked eye for a few days, but after that, observers will likely need binoculars or a telescope to see it as it grows fainter.
      Even if you are unable to spot this comet yourself, you can help SOHO search for others. Scientists and members of the general public have discovered more than 5,000 comets in SOHO imagery, and you can help find even more by visiting the Sungrazer Project.
      By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Oct 11, 2024 Related Terms
      Comets Goddard Space Flight Center Heliophysics Heliophysics Division Skywatching SOHO (Solar and Heliospheric Observatory) The Sun The Sun & Solar Physics Explore More
      2 min read Hubble Spots a Grand Spiral of Starbursts


      Article


      8 hours ago
      2 min read Sail Along with NASA’s Solar Sail Tech Demo in Real-Time Simulation


      Article


      22 hours ago
      6 min read NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...