Jump to content

Gateway’s HALO Making Moves


NASA

Recommended Posts

  • Publishers
A large cylindrical module, the HALO (Habitation and Logistics Outpost) for NASA's Gateway space station, is being carefully moved inside a spacious industrial facility by technicians at Thales Alenia Space in Turin, Italy. The module is suspended by cranes and surrounded by workers in white lab coats and safety gear, preparing it for a series of stress tests.
Technicians at a Thales Alenia Space industrial plant in Turin, Italy. guide Gateway’s HALO module to its stress testing location.
Thales Alenia Space

The Gateway space station’s HALO (Habitation and Logistics Outpost), one of four modules where astronauts will live, conduct science, and prepare for lunar surface missions, is a step closer to launch following welding completion in Turin, Italy, a milestone highlighted by NASA earlier this year.

Teams at Thales Alenia Space gently guide HALO to a new location in the company’s facility for a series of stress tests to ensure the module’s safety. Upon successful completion, the future home for astronauts will travel to Gilbert, Arizona, where Northrop Grumman will complete final outfitting ahead of launch to lunar orbit with Gateway’s Power and Propulsion Element.

NASA and its international partners will explore the scientific mysteries of deep space with Gateway, humanity’s first space station in lunar orbit supporting the Artemis campaign to return humans to the Moon and chart a path for the first human missions to Mars.

Learn more about Gateway at: https://nasa.gov/gateway.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      14 Min Read The Making of Our Alien Earth: The Undersea Volcanoes of Santorini, Greece
      The expedition team and crew prepare to deploy Nereid Under Ice (NUI) into the sea. The following expedition marks the third installment of NASA Astrobiology’s fieldwork series, the newly rebranded Our Alien Earth, streaming on NASA+. Check out all three episodes following teams of astrobiologists from the lava fields of Holuhraun, Iceland, to the Isua Greenstone Belt of Greenland, and finally, the undersea volcanoes of Santorini, Greece. And stay tuned for the lava tubes of Mauna Loa, Hawaii in 2025.
      THE VOYAGE BEGINS
      My career at NASA has always felt like a mad scientist’s concoction of equal parts hard work, perseverance, absurd luck, and happenstance. It was due to this mad blend that I suddenly found myself on the deck of a massive tanker ship in the middle of the Mediterranean sea, watching a team of windburnt scientists, engineers, and sailors through my camera lens as they wrestled with a 5,000lb submersible hanging in the air.
      The expedition team and crew prepare to deploy Nereid Under Ice (NUI) into the sea. “Let it out, Molly, slack off a little bit…” shouts deck boss Mario Fernandez, as he coordinates the dozen people maneuvering the vehicle. It’s a delicate dance as the hybrid remotely operated vehicle (ROV), Nereid Under Ice (NUI), is hoisted off the ship and deployed into the sea. “Tagline slips, line breaks… you’ve got a 5,000lb wrecking ball,” recounts Mario in an interview later that day.
      How did I get here?
      A few years ago I found myself roaming the poster halls of the Astrobiology Science Conference in Bellevue, Washington, struggling to decipher the jargon of a dozen disciplines doing their best to share their discoveries; phrases like lipid biomarkers, anaerobic biospheres, and macromolecular emergence floated past me as I walked. I felt like a Peanuts character listening to an adult speak.
      Until I stumbled upon a poster by Dr. Richard Camilli entitled, Risk-Aware Adaptive Sampling for the Search for Life in Ocean Worlds. I was quickly enthralled in a whirlwind of icy moons, fleets of deep sea submersible vehicles, and life at sea.
      Dr. Richard Camilli, principal investigator of a research expedition to explore undersea volcanoes off the coast of Santorini. “Are you free in November?”
      “Absolutely,” I replied without checking a single calendar.
      Five months and three flights later, I arrived at the port of Lavrio, Greece, as Dr. Camilli and his team were unloading their suite of vehicles from gigantic shipping crates onto the even more massive research vessel. I stocked up on motion sickness tablets, said a silent farewell to land, and boarded the ship destined for the undersea Kolumbo volcano.
      Greece is a great place to study geology, because it’s a kind of supermarket of natural disasters.
      Dr. Paraskevi NomikoU
      University of Athens
      The expedition sets out to sea as the sun sets in the distance. LIFE AT SEA
      Documenting astrobiology fieldwork has taken me to some pretty remote and rough places. Sleeping in wooden shacks in Iceland without running water and electricity, or bundled up in a zero-degree sleeping bag in a tent while being buffeted by gale force winds in the wilderness of Greenland. But life at sea? Life at sea is GOOD.
      Filmmaker Mike Toillion takes a selfie, holding up a peace sign with members of the science team. From left to right: NASA Astrobiology/Mike Toillion Mike Toillion, creator of Our Alien Earth, taking a selfie with members of the glider team. From left to right: Matt Walter and Gideon Billings of the autonomous sampling team inside the ship’s control room.




      I was fortunate to have a personal cabin all to myself: a set of bunk beds, a small bathroom with a shower, and a small desk with plenty of outlets for charging my gear. I would also be remiss if I didn’t mention the mess hall. Aside from a freshly rotated menu of three hot meals a day, it was open 24/7 with a constant lineup of snacks to keep bellies full and morale high. This was luxury fieldwork. The ability to live, work, and socialize all in the same place would make this trip special in its own right, and allowed me to really get to know the team and capture every angle of this incredibly complex and multi-faceted expedition.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      The ship in the port of Lavrio, Greece. The team will spend two full days docked here while preparing for the voyage ahead. NASA Astrobiology/Mike Toillion SEARCHING FOR LIFE ON OCEAN WORLDS
      “The goal of this program is cooperative exploration with under-actuated vehicles in hazardous environments,” explains Dr. Camilli as we stand on the bow of the ship, the sun beginning to set in the distance. “These vehicles work cooperatively in order to explore areas that are potentially too dangerous or too far away for humans to go.”
      This is the problem at hand with exploring icy ocean worlds like Jupiter’s moon, Europa. The tremendous distance between Earth and Europa means we will barely be able to communicate and control vehicles that we send to the surface, and will face even more difficulty once those vehicles dive below the ice. This makes Earth’s ocean a perfect testbed for developing autonomous, intelligent robotic explorers.
      “I’ve always been struck at how parallel ocean exploration and space exploration is,” says Brian Williams, professor from the Computer Science and Artificial Intelligence Laboratory at MIT. “Once you go through the surface, you can’t communicate. So, somehow you have to embody the key insights of a scientist, to be able to look and see: is that evidence of life?”
      One of the gliders, an autonomous scouting vehicle equipped with multple sensors to map the seafloor and report back to the ship. NASA Astrobiology/Mike Toillion MEET THE FLEET
      Exploring anywhere in space begins with a few simple steps: first, you need to get a general map of the area, which is typically done by deploying orbiters around a celestial body. The next step is to get a closer look, by launching lander and rover missions to the surface. Finally, in order to understand the location best, you need to bring samples back to Earth to study in greater detail.
      “So you can think of what we’re doing here as being very parallel, that the ship is like the orbiter and is giving us a broad view of the Kolumbo volcano, right? Once we do that map, then we need to be able to explore interesting places to collect samples. So, the gliders are navigating around places that look promising from what the ship told us. And then, it looks to identify places where we might want to send NUI. NUI is very capable in terms of doing the samples, but it can’t move around nearly as much. And so, we finally put NUI at the places where the gliders thought that they were interesting.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      The expedition team works into the night preparing NUI for its upcoming mission to the Kolumbo volcano. NASA Astrobiology/Mike Toillion THE SCIENTIST’S ROBOTIC APPRENTICE
      As the espresso machine in the mess hall whirred away pouring out a much needed shot of caffeine, I sat with Eric Timmons, one of the expedition’s computer science engineers. Eric wears a few hats on the ship, but today we are discussing automated mission planning, the first step to true autonomy in robotic exploration.
      “In any sort of scientific mission, you’re going to have a list of goals, each with their own set of steps, and a limited amount of time to achieve them. And so, Kirk works on automating that.” Kirk is the nickname of one of the many algorithms involved in the team’s automated mission planning. It’s joined by other algorithms, all named after Star Trek characters, collectively known as Enterprise, each responsible for different aspects of planning a mission and actively adapting to new mission parameters.
      Dr. Richard Camilli explains further: “Basically, we have scientists onboard the ship that are feeding policies to these automated planners. [The planners] then take those policies plus historical information, the oceanographic context, and new information being transmitted by the vehicles here and now; they take all that information, and combine it to construct a mission that gets to the scientific deliverables, while also being safe.”
      These are areas that humans aren’t designed to go to. I guess the best analogy would be like hang gliding in Midtown Manhattan at night.
      Dr. richard camilli
      Woods Hole Oceanographic Institution
      OK, let’s recap the story so far: the ship’s sonar and other instruments create a general map of the Kolumbo volcano. That information, along with data from previous missions, is fed to Enterprise’s team of algorithms, which generates a mission for the gliders. The gliders are deployed, and using their sensors, provide higher-fidelity data about the area and transmit that knowledge back to the ship. The automated mission planners take in this new data, and revise their mission plan, ranking potential sites of scientific interest, which are then passed onto NUI, which will conduct its own mission to explore these sites, and potentially sample anything of interest.
      DIVE, DIVE, DIVE
      After a few days on the ship, the routine of donning my steel-toed boots and hard hat when walking around the deck has started to become second nature. My drone skills have greatly improved, as the magnetic field produced by the ship and its instruments forced me to take-off and land manually, carefully guiding the drone in and around the many hazards of the vessel. This morning, however, I’ve been invited to step off the ship for the first time to get a first-hand look at deploying the gliders. Angelos Mallios from the glider team leads me down into the bowels of the ship to the lower decks, as we arrive at a door that opens to the outside of the ship, waves lapping about six feet below. A zodiac pulls up to the door and we descend down a ladder into the small boat.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Riding in the zodiac with the glider team, led by Angelos Mallios. NASA Astrobiology/Mike Toillion Meanwhile, the rest of the glider team is on the main deck of the ship, lifting the gliders with a large, motorized crane, and lowering them onto the surface of the water. The zodiac team approached to detach the glider and safely set it out into the sea, while I dipped a monopod-mounted action camera in and out of the water to capture the process. Unbeknownst to me at the time, this would become some of my favorite footage of the trip, sunlight dancing off the surface of the waves, while the gliders floated and dove beneath.
      Angelos’ radio began to chatter. Eric Timmons was onboard the ship ready to command the gliders to begin their mission plan assigned by Enterprise. A moment passed and the yellow fin of the glider dipped below the water’s surface and disappeared.
      Angelos Mallios from the Woods Hole Oceanographic Institution, leans out of a zodiac to deploy a glider, an autonomous vehicle and the forward scout for the expedition. NUI VERSUS THE VOLCANO
      The following day, it was time to see the star of the show in action; the expedition team was ready to deploy the aforementioned 5,000lb wrecking ball, NUI. The gliders had been exploring the surrounding area day and night, using their suite of sensors to detect areas of scientific interest. Since this mission is about searching for life, the gliders know that warmer areas could indicate hydrothermal vent activity; a literal hotspot for life in the deep ocean. Kirk, along with the science planner algorithm, Spock, determined a list of possible candidates that fit that exact description.
      “There’s always a bit of tension in the operations, where, do you go strike out in an area that is unstudied and potentially come back with nothing? Or do you go to a site that you know and try to understand it a little bit more, that kind of incremental advance?” Dr. Camilli pauses to take a quick swig of sparkling water after a long day of diving operations, as he recounts a moment in the control room earlier that day. All the scientists onboard this expedition are extremely skilled and knowledgable, and this mission is asking them to put aside their instincts, and follow the suggestions of computer algorithms; a hard pill to swallow for some.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Underwater footage from Nereid Under Ice, showing a thriving community on the sea floor, including a never before seen species. NASA Astrobiology/Mike Toillion and WHOI “We stuck with the Spock program, and it paid great dividends. And all of the scientists were amazed at what they saw. The first site that we went to was spectacular. The second site we went to was spectacular. Each of the five sites that it identified as interesting were interesting, and they were each interesting in a different way; totally different environments.”
      Interesting, in this case, was quite the understatement. As the expedition team and I crowded into the ship’s control room to look at the camera feeds transmitted by NUI, now fully deployed to the seafloor, audible gasps erupted from multiple people. Bubbles filled the monitor as live fumaroles, active vents from the volcano, were pouring out heat and chemical-rich fluid into the water. Thick, microbial mats covered the surrounding rock, and multicellular lifeforms dotted the landscape. The expedition team had found a live hydrothermal vent, and life thriving around it.
      SOUVENIRS FROM THE OCEAN FLOOR
      “I’ve never seen anything like that before,” recalls Casey Machado, expedition lead and the main pilot for Nereid Under Ice (NUI). Casey is sitting in an office chair surrounded by glowing monitors, a joystick in their left hand, and a gaming controller in their right. Since NUI is a hybrid ROV, it can be controlled manually from the ship by remote, or receive autonomous instructions from the Enterprise mission planners. Today, the team plans on manually controlling NUI to retrieve samples from the first site of interest.
      NUI is a strange looking vehicle. Only a small section of its body is watertight, where many of its critical components are housed. The remainder is fairly open, and upon arriving at the first site recommended by Spock, the front of the ROV opens up its front double doors to reveal a multi-jointed manipulator arm, stereo camera set, and other instruments. I’m instantly reminded of the space shuttle mission to repair the Hubble Space Telescope, which had a similar mechanism.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Casey Machado, pilot of the hybrid ROV Nereid Under Ice (NUI), pilots the manipulator arm to take a rock sample. NASA Astrobiology/Mike Toillion Casey deftly maneuvers each joint of the arm to approach a rock covered in microbial mats. The end of NUI’s arm is equipped with two sampling instruments: a claw-like grabbing mechanism and a vacuum-like hose called the “slurp gun”. The end of the arm twists and turns as Machado aligns it with the rock, eventually opening and closing it around the target. With a gentle pull, the rock comes loose, and with a few more careful manipulations places it delicately into NUI’s sample cache. I offer a high-five, which Casey nonchalantly returns like the whole task was nothing.
      TEACHING A ROBOT TO FISH
      At this point, the expedition team has collected dozens of samples and achieved multiple engineering milestones, enough to fill years’ worth of scientific papers, but they are far from finished. A true mission to an ocean world will have to be pilotless, as Dr. Gideon Billings from MIT explains: “They need to operate without any human intervention. They need to be able to understand the scene through perception and then make a decision about how they want to manipulate to take a sample or achieve a task.”
      Gideon sits in the control room to the left of the piloting station, working alongside Casey as they prepare to demonstrate NUI’s automated sampling capabilities. His laptop screen shows a live 3D-model of the craft, its doors open, arm extended. Projected around the craft is a 3D reconstruction, or point cloud, of the seafloor created from the stereo camera pair mounted inside the vehicle. Similarly to how our brains take the two visual feeds from both of our eyes to see three-dimensionally, a stereo camera pair uses two cameras to achieve the same effect. By clicking on the model and moving its position in the software, NUI performs the same action thousands of meters under the ocean.
      Shared autonomy between the automated sampling team and the ROV Nereid Under Ice. “That is shared autonomy, where you could imagine a pilot indicating a desired pose
      for the arm to move to, but then a planner taking over and coming up with the path that the arm should move to reach that goal. And then, the pilot just essentially hitting a button and the arm following that path.”
      Over the course of multiple dives, Gideon tested various sampling techniques, directing the manipulator arm to use its claw-like device to grab different tools and perform a variety of tasks. “We were able to project the point cloud into that scene, and then command the arm to grab a push core and move it into a location within that 3D reconstruction. We verified that that location matched up. That showed the viability of an autonomous system.” This seemingly small victory is a huge step towards exploring planets beyond Earth. Since this expedition, the engineering team has not only improved this shared autonomy system, but has also implemented a natural language interface, allowing a user to use their normal speaking voice to give commands to the ROV, further blurring the lines between reality and science fiction.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      The sun rises over the Mediterranean Sea on the final day of the research cruise. NASA Astrobiology/Mike Toillion SOMEWHERE BEYOND THE SEA
      I cannot help but envy the life of those who chose to make the ocean their place of work. The time I’ve spent with oceanographers has me questioning all my life choices; clearly they knew something I didn’t.
      Watching the sunrise every morning, peering through the murky depths of the deep sea, unlocking the secrets of Earth’s final frontier. All in a day’s work for Dr. Richard Camilli and his team of intrepid explorers.
      Watch Our Alien Earth and The Undersea Volcanoes of Santorini, Greece on NASA+ and follow the full story of this incredible expedition.

      Watch Our Alien Earth on NASA+

      Panorama of a sunrise at sea. View the full article
    • By NASA
      Crews moved the cone-shaped launch vehicle stage adapter out of NASA Marshall’s Building 4708 to the agency’s Pegasus barge on August 21. The barge will ferry the adapter first to NASA’s Michoud Assembly Facility, where it will pick up additional SLS hardware for future Artemis missions, and then travel to NASA Kennedy. In Florida, teams with NASA’s Exploration Ground Systems will prepare the adapter for stacking and launch.NASA/Samuel Lott NASA rolled out a key piece of space flight hardware for the SLS (Space Launch System) rocket for the first crewed mission of NASA’s Artemis campaign from Marshall Space Flight Center in Huntsville, Alabama, on Wednesday, Aug. 21 for shipment to the agency’s Kennedy Space Center in Florida. The cone-shaped launch vehicle stage adapter connects the rocket’s core stage to the upper stage and helps protect the upper stage’s engine that will help propel the Artemis II test flight around the Moon, slated for 2025.
      “The launch vehicle stage adapter is the largest SLS component for Artemis II that is made at the center,” said Chris Calfee, SLS Spacecraft Payload Integration and Evolution element manager. “Both the adapters for the SLS rocket that will power the Artemis II and Artemis III missions are fully produced at NASA Marshall. Alabama plays a key role in returning astronauts to the Moon.”
      Crews moved the adapter out of NASA Marshall’s Building 4708 to the agency’s Pegasus barge Aug. 21. The barge will ferry the adapter first to NASA’s Michoud Assembly Facility in New Orleans, where crews will pick up additional SLS hardware for future Artemis missions, before traveling to NASA Kennedy. Once in Florida, the adapter will join the recently delivered core stage. There, teams with NASA’s Exploration Ground Systems will prepare the adapter for stacking and launch.
      Engineering teams at NASA Marshall are in the final phase of integration work on the launch vehicle stage adapter for Artemis III. The stage adapter is manufactured by prime contractor Teledyne Brown Engineering and the Jacobs Space Exploration Group’s ESSCA (Engineering Services and Science Capability Augmentation) contract using NASA Marshall’s self-reacting friction-stir robotic and vertical weld tools.
      Through the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the Moon. The rocket is part of NASA’s deep space exploration plans, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, Gateway in orbit around the Moon, and commercial human landing systems. NASA’s SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      For more on SLS, visit: 
      https://www.nasa.gov/sls
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      jonathan.e.deal@nasa.gov
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Credit from left to right: Stijn Te Strake/Unsplash, Yamaha Motor Corp USA, Maja Petric/Unsplash, Adele Payman/Unsplash The agriculture industry faces several challenges, including limited resources and growing demands to reduce agriculture’s environmental impact while increasing its climate resilience. NASA Aeronautics is dedicated to expanding its efforts to assist commercial, industry, and government partners in advancing aviation systems that could modernize capabilities in agriculture.
      In NASA’s 2025 Gateways to Blue Skies Competition: AgAir (Aviation Solutions for Agriculture) collegiate student teams will conceptualize novel aviation systems that can be applied to agriculture by 2035 or sooner with the goal of improving production, efficiency, environmental impact, and extreme weather/climate resilience. 
      Action Required: Teams of 2 to 6 students to submit a 5-7-page Proposal and 2-minute Video summarizing the team’s proposal concept.  Deadline: Proposal and Video Submissions are due February 17, 2025.   Forum & Award: We’ll pay you to travel! Up to 8 finalist teams will be selected by a panel of NASA and industry subject matter experts to receive an $8,000 stipend to facilitate full participation in the Gateways to Blue Skies Competition & Forum, held at NASA’s Armstrong Flight Research Center in Mountain View, CA, in May 2025. Winners are offered internships within NASA Aeronautics during the academic year following the competition.  Contact: blueskies@nianet.org  Read More Explore More
      2 min read 2025 RASC-AL Competition
      The 2025 RASC-AL Competition is seeking undergraduate and graduate teams to develop new concepts that…
      Article 2 weeks ago 4 min read NASA Opportunities Fuel Growth and Entrepreneurship for Bronco Space Club Students
      Article 2 months ago 8 min read Inspiring the Next Generation with Student Challenges and Learning Opportunities
      Creativity and curiosity are strongly tied to NASA’s missions and vision. Many of the agency’s…
      Article 10 months ago View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Students attending the 2024 Blue Skies Competition toured NASA’s Ames Research Center during the Forum. NASA In the 2025 Gateways to Blue Skies Competition, the theme is AgAir: Aviation Solutions for Agriculture. NASA asks collegiate teams to investigate either new or improved aviation capabilities that could assist the agriculture industry by improving production, efficiency, environmental impact and extreme weather/climate resilience. 
      The agriculture industry plays a vital role in providing food, fuel, and fiber for the global population; however, it is facing several challenges, including limited resources and growing demands to reduce agriculture’s environmental impact while increasing its climate resilience. With a growing world population, the demand for food continues to rise, putting pressure on available resources such as arable land, water, and energy. The changing climate exacerbates these challenges by leading to unpredictable weather patterns, extreme temperatures and natural disasters affecting crop yields and livestock. NASA Aeronautics is dedicated to expanding its efforts to assist commercial, industry, and government partners in advancing aviation systems that could modernize capabilities in agriculture. 
      “This is an area where innovative aviation technologies can really make an impact on an industry that is so vital to the health and sustainability of our planet,” said Dr. Bradley Doorn, Program Manager for NASA’s Applied Sciences agriculture area. “The agriculture industry is already on the forefront of technology adoption to support growing demands on production, from quantity to quality to withstanding increasing environmental and social pressures. More opportunities exist to help with a wide range of applications, particularly within aviation systems. It could be very exciting to see what students conceptualize within this theme.” 
      Sponsored by NASA’s Aeronautics Research Mission Directorate’s (ARMD’s) University Innovation (UI) Project, the Gateways to Blue Skies competition (aka Blue Skies) encourages diverse, multidisciplinary teams of college students to conceptualize unique systems-level ideas and analysis to an aviation-themed problem identified annually. It aims to engage as many students as possible – from all backgrounds, majors, and collegiate levels, freshman to graduate.  
      In this competition, participating students in teams of two to six will select an aviation system or systems that can be applied to a specific area of agriculture. Competitors must choose technologies that can be deployable by 2035 or sooner.  
      Teams will submit concepts in a five-to-seven-page proposal and accompanying two-minute video, which will be judged in a competitive review process by NASA and industry experts. Up to eight finalist teams will receive up to $8,000 each to continue their research to develop a final research paper and infographic, and to attend the 2025 Blue Skies Forum to be held in May 2025 at NASA’s Armstrong Flight Research Center. Forum winners who fulfill eligibility criteria will be offered the opportunity to intern with NASA Aeronautics in the academic year following the Forum.  
      “Going into our fourth year, we continue to see excitement increasing both at NASA and throughout the universities for the Gateway to Blue Skies Competition,” said Steven Holz, UI Assistant Project Manager and Blue Skies Co-Chair. “Aviation solutions to this year’s challenge could have monumental impacts on the future of the agricultural industry, which is the foundation of our everyday lives.” 
      Teams interested in participating in the competition should review competition guidelines and eligibility requirements posted on the Blue Skies competition website, https://blueskies.nianet.org. Teams are encouraged to submit a non-binding Notice of Intent (NOI) by October 22, 2024, via the website. Submitting an NOI ensures teams stay apprised of competition news. The proposal and video are due February 17, 2025. 
      Blue Skies is sponsored by NASA’s Aeronautics Research Mission Directorate’s (ARMD’s) University Innovation Project (UI) and is managed by the National Institute of Aerospace (NIA).  
      For full competition details, including design guidelines and constraints, relevant resources, and information on how to apply, visit the Blue Skies website at: 
      For more information about NASA’s Aeronautics Research Mission Directorate, visit: https://www.nasa.gov/aeroresearch/programs   
      For more information about the National Institute of Aerospace, visit: www.nianet.org  
      Share
      Details
      Last Updated Aug 06, 2024 Related Terms
      Aeronautics Langley Research Center Explore More
      5 min read ‘Current’ Events: NASA and USGS Find a New Way to Measure River Flows
      Article 1 day ago 4 min read NASA Furthers Aeronautical Innovation Using Model-Based Systems
      Article 1 day ago 3 min read Exploring Deep Space: NASA Announces 2025 RASC-AL Competition 
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:02:54 Proba-3 is ESA’s – and the world’s – first precision formation flying mission. A pair of satellites will fly together relative to the Sun so that one casts a precisely-controlled shadow onto the other, to create a prolonged solar eclipse in orbit. In the process the mission will open up the Sun’s faint surrounding coronal atmosphere for sustained study. Normally this corona is rendered invisible by the brilliant face of the Sun, like a firefly next to a bonfire.
      Due for launch together this autumn, the two Proba-3 satellites will fly 144-m apart for up to six hours at a time to create these eclipses. Beside its scientific interest, this experiment will be a perfect method to demonstrate the precise positioning of the two platforms. It will be enabled using a novel combination of guidance technologies. In this video the Proba-3 team details the mission concept.
      Find out more here.
      Access the related broadcast quality video material.
      View the full article
  • Check out these Videos

×
×
  • Create New...