Jump to content

‘Super’ Star Cluster Shines in New Look From NASA’s Chandra


NASA

Recommended Posts

  • Publishers
Star Cluster Westerlund 1.
Star Cluster Westerlund 1.
X-ray: NASA/CXC/INAF/M. Guarcello et al.; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/L. Frattare

Westerlund 1 is the biggest and closest “super” star cluster to Earth. New data from NASA’s Chandra X-ray Observatory, in combination with other NASA telescopes, is helping astronomers delve deeper into this galactic factory where stars are vigorously being produced.

This is the first data to be publicly released from a project called the Extended Westerlund 1 and 2 Open Clusters Survey, or EWOCS, led by astronomers from the Italian National Institute of Astrophysics in Palermo. As part of EWOCS, Chandra observed Westerlund 1 for about 12 days in total.

Currently, only a handful of stars form in our galaxy each year, but in the past the situation was different. The Milky Way used to produce many more stars, likely hitting its peak of churning out dozens or hundreds of stars per year about 10 billion years ago and then gradually declining ever since. Astronomers think that most of this star formation took place in massive clusters of stars, known as “super star clusters,” like Westerlund 1. These are young clusters of stars that contain more than 10,000 times the mass of the Sun. Westerlund 1 is between about 3 million and 5 million years old.

This new image shows the new deep Chandra data along with previously released data from NASA’s Hubble Space Telescope. The X-rays detected by Chandra show young stars (mostly represented as white and pink) as well as diffuse heated gas throughout the cluster (colored pink, green, and blue, in order of increasing temperatures for the gas). Many of the stars picked up by Hubble appear as yellow and blue dots.

Only a few super star clusters still exist in our galaxy, but they offer important clues about this earlier era when most of our galaxy’s stars formed. Westerlund 1 is the biggest of these remaining super star clusters in the Milky Way and contains a mass between 50,000 and 100,000 Suns. It is also the closest super star cluster to Earth at about 13,000 light-years.

These qualities make Westerlund 1 an excellent target for studying the impact of a super star cluster’s environment on the formation process of stars and planets as well as the evolution of stars over a broad range of masses.

This new deep Chandra dataset of Westerlund 1 has more than tripled the number of X-ray sources known in the cluster. Before the EWOCS project, Chandra had detected 1,721 sources in Westerlund 1. The EWOCS data found almost 6,000 X-ray sources, including fainter stars with lower masses than the Sun. This gives astronomers a new population to study.

One revelation is that 1,075 stars detected by Chandra are squeezed into the middle of Westerlund 1 within four light-years of the cluster’s center. For a sense of how crowded this is, four light-years is about the distance between the Sun and the next closest star to Earth.

The diffuse emission seen in the EWOCS data represents the first detection of a halo of hot gas surrounding the center of Westerlund 1, which astronomers think will be crucial in assessing the cluster’s formation and evolution, and giving a more precise estimate of its mass.

paper published in the journal Astronomy and Astrophysics, led by Mario Guarcello from the Italian National Institute of Astrophysics in Palermo, discusses the survey and the first results. Follow-up papers will discuss more about the results, including detailed studies of the brightest X-ray sources. This future work will analyze other EWOCS observations, involving NASA’s James Webb Space Telescope and NICER (Neutron Star Interior Composition Explorer).

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

For more Chandra images, multimedia and related materials, visit:

https://www.nasa.gov/mission/chandra-x-ray-observatory/

Visual Description:

This is an image of the Westerlund 1 star cluster and the surrounding region, as detected in X-ray and optical light. The black canvas of space is peppered with colored dots of light of various sizes, mostly in shades of red, green, blue, and white.

At the center of the image is a semi-transparent, red and yellow cloud of gas encircling a grouping of tightly packed gold stars. The shape and distribution of stars in the cluster call to mind effervescent soda bubbles dancing above the ice cubes of a recently poured beverage.

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998

Jonathan Deal
Marshall Space Flight Center
Huntsville, Ala.
256-544-0034

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On Sept. 20, 2024, four students experienced the wonder of space exploration at NASA’s Johnson Space Center in Houston, taking part in an international competition that brought their work to life aboard the International Space Station.  

      Now in its fifth year, the Kibo Robot Programming Challenge (Kibo-RPC) continues to push the boundaries of robotics, bringing together the world’s brightest young minds for a real-world test of programming, problem-solving, and innovation.
      The Kibo Robot Programming Challenge (Kibo-RPC) students tour the Gateway Habitation and Logistics Outpost module at NASA’s Johnson Space Center in Houston.NASA/Helen Arase Vargas The stakes reached new heights in this year’s competition, with 661 teams totaling 2,788 students from 35 countries and regions competing to program robots aboard the orbiting laboratory. Organized by the Japan Aerospace Exploration Agency in collaboration with the United Nations Office for Outer Space Affairs, the challenge provided a unique platform for students to test their skills on a global stage. 

      Meet Team Salcedo 

      Representing the U.S., Team Salcedo is composed of four talented students: Aaron Kantsevoy, Gabriel Ashkenazi, Justin Bonner, and Lucas Paschke. Each member brought a unique skill set and perspective, contributing to the team’s well-rounded approach to the challenge. 
      From left to right are Kibo-RPC students Gabriel Ashkenazi, Lucas Paschke, Aaron Kantsevoy, and Justin Bonner. NASA/Helen Arase Vargas The team was named in honor of Dr. Alvaro Salcedo, a robotics teacher and competitive robotics coach who had a significant impact on Kantsevoy and Bonner during high school. Dr. Salcedo played a crucial role in shaping their interests and aspirations in science, technology, engineering, and mathematics (STEM), inspiring them to pursue careers in these fields. 

      Kantsevoy, a computer science major at Georgia Institute of Technology, or Georgia Tech, led the team with three years of Kibo-RPC experience and a deep interest in robotics and space-based agriculture. Bonner, a second-year student at the University of Miami, is pursuing a triple major in computer science, artificial intelligence, and mathematics. Known for his quick problem-solving, he played a key role as a strategist and computer vision expert. Paschke, a first-time participant and computer science student at Georgia Tech, focused on intelligence systems and architecture, and brought fresh insights to the table. Ashkenazi, also studying computer science at Georgia Tech, specialized in computer vision and DevOps, adding depth to the team’s technical capabilities. 

      AstroBee Takes Flight 

      The 2024 competition tasked students with programming AstroBee, a free-flying robot aboard the station, to navigate a complex course while capturing images scattered across the orbital outpost. For Team Salcedo, the challenge reached its peak as their code was tested live on the space station.  
      The Kibo-RPC students watch their code direct Astrobee’s movements at Johnson Space Center with NASA Program Specialist Jamie Semple on Sept. 20, 2024.NASA/Helen Arase Vargas The robot executed its commands in real time, maneuvering through the designated course to demonstrate precision, speed, and adaptability in the microgravity environment. Watching AstroBee in action aboard the space station offered a rare glimpse of the direct impact of their programming skills and added a layer of excitement that pushed them to fine-tune their approach. 

      Overcoming Challenges in Real Time 

      Navigating AstroBee through the orbital outpost presented a set of unique challenges. The team had to ensure the robot could identify and target images scattered throughout the station with precision while minimizing the time spent between locations.  
      The Kibo-RPC students watch in real time as the free-flying robot Astrobee performs maneuvers aboard the International Space Station, executing tasks based on their input to test its capabilities. NASA/Helen Arase Vargas Using quaternions for smooth rotation in 3D space, they fine-tuned AstroBee’s movements to adjust camera angles and capture images from difficult positions without succumbing to the limitations of gimbal lock. Multithreading allowed the robot to simultaneously process images and move to the next target, optimizing the use of time in the fast-paced environment. 

      The Power of Teamwork and Mentorship 

      Working across different locations and time zones, Team Salcedo established a structured communication system to ensure seamless collaboration. Understanding each team member’s workflow and adjusting expectations accordingly helped them maintain efficiency, even when setbacks occurred. 
      Team Salcedo tour the Space Vehicle Mockup Facility with their NASA mentors (from top left to right) Education Coordinator Kaylie Mims, International Space Station Research Portfolio Manager Jorge Sotomayer, and Kibo-RPC Activity Manager Jamie Semple. NASA/Helen Arase Vargas Mentorship was crucial to their success, with the team crediting several advisors and educators for their guidance. Kantsevoy acknowledged his first STEM mentor, Casey Kleiman, who sparked his passion for robotics in middle school.  

      The team expressed gratitude to their Johnson mentors, including NASA Program Specialist Jamie Semple, Education Coordinator Kaylie Mims, and International Space Station Research Portfolio Manager Jorge Sotomayer, for guiding them through the program’s processes and providing support throughout the competition. 

      They also thanked NASA’s Office of STEM Engagement for offering the opportunity to present their project to Johnson employees.  

      “The challenge mirrors how the NASA workforce collaborates to achieve success in a highly technical environment. Team Salcedo has increased their knowledge and learned skills that they most likely would not have acquired individually,” said Semple. “As with all of our student design challenges, we hope this experience encourages the team to continue their work and studies to hopefully return to NASA in the future as full-time employees.” 

      Pushing the Boundaries of Innovation 

      The Kibo-RPC allowed Team Salcedo to experiment with new techniques, such as Slicing Aided Hyperinference—an approach that divides images into smaller tiles for more detailed analysis. Although this method showed promise in detecting smaller objects, it proved too time-consuming under the competition’s time constraints, teaching the students valuable lessons about prioritizing efficiency in engineering. 
      The Kibo-RPC students present their robotic programming challenge to the International Space Station Program. NASA/Bill Stafford For Team Salcedo, the programming challenge taught them the value of communication, the importance of learning from setbacks, and the rewards of perseverance. The thrill of seeing their code in action on the orbital outpost was a reminder of the limitless possibilities in robotics and space exploration. 

      Inspiring the Next Generation 

      With participants from diverse backgrounds coming together to compete on a global platform, the Kibo-RPC continues to be a proving ground for future innovators.  

      The challenge tested the technical abilities of students and fostered personal growth and collaboration, setting the stage for the next generation of robotics engineers and leaders. 
      The Kibo-RPC students and their mentors at the Mission Control Center. NASA/Helen Arase Vargas
      As Team Salcedo looks ahead, they carry with them the skills, experiences, and inspiration needed to push the boundaries of human space exploration.  

      “With programs like Kibo-RPC, we are nurturing the next generation of explorers – the Artemis Generation,” said Sotomayer. “It’s not far-fetched to imagine that one of these students could eventually be walking on the Moon or Mars.” 

      The winners were announced virtually from Japan on Nov. 9, with Team Salcedo achieving sixth place. 

      Watch the international final round event here. 

      For more information on the Kibo Robot Programming Challenge, visit: https://jaxa.krpc.jp/
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist’s concept of a future airliner based on the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 submission from awardee Electra. The team’s project focuses on electric propulsion, integrated aircraft technologies, and vehicle design.Electra Picture yourself at an airport a few decades from now. What does your airliner look like? It’s more efficient, with lower emissions than today’s aircraft – what kinds of designs or technology make that possible? NASA is working to answer those questions by commissioning five new design studies looking to push the boundaries of possibility for sustainable aircraft. 
      Through NASA’s Advanced Aircraft Concepts for Environmental Sustainability (AACES) 2050 initiative, the agency asked industry and academia to come up with studies looking at aircraft concepts, key technologies, and designs that could offer the transformative solutions needed to secure commercial aviation’s sustainable future by 2050. NASA issued five awards, worth a total of $11.5 million, to four companies and one university. These new NASA-funded studies will help the agency identify and select promising aircraft concepts and technologies for further investigations. 
      Artist’s concept of a future airliner based on the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 submission from awardee Georgia Institute of Technology. The team’s project focuses on exploring scenarios and technologies based on an aircraft concept the institute has developed, known as ATH2ENA.Georgia Institute of Technology “Through initiatives like AACES, NASA is positioned to harness a broad set of perspectives about how to further increase aircraft efficiency, reduce aviation’s environmental impact and enhance U.S. technological competitiveness in the 2040s, 2050s, and beyond,” said Bob Pearce, NASA associate administrator for the Aeronautics Research Mission Directorate. “As a leader in U.S. sustainable aviation research and development, these awards are one example of how we bring together the best ideas and most innovative concepts from the private sector, academia, research agencies, and other stakeholders to pioneer the future of aviation.” 
      For decades, NASA has connected government agencies, industry, and academia to develop sustainable aviation technologies. In 2021, NASA launched its Sustainable Flight National Partnership, focused on technologies that could be incorporated into aircraft by the 2030s. The partnership’s research and development led to current NASA work including the experimental X-66 Sustainable Flight Demonstrator aircraft, its Electrified Powertrain Flight Demonstration project, and the development of more efficient engine cores and processes for the rapid manufacturing of lightweight composite materials. 
      Artist’s concept of a Pratt & Whitney advanced propulsion concept for the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 initiative. The Pratt & Whitney project focuses on commercial aviation propulsion technologies targeting thermal and propulsive efficiency improvements to reduce fuel consumption and greenhouse gas emissions.Pratt & Whitney The new AACES awards are initiating a similar process, but on a longer timeline, focusing on technologies to help transform aviation beyond SFNP with aircraft that could enter service by 2050. The kinds of partnerships NASA develops through SFNP and AACES are critical for the agency to support the U.S. goal of net-zero aviation emissions by 2050 and to help put aviation on a path toward energy-resilience. 
      “The AACES 2050 solicitation drew significant interest from the aviation community and as a result the award process was highly competitive,” said Nateri Madavan, director for NASA’s Advanced Air Vehicles Program. “The proposals selected come from a diverse set of organizations that will provide exciting and wide-ranging explorations of the scenarios, technologies, and aircraft concepts that will advance aviation towards its transformative sustainability goals.” 
      An artist’s concept of JetZero’s blended wing body, which the company’s team will use to evaluate technologies for the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 initiative. JetZero’s project will explore technologies that enable cryogenic, liquid hydrogen to be used as a fuel for commercial aviation to reduce greenhouse gas emissions.JetZero The AACES 2050 awards went to organizations that will form networks of university and corporate partners to advance their studies. NASA expects the awardees to complete their studies by mid-2026. The new awardee institutions are: 
      Aurora Flight Sciences, a Boeing Company, whose team will perform a comprehensive, “open-aperture” exploration of technologies and aircraft concepts for the 2050 timeframe. This will include examining new alternative aviation fuels, propulsion systems, aerodynamic technologies, and aircraft configurations along with other technology areas that arise throughout the study.  The Electra-led team will explore extending Electra’s novel distributed electric propulsion and its unique aerodynamic design capabilities to develop innovative wing and fuselage integrations that deliver sustainable aviation focused on enabling community-friendly emission reduction, noise reduction, and improved air travel access. The company’s existing small aircraft prototype has been flying for over a year, demonstrating Electra’s technology that aims to transform air travel with reduced environmental impact and improved operational efficiency.  Georgia Institute of Technology will perform a comprehensive exploration of sustainability technologies, including alternative fuels, propulsion systems, and aircraft configurations. The institute’s team will then explore new aircraft concepts incorporating the selected technologies with their Advanced Technology Hydrogen Electric Novel Aircraft (ATH2ENA) as a starting point.   JetZero will explore technologies that enable cryogenic, liquid hydrogen to be used as a fuel for commercial aviation to reduce greenhouse gas emissions. These technologies will be evaluated on both tube-and wing and JetZero’s blended wing body – an airplane shape that provides more options for larger hydrogen fuel tanks within the aircraft.  Pratt and Whitney a division of RTX Corporation, will explore a broad suite of commercial aviation propulsion technologies targeting thermal and propulsive efficiency improvements to reduce fuel consumption and greenhouse gas emissions. The Pratt & Whitney team will then down-select high-priority and alternative propulsion concepts for potential integration studies with various airframe concepts for aircraft in 2050 and beyond.  Artist’s concept of a 50-60 passenger hydrogen fuel cell electric plane created by Boeing through its future flight concept efforts. Aurora Flight Sciences, a Boeing Company, received an award through NASA’s Advanced Aircraft Concepts for Environmental Sustainability (AACES) 2050 initiative to examine new alternative aviation fuels propulsion systems, aerodynamic technologies, and aircraft configurations, along with other technology areas.Boeing AACES 2050 is part of NASA’s Advanced Air Transport Technology project, which explores and develops technology to further NASA’s vision for the future development of fixed-wing transport aircraft with revolutionary energy efficiency. The project falls under NASA’s Advanced Air Vehicles Program, which evaluates and develops technologies for new aircraft systems and explores promising air travel concepts. 
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      5 min read Math, Mentorship, Motherhood: Behind the Scenes with NASA Engineers
      Article 4 days ago 4 min read X-59 Fires Up its Engine for First Time on its Way to Takeoff
      Article 6 days ago 5 min read October Transformer of the Month: Nipa Phojanamongkolkij
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Quesst: The Vehicle
      Explore NASA’s History
      Share
      Details
      Last Updated Nov 12, 2024 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics Research Mission Directorate Advanced Air Transport Technology Advanced Air Vehicles Program Sustainable Flight Demonstrator Sustainable Flight National Partnership View the full article
    • By European Space Agency
      12 November 2024 marks the start of a new year on Mars. At exactly 10:32 CET/09:32 UTC on Earth, the Red Planet begins a new orbit around our Sun.
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The NISAR mission will help researchers get a better understanding of how Earth’s surface changes over time, including in the lead-up to volcanic eruptions like the one pictured, at Mount Redoubt in southern Alaska in April 2009.R.G. McGimsey/AVO/USGS Data from NISAR will improve our understanding of such phenomena as earthquakes, volcanoes, and landslides, as well as damage to infrastructure.
      We don’t always notice it, but much of Earth’s surface is in constant motion. Scientists have used satellites and ground-based instruments to track land movement associated with volcanoes, earthquakes, landslides, and other phenomena. But a new satellite from NASA and the Indian Space Research Organisation (ISRO) aims to improve what we know and, potentially, help us prepare for and recover from natural and human-caused disasters.
      The NISAR (NASA-ISRO Synthetic Aperture Radar) mission will measure the motion of nearly all of the planet’s land and ice-covered surfaces twice every 12 days. The pace of NISAR’s data collection will give researchers a fuller picture of how Earth’s surface changes over time. “This kind of regular observation allows us to look at how Earth’s surface moves across nearly the entire planet,” said Cathleen Jones, NISAR applications lead at NASA’s Jet Propulsion Laboratory in Southern California.
      Together with complementary measurements from other satellites and instruments, NISAR’s data will provide a more complete picture of how Earth’s surface moves horizontally and vertically. The information will be crucial to better understanding everything from the mechanics of Earth’s crust to which parts of the world are prone to earthquakes and volcanic eruptions. It could even help resolve whether sections of a levee are damaged or if a hillside is starting to move in a landslide.
      The NISAR mission will measure the motion of Earth’s surface — data that can be used to  monitor critical infrastructure such as airport runways, dams, and levees. NASA/JPL-Caltech What Lies Beneath
      Targeting an early 2025 launch from India, the mission will be able to detect surface motions down to fractions of an inch. In addition to monitoring changes to Earth’s surface, the satellite will be able to track the motion of ice sheets, glaciers, and sea ice, and map changes to vegetation.
      The source of that remarkable detail is a pair of radar instruments that operate at long wavelengths: an L-band system built by JPL and an S-band system built by ISRO. The NISAR satellite is the first to carry both. Each instrument can collect measurements day and night and see through clouds that can obstruct the view of optical instruments. The L-band instrument will also be able to penetrate dense vegetation to measure ground motion. This capability will be especially useful in areas surrounding volcanoes or faults that are obscured by vegetation.
      “The NISAR satellite won’t tell us when earthquakes will happen. Instead, it will help us better understand which areas of the world are most susceptible to significant earthquakes,” said Mark Simons, the U.S. solid Earth science lead for the mission at Caltech in Pasadena, California.
      Data from the satellite will give researchers insight into which parts of a fault slowly move without producing earthquakes and which sections are locked together and might suddenly slip. In relatively well-monitored areas like California, researchers can use NISAR to focus on specific regions that could produce an earthquake. But in parts of the world that aren’t as well monitored, NISAR measurements could reveal new earthquake-prone areas. And when earthquakes do occur, data from the satellite will help researchers understand what happened on the faults that ruptured.
      “From the ISRO perspective, we are particularly interested in the Himalayan plate boundary,” said Sreejith K M, the ISRO solid Earth science lead for NISAR at the Space Applications Center in Ahmedabad, India. “The area has produced great magnitude earthquakes in the past, and NISAR will give us unprecedented information on the seismic hazards of the Himalaya.”
      Surface motion is also important for volcano researchers, who need data collected regularly over time to detect land movements that may be precursors to an eruption. As magma shifts below Earth’s surface, the land can bulge or sink. The NISAR satellite will help provide a fuller picture for why a volcano deforms and whether that movement signals an eruption.
      Finding Normal
      When it comes to infrastructure such as levees, aqueducts, and dams, NISAR’s ability to provide continuous measurements over years will help to establish the usual state of the structures and surrounding land. Then, if something changes, resource managers may be able to pinpoint specific areas to examine. “Instead of going out and surveying an entire aqueduct every five years, you can target your surveys to problem areas,” said Jones.
      The data could be equally valuable for showing that a dam hasn’t changed after a disaster like an earthquake. For instance, if a large earthquake struck San Francisco, liquefaction — where loosely packed or waterlogged sediment loses its stability after severe ground shaking — could pose a problem for dams and levees along the Sacramento-San Joaquin River Delta.
      “There’s over a thousand miles of levees,” said Jones. “You’d need an army to go out and look at them all.” The NISAR mission would help authorities survey them from space and identify damaged areas. “Then you can save your time and only go out to inspect areas that have changed. That could save a lot of money on repairs after a disaster.”
      More About NISAR
      The NISAR mission is an equal collaboration between NASA and ISRO and marks the first time the two agencies have cooperated on hardware development for an Earth-observing mission. Managed for the agency by Caltech, JPL leads the U.S. component of the project and is providing the mission’s L-band SAR. NASA is also providing the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem. The U R Rao Satellite Centre in Bengaluru, India, which leads the ISRO component of the mission, is providing the spacecraft bus, the launch vehicle, and associated launch services and satellite mission operations. The ISRO Space Applications Centre in Ahmedabad is providing the S-band SAR electronics.
      To learn more about NISAR, visit:
      https://nisar.jpl.nasa.gov
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-155
      Share
      Details
      Last Updated Nov 08, 2024 Related Terms
      NISAR (NASA-ISRO Synthetic Aperture Radar) Earth Science Earthquakes Jet Propulsion Laboratory Natural Disasters Volcanoes Explore More
      2 min read Hurricane Helene’s Gravity Waves Revealed by NASA’s AWE
      On Sept. 26, 2024, Hurricane Helene slammed into the Gulf Coast of Florida, inducing storm…
      Article 22 hours ago 3 min read Integrating Relevant Science Investigations into Migrant Children Education
      For three weeks in August, over 100 migrant children (ages 3-15) got to engage in…
      Article 2 days ago 5 min read NASA, Bhutan Conclude Five Years of Teamwork on STEM, Sustainability
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      23 Min Read The Marshall Star for October 30, 2024
      Editor’s Note: Starting Nov. 4, the Office of Communications at NASA’s Marshall Space Flight Center will no longer publish the Marshall Star on nasa.gov. The last public issue will be Oct. 30. To continue reading Marshall news, visit nasa.gov/marshall.
      Marshall Team Members View Progress Toward Future Artemis Flights
      Blake Stewart, lead of the Thrust Vector Control Test Laboratory inside Building 4205 at NASA’s Marshall Space Flight Center, explains how his team tests the mechanisms that steer engine and booster nozzles of NASA’s SLS (Space Launch System) rocket to a group of Marshall team members Oct. 24. The employees were some of the more than 500 team members who viewed progress toward future Artemis flights on bus tours offered by the SLS Program. Building 4205 is also home to the Propulsion Research and Development Laboratory that includes 26 world-class labs and support areas that help the agency’s ambitious goals for space exploration. The Software Integration Lab and the Software Integration Test Facility are among the labs inside supporting SLS that employees visited on the tour. (NASA/Sam Lott)
      A group of Marshall team members gather below the development test article for the universal stage adapter that will be used on the second variant of SLS, called Block 1B. The universal stage adapter is located inside one of the high bays in building 4619. The universal stage adapter will connect the Orion spacecraft to the SLS exploration upper stage. With the exploration upper stage, which will be powered by four RL10-C3 engines, SLS will be capable of lifting more than 105 metric tons (231,000 pounds) from Earth’s surface. This extra mass capability enables SLS to send multiple large payloads to the Moon on the same launch. (NASA/Sam Lott)
      Marshall team members view the Orion Stage Adapters for the Artemis II and Artemis III test flights inside Building 4708. The Orion Stage Adapter, built at Marshall, connects the rocket’s interim cryogenic propulsion stage to the Orion spacecraft. The Orion Stage Adapter for Artemis II is complete and ready to be shipped to Kennedy Space Center. The Oct. 24 tours featured four stops that also included opportunities to see the Artemis III launch vehicle stage adapter, and the development test article for the SLS Block 1B universal stage adapter that will begin flying on Artemis IV. Additionally, programs and offices such as the Human Landing Systems Development Office and the Science and Technology Office hosted exhibits in the lobby of Building 4220, where employees gathered for the tours. (NASA/Jonathan Deal)
      › Back to Top
      Center Commemorates National Disability Employment Awareness Month
      By Serena Whitfield
      In conjunction with National Disability Employment Awareness Month, NASA’s Marshall Space Flight Center held anagencywide virtual event hosted by the Office of Diversity and Equal Opportunity on Oct. 24.
      Marshall team members watched the Webex event in Building 4221.
      From left, Tora Henry, director of the Office of Diversity and Equal Opportunity at Marshall, Chip Dobbs, supply management specialist at Marshall, and Marshall Associate Director Roger Baird pause for a photo following the Oct. 24 virtual event the center hosted as part of National Disability Awareness Month. NASA/Serena Whitfield In alignment with the month’s national theme, “Access to Good Jobs for All,” the program highlighted the perspectives of people with disabilities in the workplace as they navigate the work lifecycle – from applying, to onboarding, career growth and advancement, and day-to-day engagements.
      The event began with Marshall Associate Director Roger Baird welcoming NASA team members.
      “NASA is dedicated to inclusive hiring practices and providing pathways for good jobs and career success for all employees, including workers with disabilities,” Baird said. “Some ways we do this is through targeted recruitment of qualified individuals with disabilities through accessible vacancy announcements, outreach to students with disabilities, and community partnerships.”
      NASA also utilizes Schedule A Authority, a non-competitive Direct Hiring Authority to hire people with disabilities without competition.
      Baird introduced event moderator Joyce Meier, logistics manager at Marshall, who welcomed panelists Casey Denham, Kathy Clark, Paul Spann, and Paul Sullivan, all NASA team members. The panelists from the disability community discussed their work lifecycles, lessons learned in the workplace, and shared a demonstration on colorblindness and its impact.
      Denham discussed some of the best practices for onboarding employees with neurodiversity, a term used to describe people whose brains develop or work differently than the typical brain.
      Marshall team members watch the agencywide virtual event commemorating National Disability Employment Awareness Month. NASA/Serena Whitfield Clark talked about what can be done to continue raising awareness and advocating for disability rights. She said NASA empowers its workforce with knowledge so they can be informed allies to team members with disabilities and foster a safe and inclusive working environment. 
      Spann gave insight into practical steps employers can take to accommodate candidates with deafness, and Sullivan spoke about some key considerations NASA managers should keep in mind to make the job application process more accessible to candidates with low vision.
      Guest speaker Chip Dobbs, supply management specialist at Marshall, talked about his personal experiences with being deaf. Dobbs has worked at NASA for 29 years and said he has never let his disability hold him back, but instead uses it as a gateway to inspire and connect with others.
      The event ended with closing remarks from Tora Henry, director of the Office of Diversity and Equal Opportunity at Marshall. The virtual event placed importance on planning for NASA’s future by promoting equality and addressing the barriers people with disabilities face in the workplace. 
      “As we celebrate National Disability Employment Awareness Month, keep in mind that NASA’s mission of exploring the unknown and pushing the boundaries of human potential requires the contributions of every mind, skill set, and perspective,” Baird said. “Our commitment to inclusivity ensures that no talent goes untapped, and no idea goes unheard because together, we’re not just reaching for the stars, we’re showing the world what’s possible when everyone has a seat at the table.”
      A recording of the event is available here. Learn more about NASA’s agencywide resources for individuals with disabilities as well as the agency’s Disability Employment Program.
      Whitfield is an intern supporting the Marshall Office of Communications.
      › Back to Top
      Farley Davis Receives NASA’s Blue Marble Award
      By Wayne Smith
      Farley Davis, manager of the Environmental Engineering and Occupational Health Office at NASA’s Marshall Space Flight Center, has received a 2024 Blue Marble Award from the agency.
      NASA’s Office of Strategic Infrastructure, Environmental Management Division presented the 2024 Blue Marble Awards on Oct. 8 at the agency’s Johnson Space Center. The Blue Marble Awards Program recognizes teams and individuals demonstrating exceptional environmental leadership in support of NASA’s missions and goals. In 2024, the awards included five categories: the Director’s Award, Environmental Quality, Excellence in Energy and Water Management, Excellence in Resilience or Climate Change Adaptation, and new this year: Excellence in Site Remediation. 
      Farley Davis, center, manager of the Environmental Engineering and Occupational Health Office at NASA’s Marshall Space Flight Center, with his NASA Blue Marble Award. Joining him, from left, are Joel Carney, assistant administrator, Strategic Infrastructure; Denise Thaller, deputy assistant administrator, Strategic Infrastructure; Charlotte Betrand, director, Environmental Management; and June Malone, director, Office of Center Operations at Marshall. NASA Davis was recognized for “exceptional leadership and outstanding commitment above and beyond individual job responsibilities, to assist Marshall and the agency in enabling environmentally sound mission success.”
      “The award was unexpected, and I am very thankful to receive the Environmental Management Director’s Blue Marble Award,” said Davis, who has been at Marshall for 33 years. “Collectively, Marshall’s environmental engineering team has made this award possible with their diligent support for many years keeping the center’s environmental compliance at the forefront. I will cherish the award for the rest of my life.”
      June Malone, director of the Office of Center Operations at Marshall, credited Davis for his environmental leadership and mentoring team members.
      “Farley’s attitude of professionalism and personal responsibility for the development and implementation of well-grounded environmental programs has increased Marshall’s sustainability and prevented pollution,” Malone said. “His tireless leadership has resulted in compliance with federal, state, and local environmental laws and regulations, and his creative solution-oriented approaches to environmental stewardship have restored contaminated areas.”
      Charlotte Bertrand, director of the Environmental Management Division at NASA Headquarters, said it was an honor to select Davis for the 2024 Blue Marble Director’s Award.
      “Farley’s incredibly distinguished career with NASA reflects the award’s intention to recognize exceptional leadership by an individual in assisting the agency in enabling environmentally sound mission success,” Bertrand said.
      Please see the awards program for additional information.
      Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.
      › Back to Top
      Take 5 with Brooke Rhodes
      By Wayne Smith
      When human exploration of Mars becomes a reality and more than just the stuff of science fiction, Brooke Rhodes will be eager to investigate what astronauts discover on the Red Planet.
      From listening to her talk about her work as an engineer at NASA’s Marshall Space Flight Center, it’s easy to grasp her excitement about the future of human space exploration and NASA’s Moon to Mars architecture.
      Brooke Rhodes is currently on detail as the branch chief of the Avionics and Software Ground Systems Test Branch at NASA’s Marshall Space Flight Center. Working in the Instrument Development, Integration and Test Branch for the past seven years, she’s been responsible for the integration and testing of International Space Station payloads. NASA “I can’t wait for the Mars rovers to have some human company,” said Rhodes, who recently began a detail as the chief of Marshall’s Avionics and Software Ground Systems Test Branch. “I need to know if we can grow Mark Watney (of The Martian movie fame) quantities of potatoes up there. Everything we do to prepare to return humans to the Moon and establish a presence in deep space is building toward putting boots on Mars. It’s an honor and a privilege to be even a small part of it.”
      Rhodes also appreciates the responsibility she takes on in any form in NASA’s exploration missions to benefit humanity. After all, she has worked on hardware for the International Space Station and has had supporting roles for the Mars Ascent Vehicle and Artemis missions.
      “We at Marshall hold an incredible amount of responsibility: responsibility for the welfare of the crew on the space station, responsibility for the welfare of the crew on the Artemis missions, and even the welfare of humanity through the responsibility we have for science on the station and elsewhere,” said Rhodes, who is from Petal, Mississippi, and has worked at Marshall for seven years. “When your missions are as critical as ours, it’s nearly impossible to not be motivated.”
      Now, on to Mars.
      Question: What is your position and what are your primary responsibilities?
      Rhodes: I recently began the detail as the branch chief of the Avionics and Software Ground Systems Test Branch, ES53. Our branch is primarily responsible for the development of hardware-in-the-loop and software development facilities for the Artemis and MAV (Mars Ascent Vehicle) missions. My home organization is ES61, the Instrument Development, Integration and Test Branch, where I’ve been responsible for the integration and testing of International Space Station payloads for the past several years.
      Rhodes with a box of sample cartridge assemblies (SCAs) headed for the International Space Station. Photo courtesy of Brooke Rhodes Question: What has been the proudest moment of your career and why?
      Rhodes: One really cool moment that sticks out was the first time I saw hardware I had been responsible for being used in space. I spent several years as the integration and test lead of the Materials Science Research Rack (MSRR) Sample Cartridge Assemblies (SCAs) and we shipped our first batch of SCAs to the space station in 2018. That shipment was the culmination of years of intense effort and teamwork, so to see them onboard and about to enable materials science was an incredible feeling. There was a moment in particular that felt a bit surreal: prior to our SCA shipment the crew discovered they were missing a couple of fasteners from the onboard furnace, so we had those shipped to us from Europe and I packed them into the SCA flight foam before they shipped to the launch site. The next time I saw those fasteners they were being held up to a camera by one of the crew members, asking if those were the ones they needed for the furnace. Putting fasteners into foam didn’t take much effort, but what it represented was much bigger: being a small part of an international effort to enable science off the Earth, for the Earth, was an incredible moment I’ll carry with me for the rest of my career.
      Question: Who or what inspired you to pursue an education/career that led you to NASA and Marshall?
      Rhodes: I had a couple of lightbulb moments my junior year of high school that eventually set me on my current career path. I very specifically recall sitting in my physics I class and learning how to calculate the planetary motion of Jupiter and thinking I had never learned about anything cooler. Even then, though, NASA didn’t really enter my thoughts. Growing up, working for NASA didn’t even occur to me as something people could actually do – being a “rocket scientist” was just an abstract concept people threw around to indicate something was difficult.
      That changed later when the same teacher who had been teaching us planetary motion took us on a field trip to Kennedy Space Center. The tour guide showing us around the Vehicle Assembly Building was a young employee who said he had majored in aerospace engineering at the University of Tennessee. That was the second lightbulb moment: here was a young person from the Southeast, just like me, who had done something tangible in order to work for NASA. That seemed easy enough, so I decided to major in aerospace engineering at Mississippi State and one day work for NASA. That turned out to not be easy, but definitely doable.
      While at Mississippi State, I was able to complete three NASA internships, one at the Jet Propulsion Laboratory and two at Marshall. Eventually, I was hired on full-time at NASA’s Johnson Space Center, but wound up making my way back to Marshall, where I’ve been ever since. There’s no place on the planet better for enthusiasts of both aerospace engineering and football.
      NASA astronaut Ricky Arnold, a space station crew member for Expedition 56, holds up a fastener for the Materials Science Laboratory, which Rhodes packed for shipment to the orbiting laboratory in 2018. “Putting fasteners into foam didn’t take much effort, but what it represented was much bigger: being a small part of an international effort to enable science off the Earth, for the Earth, was an incredible moment I’ll carry with me for the rest of my career.” Photo courtesy of Brooke Rhodes Interestingly, my physics I teacher’s name was Mrs. Rhodes, and I used to joke with my classmates that I wanted to be Mrs. Rhodes when I grew up. I didn’t actually mean that literally, but then I married Matthew Rhodes and did, indeed, become Mrs. Rhodes.
      Question: What advice do you have for employees early in their NASA career or those in new leadership roles?
      Rhodes: Scary is good. If you aren’t stepping out of your comfort zone you probably aren’t growing, and if you’re experiencing imposter syndrome, you’re probably the right person for the job.
      Question: What do you enjoy doing with your time while away from work?
      Rhodes: While away from work I tend to invest too much of my mental wellbeing into football. To recover from the stresses of work and my football teams being terrible, I like to explore National Parks. The U.S. has some of the most diverse scenery anywhere in the world, and I love getting outside and exploring it.
      Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.
      › Back to Top
      Planets Beware: NASA Unburies Danger Zones of Star Cluster
      Most stars form in collections, called clusters or associations, that include very massive stars. These giant stars send out large amounts of high-energy radiation, which can disrupt relatively fragile disks of dust and gas that are in the process of coalescing to form new planets.
      A team of astronomers used NASA’s Chandra X-ray Observatory, in combination with ultraviolet, optical, and infrared data, to show where some of the most treacherous places in a star cluster may be, where planets’ chances to form are diminished.
      In this new composite image, Chandra data (purple) shows the diffuse X-ray emission and young stars in Cygnus OB2, and infrared data from NASA’s now-retired Spitzer Space Telescope (red, green, blue, and cyan) reveals young stars and the cooler dust and gas throughout the region.X-ray: NASA/CXC/SAO/J. Drake et al, IR: NASA/JPL-Caltech/Spitzer; Image Processing: NASA/CXC/SAO/N. Wolk The target of the observations was Cygnus OB2, which is the nearest large cluster of stars to our Sun – at a distance of about 4,600 light-years. The cluster contains hundreds of massive stars as well as thousands of lower-mass stars. The team used long Chandra observations pointing at different regions of Cygnus OB2, and the resulting set of images were then stitched together into one large image.
      The deep Chandra observations mapped out the diffuse X-ray glow in between the stars, and they also provided an inventory of the young stars in the cluster. This inventory was combined with others using optical and infrared data to create the best census of young stars in the cluster.
      In a new composite image, the Chandra data (purple) shows the diffuse X-ray emission and young stars in Cygnus OB2, and infrared data from NASA’s now-retired Spitzer Space Telescope (red, green, blue, and cyan) reveals young stars and the cooler dust and gas throughout the region.
      In these crowded stellar environments, copious amounts of high-energy radiation produced by stars and planets are present. Together, X-rays and intense ultraviolet light can have a devastating impact on planetary disks and systems in the process of forming.
      Planet-forming disks around stars naturally fade away over time. Some of the disk falls onto the star and some is heated up by X-ray and ultraviolet radiation from the star and evaporates in a wind. The latter process, known as “photoevaporation,” usually takes between five and 10 million years with average-sized stars before the disk disappears. If massive stars, which produce the most X-ray and ultraviolet radiation, are nearby, this process can be accelerated.
      The researchers using this data found clear evidence that planet-forming disks around stars indeed disappear much faster when they are close to massive stars producing a lot of high-energy radiation. The disks also disappear more quickly in regions where the stars are more closely packed together.
      For regions of Cygnus OB2 with less high-energy radiation and lower numbers of stars, the fraction of young stars with disks is about 40%. For regions with more high-energy radiation and higher numbers of stars, the fraction is about 18%. The strongest effect – meaning the worst place to be for a would-be planetary system – is within about 1.6 light-years of the most massive stars in the cluster.
      A separate study by the same team examined the properties of the diffuse X-ray emission in the cluster. They found that the higher-energy diffuse emission comes from areas where winds of gas blowing away from massive stars have collided with each other. This causes the gas to become hotter and produce X-rays. The less energetic emission probably comes from gas in the cluster colliding with gas surrounding the cluster.
      Two separate papers describing the Chandra data of Cygnus OB2 are available. The paper about the planetary danger zones, led by Mario Giuseppe Guarcello (National Institute for Astrophysics in Palermo, Italy), appeared in the November 2023 issue of the Astrophysical Journal Supplement Series, and is available here. The paper about the diffuse emission, led by Juan Facundo Albacete-Colombo (University of Rio Negro in Argentina) was published in the same issue of Astrophysical Journal Supplement, and is available here.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      NASA’s Jet Propulsion Laboratory (JPL) managed the Spitzer Space Telescope mission for the agency’s Science Mission Directorate until the mission was retired in January 2020. Science operations were conducted at the Spitzer Science Center at Caltech. Spacecraft operations were based at Lockheed Martin Space in Littleton, Colorado. Data are archived at the Infrared Science Archive operated by IPAC at Caltech. Caltech manages JPL for NASA.
      › Back to Top
      NASA Begins New Deployable Solar Array Tech Demo on Pathfinder Spacecraft
      NASA recently evaluated initial flight data and imagery from Pathfinder Technology Demonstrator-4 (PTD-4), confirming proper checkout of the spacecraft’s systems including its on-board electronics as well as the payload’s support systems such as the small onboard camera. Shown is a test image of Earth taken by the payload camera, shortly after PTD-4 reached orbit. This camera will continue photographing the technology demonstration during the mission. 
      A test image of Earth taken by NASA’s Pathfinder Technology Demonstrator-4’s onboard camera. The camera will capture images of the Lightweight Integrated Solar Array and anTenna upon deployment.NASA Payload operations are now underway for the primary objective of the PTD-4 mission – the demonstration of a new power and communications technology for future spacecraft. The payload, a deployable solar array with an integrated antenna called the Lightweight Integrated Solar Array and anTenna, or LISA-T, has initiated deployment of its central boom structure. The boom supports four solar power and communication arrays, also called petals. Releasing the central boom pushes the still-stowed petals nearly three feet away from the spacecraft bus. The mission team currently is working through an initial challenge to get LISA-T’s central boom to fully extend before unfolding the petals and beginning its power generation and communication operations.
      Small spacecraft on deep space missions require more electrical power than what is currently offered by existing technology. The four-petal solar array of LISA-T is a thin-film solar array that offers lower mass, lower stowed volume, and three times more power per mass and volume allocation than current solar arrays. The in-orbit technology demonstration includes deployment, operation, and environmental survivability of the thin-film solar array.  
      “The LISA-T experiment is an opportunity for NASA and the small spacecraft community to advance the packaging, deployment, and operation of thin-film, fully flexible solar and antenna arrays in space. The thin-film arrays will vastly improve power generation and communication capabilities throughout many different mission applications,” said John Carr, deputy center chief technologist at NASA’s Marshall Space Flight Center. “These capabilities are critical for achieving higher value science alongside the exploration of deep space with small spacecraft.”
      NASA teams are testing a key technology demonstration known as LISA-T, short for the Lightweight Integrated Solar Array and anTenna. It’s a super compact, stowable, thin-film solar array that when fully deployed in space, offers both a power generation and communication capability for small spacecraft. LISA-T’s orbital flight test is part of the Pathfinder Technology Demonstrator series of missions. (NASA) The Pathfinder Technology Demonstration series of missions leverages a commercial platform which serves to test innovative technologies to increase the capability of small spacecraft. Deploying LISA-T’s thin solar array in the harsh environment of space presents inherent challenges such as deploying large highly flexible non-metallic structures with high area to mass ratios. Performing experiments such as LISA-T on a smaller, lower-cost spacecraft allows NASA the opportunity to take manageable risk with high probability of great return. The LISA-T experiment aims to enable future deep space missions with the ability to acquire and communicate data through improved power generation and communication capabilities on the same integrated array.
      The PTD-4 small spacecraft is hosting the in-orbit technology demonstration called LISA-T. The PTD-4 spacecraft deployed into low Earth orbit from SpaceX’s Transporter-11 rocket, which launched from Space Launch Complex 4E at Vandenberg Space Force Base in California on Aug. 16. Marshall designed and built the LISA-T technology as well as LISA-T’s supporting avionics system. NASA’s Small Spacecraft Technology program, based at NASA’s Ames Research Center and led by the agency’s Space Technology Mission Directorate, funds and manages the PTD-4 mission as well as the overall Pathfinder Technology Demonstration mission series. Terran Orbital Corporation of Irvine, California, developed and built the PTD-4 spacecraft bus, named Triumph.
      › Back to Top
      NASA SPoRT’s Streamflow-AI Helps with Flood Preparedness in Texas
      By Paola Pinto
      For more than two decades, the NASA Short-term Prediction Research and Transition Center (SPoRT) within the NASA Earth Science Office at Marshall Space Flight Center has been at the forefront of developing and maintaining decision-making tools for meteorological predictions.
      This image represents the first instance of predictions getting into moderate flooding in Pine Island Bayou. At 14 feet (start of the moderate flooding category), Cooks Lake Road becomes unsafe for most vehicles. NASA Jonathan Brazzell, a service hydrologist at the National Weather Service (NWS) office in Lake Charles, Louisiana, highlighted a recent example of SPoRT’s impact while he was doing forecasting for Texas streams.
      Brazzell, who manages the South Texas and South Louisiana regions, emphasized the practical applications and significant impacts of the Machine Learning model developed by NASA SPoRT to predict future stream heights, known as the SPoRT Streamflow A.I. During a heavy rainfall event this past spring, he noted the challenge of forecasting flooding beyond 48 hours. SPoRT has worked closely with the NWS offices to develop a machine learning tool capable of predicting river flooding beyond two days and powered by the SPoRT Land Information System.
      “Previously, we relied on actual gauge information and risk assessments based on predicted precipitation,” Brazzell said. “Now, with this machine learning, we have a modeling tool that provides a much-needed predictive capability.”
      During forecasted periods of heavy precipitation from early to mid-May, Brazzell monitored potential flooding events and their magnitude using NASA SPoRT’s Streamflow-AI, which provided essential support to the Pine Island Bayou and Big Cow Creek communities in south Texas.
      Streamflow A.I. enabled local authorities to provide advance notice, allowing residents to prepare adequately for the event. Due to the benefit of three to seven-day flood stage predictions, the accurate forecasts helped county officials decide on road closures and evacuation advisories; community officials advised residents to gather a seven-day supply of necessities and relocate their vehicles, minimizing disruption and potential damage.
      Brazzell highlighted specific instances where the machine learning outputs were critical. For example, during the event that peaked around May 6, Streamflow A.I. accurately predicted the rise in stream height, allowing for timely road closures and advisories. These predictions were shared with county officials and were pivotal in their decision-making process.
      This image shows the water levels after rainfall and predicts a moderate stream height in Pine Island Bayou. NASA Brazzell shared that integrating SPoRT’s machine learning capabilities with their existing tools, such as flood risk mapping, proved invaluable. Although the machine learning outputs had been operational for almost two years after Hurricane Harvey, this season has provided their first significant applications in real-time scenarios due to persistent conditions of below-normal precipitation and ongoing drought.
      He also mentioned the broader applications of Streamflow A.I., including its potential use in other sites beyond those currently being monitored. He expressed interest in expanding the use of machine learning stream height outputs to additional locations, citing the successful application in current sites as a compelling reason for broader implementation.
      NASA SPoRT users’ experiences emphasize how crucial advanced prediction technologies are in hydrometeorology and emergency management operations. Based on Brazzell’s example, it is reasonable to say that the product’s ability to provide accurate, timely data greatly improves decision-making processes and ensures public safety. The partnership between NASA SPoRT and operational agencies like NOAA/NWS and county response teams demonstrates how research and operations can be seamlessly integrated into everyday practices, making a tangible difference in communities vulnerable to high-impact events.
      As the Streamflow A.I. product continues to evolve and expand its applications, it holds significant promise for improving disaster preparedness and response efforts across various regions that experience different types of flooding events.
      The Streamflow-AI product provides a 7-day river height or stage forecasts at select gauges across the south/eastern U.S. You can find the SPoRT training item on Streamflow-AI here.
      Pinto is a research associate at the University of Alabama in Huntsville, specializing in communications and user engagement for NASA SPoRT.
      › Back to Top
      Agency Awards Custodial, Refuse Collection Contract
      NASA has selected All Native Synergies Company of Winnebego, Nebraska, to provide custodial and refuse collection services at the agency’s Marshall Space Flight Center.
      The Custodial and Refuse Collection Services III contract is a firm-fixed-price contract with an indefinite-delivery/indefinite-quantity provision. Its maximum potential value is approximately $33.5 million. The performance period began Oct. 23 and will extend four and a half years, with a one-year base period, four one-year options, and a six-month extension.
      This critical service contract provides custodial and refuse collection services for all Marshall facilities. Work under the contract includes floor maintenance, including elevators; trash removal; cleaning drinking fountains and restrooms; sweeping, mopping, and cleaning building entrances and stairways.
      › Back to Top
      View the full article
  • Check out these Videos

×
×
  • Create New...