Jump to content

PACE Celebrates National Ocean Month With Colorful Views of the Planet


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Credit: NASA/Ryan Fitzgibbons

What do you give to an ocean that has everything? This year, for National Ocean Month, NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite— is gifting us a unique look at our home planet. The visualizations created with data from the satellite, which launched on Feb. 8, are already enhancing the ways that we view our seas and skies. 

The PACE satellite views our entire planet every day, returning data at a cadence that allows scientists to track and monitor the rapidly changing atmosphere and ocean, including cloud formation, aerosol movement, and differences in microscopic ocean life over time.

The visualization starts with a view of swaths of Earth from PACE’s Ocean Color Instrument. The Ocean Color Instrument observes Earth in ultraviolet, visible, and near infrared light — over 200 wavelengths. With this level of detail, scientists can now, from space, regularly identify specific communities of phytoplankton — tiny organisms floating near the surface of the ocean that serve as the center of the marine food web. This is a major advance, as different types of phytoplankton play different roles in ocean ecosystems and health.

A graphic image of Earth sits upon a black background with the words "PACE Instrument: OCI" in white text in the top left corner. The planet is overlayed with real imagery with portions
PACE orbits Earth in this visualization, exposing a swath of true color imagery.
NASA’s Scientific Visualization Studio

Zooming in, the visualization shows the ecosystems and surrounding atmosphere off the United States’ East Coast and The Bahamas on March 21. Like previous satellites, the Ocean Color Instrument can detect chlorophyll in the ocean, which indicates the presence and abundance of phytoplankton. The Ocean Color Instrument adds to this by allowing scientists to determine the types of phytoplankton present, such as the three different types of phytoplankton identified in the visualization.

An image of the Gulf of Mexico and the East Coast of the United States is overlayed with splotches of color representing data. Only the ocean is covered by these data points, which are bright green near the coast and a lighter blue as it extends further into the ocean.
False color data visualization of phytoplankton (Picoeukaryotes and Prochlorococcus), as observed by PACE’s Ocean Color instrument (OCI).
NASA’s Scientific Visualization Studio

The portion of the swirls in green indicate the presence of picoeukaryotes, organisms which are smaller than 0.3 micrometers in size — 30 times smaller than the width of a human hair. In light blue are prochlorococcus, the smallest known organism to turn sunlight into energy (photosynthesis); they account for a major fraction of all photosynthesis that occurs in the ocean. The portion of the bloom in bright pink indicates synechococcus, a phytoplankton group that can color the water light pink when many are present in a small area.

pace-earthday2024-still-05100.jpg?w=2048
False color data visualization of phytoplankton (Picoeukaryotes and Synechococcus), as observed by PACE’s OCI instrument.
NASA’s Scientific Visualization Studio

These are just three of the thousands of types of phytoplankton, and just the start of what the Ocean Color Instrument will be able to identify.

The PACE satellite’s two polarimeters, Hyper-Angular Rainbow Polarimeter #2 (HARP2) and Spectro-polarimeter for Planetary Exploration one (SPEXone), provide a unique view of Earth’s atmosphere, helping scientists learn more about clouds and small particles called aerosols. The polarimeters measure light that reflects off of these particles. By learning more about the interactions between clouds and aerosols, these data will ultimately help make climate models more accurate. Additionally, aerosols can degrade air quality, so monitoring their properties and movement is important for human health.

An image of the Gulf of Mexico and the East Coast of the United States is overlayed with splotches of color representing data. The colors range from light yellow to dark orange, and across the large splotches is a diagonal line of dark red - a swath of separate data.
Aerosols, as observed by PACE’s HARP2 and SPEXone instruments.
NASA’s Scientific Visualization Studio

In the visualization, the large swath of HARP2 data shows the concentration of aerosols in the air for that particular day. These data — a measure of the light scattering and absorbing properties of aerosols — help scientists not only locate the aerosols, but identify the type. Near the coast, the aerosols are most likely smoke from fires in the U.S. southeast. Adding detail to the visualization and the science, the thin swath of SPEXone data furthers the information by showing the aerosol particle size.

Over the next year, PACE scientists aim to create the first global maps of phytoplankton communities and glean new insights into how fisheries and aquatic resources are responding to Earth’s changing climate.

NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) spacecraft was specifically designed to study the invisible universe of Earth’s sea and sky from the vantage point of space. We’ve measured 4-6 colors of the rainbow for decades, which has enabled us to “see” phytoplankton from space through the lens of its primary photosynthetic pigment, chlorophyll-a. PACE’s primary instrument is the first of its kind to measure all the colors of the rainbow, every day, everywhere. That means we can identify the type of phytoplankton behind the chlorophyll-a. Different types of phytoplankton have different effects on the food web, on water management, and on the climate, via their impact on the carbon cycle.
NASA's Scientific Visualization Studio

By Erica McNamee

NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated
Jun 07, 2024
Editor
Kate D. Ramsayer
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read NASA’s Ames Research Center Celebrates 85 Years of Innovation
      The NACA Ames laboratory in 1944 Credits: NASA Ames Research Center in California’s Silicon Valley pre-dates a lot of things. The center existed before NASA – the very space and aeronautics agency it’s a critical part of today. And of all the marvelous advancements in science and technology that have fundamentally changed our lives over the last 85 years since its founding, one aspect has remained steadfast; an enduring commitment to what’s known by some on-center simply as, “an atmosphere of freedom.” 
      Years before breaking ground at the site that would one day become home to the world’s preeminent wind tunnels, supercomputers, simulators, and brightest minds solving some of the world’s toughest challenges, Joseph Sweetman Ames, the center’s namesake, described a sentiment that would guide decades of innovation and research: 
      My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere
      Joseph sweetman ames
      Founding member of the N.A.C.A.
      “My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere,” he said in an address to the graduates of Johns Hopkins University in June 1935.
      That spirit and the people it attracted and retained are a crucial part of how Ames, along with other N.A.C.A. research centers, ultimately made technological breakthroughs that enabled humanity’s first steps on the Moon, the safe return of spacecraft through Earth’s atmosphere, and many other discoveries that benefit our day-to-day lives.
      Russell Robinson momentarily looks to the camera while supervising the first excavation at what would become Ames Research Center.NACA “In the context of my work, an atmosphere of freedom means the freedom to pursue high-risk, high-reward, innovative ideas that may take time to fully develop and — most importantly — the opportunity to put them into practice for the benefit of all,” said Edward Balaban, a researcher at Ames specializing in artificial intelligence, robotics, and advanced mission concepts.
      Balaban’s career at Ames has involved a variety of projects at different stages of development – from early concept to flight-ready – including experimenting with different ways to create super-sized space telescopes in space and using artificial intelligence to help guide the path a rover might take to maximize off-world science results. Like many Ames researchers over the years, Balaban shared that his experience has involved deep collaborations across science and engineering disciplines with colleagues all over the center, as well as commercial and academic partners in Silicon Valley where Ames is nestled and beyond. This is a tradition that runs deep at Ames and has helped lead to entirely new fields of study and seeded many companies and spinoffs.
      Before NASA, Before Silicon Valley: The 1939 Founding of Ames Aeronautical Laboratory “In the fields of aeronautics and space exploration the cost of entry can be quite high. For commercial enterprises and universities pursuing longer term ideas and putting them into practice often means partnering up with an organization such as NASA that has the scale and multi-disciplinary expertise to mature these ideas for real-world applications,” added Balaban.
      “Certainly, the topics of inquiry, the academic freedom, and the benefit to the public good are what has kept me at Ames,” reflected Ross Beyer, a planetary scientist with the SETI Institute at Ames. “There’s not a lot of commercial incentive to study other planets, for example, but maybe there will be soon. In the meantime, only with government funding and agencies like NASA can we develop missions to explore the unknown in order to make important fundamental science discoveries and broadly share them.”
      For Beyer, his boundary-breaking moment came when he searched – and found – software engineers at Ames capable and passionate about open-source software to generate accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. He and other teams of NASA scientists have since applied that software to study and better understand everything from changes in snow and ice characteristics on Earth, as well as features like craters, mountains, and caves on Mars or the Moon. This capability is part of the Artemis campaign, through which NASA will establish a long-term presence at the Moon for scientific exploration with commercial and international partners. The mission is to learn how to live and work away from home, promote the peaceful use of space, and prepare for future human exploration of Mars. 
      “As NASA and private companies send missions to the Moon, they need to plan landing sites and understand the local environment, and our software is freely available for anyone to use,” Beyer said. “Years ago, our management could easily have said ‘No, let’s keep this software to ourselves; it gives us a competitive advantage.’ They didn’t, and I believe that NASA writ large allows you to work on things and share those things and not hold them back.” 
      When looking forward to what the next 85 years might bring, researchers shared a belief that advancements in technology and opportunities to innovate are as expansive as space itself, but like all living things, they need a healthy atmosphere to thrive. Balaban offered, “This freedom to innovate is precious and cannot be taken for granted. It can easily fall victim if left unprotected. It is absolutely critical to retain it going forward, to ensure our nation’s continuing vitality and the strength of the other freedoms we enjoy.”
      Ames Aeronautical Laboratory.NACAView the full article
    • By NASA
      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Maurice Valdez, Niki Parenteau, Dori Myer, and Judy Alfter. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
      Space Science and Astrobiology Star: Maurice Valdez
      Maurice Valdez is a system administrator, supporting desktop systems and website development for the Space Science and Astrobiology Division. Maurice is recognized for his focus and commitment to supporting the division’s scientific productivity by keeping systems compliant and functioning. His can-do attitude makes him instrumental in the success of the team, whether he is finding new solutions for hybrid meetings, fixing equipment, patching systems, or troubleshooting issues.

      Photo credit: Pacific Science Center Space Science and Astrobiology Star: Niki Parenteau
      Niki Parenteau, a research scientist for the Exobiology Branch, embodies the true spirit of an interdisciplinary astrobiologist. She has applied her expertise to identify potential biosignatures of life on exoplanets and has taken a leading role in the project office for the development of the Habitable Worlds Observatory (HWO), where she facilitates collaborative efforts of Ames scientists across the division and shepherds the larger scientific community to enable observations of biosignatures with HWO.

      Space Biosciences Star: Dori Myer
      Archivist Dori Myer has made an outstanding contribution in the Flight Systems Implementation Branch’s multi-year effort to digitize and preserve institutional knowledge.  Under her guidance, the records management team digitized tens of thousands of historical records, preserving the branch’s institutional knowledge for years to come. Her exceptional initiative and dedication have transformed our record management processes, ensuring the accessibility of NASA’s rich institutional knowledge while streamlining its access in the modern age.

      Earth Science Star: Judy Alfter
      Judy Alfter, a Deputy Project Manager in the Earth Science Project Office (ESPO), has excelled in her multi-faceted role during the field campaign for the Plankton, Aerosol, Cloud, ocean Ecosystem Post-launch Airborne eXperiment (PACE-PAX). Judy launched the deployment phase of PACE-PAX, leading the effort to set up Twin Otter flight operations at Marina Municipal Airport in California. Following this phase, she transitioned to Santa Barbara in California to support the mobilization of PACE-PAX ship operations and concluded deployment activities at NASA Armstrong Flight Research Center’s main campus as ESPO site manager for ER-2 flight operations.
      View the full article
    • By Space Force
      The NACE program’s mission is to rapidly iterate and improve space superiority, intelligence surveillance and reconnaissance, and defensive cyber command-and-control processes and procedures.

      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Stennis Space Center enjoyed an active 2024, marking several milestones and engaging in frontline activities in several key areas. A compilation video offers a look at 2024 highlights in such areas of work as propulsion testing, autonomous systems, range operations, community outreach, and STEM engagement. NASA’s Stennis Space Center near Bay St. Louis, Mississippi, celebrated propulsion testing and site operations milestones in 2024, all while inspiring the Artemis Generation and welcoming new leadership that will help NASA Stennis innovate and grow into the future.
      Featured highlights show a year of progress and vision, as NASA Stennis accelerates the exploration and commercialization of space, innovates to benefit NASA and industry, and leverages assets to grow as an impactful aerospace and technology hub.
      “These highlights are just a small snapshot of 2024 at NASA Stennis that show the future is bright,” Bailey said. “We have an incredibly talented and committed team of employees – and all of Mississippi can be proud of the work they do here at NASA Stennis. Together, with the Artemis Generation leading the way, we are returning to the Moon. Together, we are a part of something great.”
      New Center Leadership
      NASA Stennis Director John Bailey, right, and NASA Stennis Deputy Director Christine Powell stand near the United States Capitol during a visit to Washington, D.C. on Sept. 18. It marked the first visit to Capitol Hill for the center leaders since being named to their current roles. NASA/Stennis NASA Administrator Bill Nelson named John Bailey as director of NASA Stennis in April. Bailey had been serving as acting director since January 2024. “So much of NASA runs through Stennis,” said Nelson. “It is where we hone new and exciting capabilities in aerospace, technology, and deep space exploration. I am confident that John will lead the nation’s largest and premier propulsion test site to even greater success.”
      Four months later in August, Bailey announced that longtime propulsion engineer/manager Christine Powell had been selected as deputy director of NASA Stennis.
      Powell, the first woman selected as NASA Stennis deputy director, began her 33-year agency career as an intern at the center in 1991. She previously worked in multiple Engineering and Test Directorate roles, and most recently served as manager of the NASA Rocket Propulsion Test Program Office.
      Propulsion Activity
      NASA achieves a major milestone for future Artemis missions with successful completion of the second – and final – RS-25 engine certification test series April 3 on the Fred Haise Test Stand at NASA’s Stennis Space Center. NASA/Danny Nowlin NASA achieved major milestones for future Artemis missions at NASA Stennis in 2024. The NASA Stennis test team successfully completed a second – and final – RS-25 engine certification test series in April. The mission-critical series verified engine upgrades designed to enhance efficiency and reliability for future SLS (Space Launch System) missions.
      NASA Stennis crews also completed a safe lift and installation of the interstage simulator component in October needed for future testing of NASA’s exploration upper stage in the B-2 position of the Thad Cochran Test Stand. The component will function during Green Run testing like the SLS interstage section that helps protect the upper stage during Artemis launches.
      The test complex milestones support NASA’s goal of returning humans to the Moon and paving the way for future Mars exploration through Artemis missions.
      Commercial Testing
      NASA Stennis commercial tenant Rocket Lab completes a successful hot fire test of its Archimedes engine in its onsite test complex in the second half of 2024. Rocket Lab is one of numerous customers conducting test campaigns at NASA Stennis during the most recent year. Rocket Lab Already the nation’s largest multiuser propulsion test site, NASA Stennis aims to continue fueling growth of the commercial space market even further by working with aerospace companies to support a range of testing needs. In 2024, NASA Stennis supported work conducted by commercial companies such as Boeing, Blue Origin, Evolution Space, Launcher (a Vast company), Relativity Space, Rocket Lab, and Rolls-Royce.
      Officials from NASA Stennis and Roll-Royce also broke ground in June for a test pad located in the NASA Stennis E Test Complex. Rolls-Royce will conduct hydrogen testing for the Pearl 15 engine, which helps power the Bombardier Global 5500 & 6500 aircraft.
      ASTRA Mission Success
      Members of the NASA Stennis Autonomous Systems Laboratory team monitor the center’s in-space satellite payload from the onsite ASTRA (Autonomous Satellite Technology for Resilient Applications) Payload Operation Command Center. The ASTRA payload launched aboard the Sidus Space LizzieSat-1 small satellite in March 2024, with the NASA Stennis team announcing in July that it had achieved primary mission objectives. In September, the team announced the ASTRA mission would continue during the satellite’s planned four-year mission.NASA/Danny Nowlin In July, NASA Stennis and commercial partner Sidus Space Inc. announced primary mission success for the center’s historic in-space mission – an autonomous systems payload aboard an orbiting satellite.
      ASTRA (Autonomous Satellite Technology for Resilient Applications) is the on-orbit payload mission developed by NASA Stennis. The NASA Stennis ASTRA technology demonstrator is a payload rider aboard the Sidus Space premier satellite, LizzieSat-1 (LS-1) small satellite. Partner Sidus Space is responsible for all LS-1 mission operations, including launch and satellite activation, which allowed the NASA Stennis ASTRA team to complete its primary mission objectives.
      NASA Stennis announced in September it will continue the center’s in-space autonomous systems payload mission through a follow-on agreement with Sidus Space Inc.
      Range Operations
      The Skydweller Aero solar-powered, autonomous aircraft flies above the Thad Cochran Test Stand (B-1/B-2) at NASA’s Stennis Space Center during a September 2024 test operation. Skydweller Aero has an ongoing airspace agreement with NASA Stennis to conduct test flights of its aircraft in the area. Skydweller Aero During 2024, NASA Stennis entered into an agreement with Skydweller Aero Inc. for the company to operate its solar-powered autonomous aircraft in the site’s restricted airspace, a step towards achieving a strategic center goal.
      The agreement marked the first Reimbursable Space Act agreement between NASA Stennis and a commercial company to utilize the south Mississippi center’s unique capabilities to support testing and operation of uncrewed systems.
      The company announced in October it had completed an initial test flight campaign of the aircraft, including two test excursions totaling 16 and 22.5 hours.
      NASA Engagement
      NASA Stennis representatives inspire the Artemis Generation at the NAS Pensacola Blue Angels Homecoming Air Show on Nov. 1-2. NASA’s exhibits at the air show honored 55th anniversary of the Apollo 11 lunar landing and showcased the agency’s mission to inspire the world through discovery. NASA/Stennis NASA representatives participated in a variety of outreach activities during the past year to create meaningful connections with the Artemis Generation.
      The NASA ASTRO CAMP® Community Partners program, which originated at the south Mississippi NASA center, surpassed previous milestone marks in fiscal year 2024 by partnering with 373 community sites, including 50 outside the United States, to inspire youth, families, and educators. 
      NASA Stennis also supported STEM (science, technology, engineering, and mathematics) engagement during the year. It once again joined with NASA’s Robotics Alliance Project and co-sponsor Mississippi Power to support the second annual For the Inspiration and Recognition of Science and Technology (FIRST) Robotics Magnolia Regional Competition in Laurel, Mississippi. The event attracted 37 high school teams from eight states and one from Mexico.
      The center also supported NASA activities during the 2024 total solar eclipse. In addition, it hosted informational efforts and exhibits at high-visibility events such as the 51st Annual Bayou Classic, and Essence Fest in New Orleans.
      For information about NASA’s Stennis Space Center, visit:
      Stennis Space Center – NASA
      Share
      Details
      Last Updated Dec 16, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center View the full article
    • By European Space Agency
      Our understanding of planet formation in the Universe’s early days is challenged by new data from the NASA/ESA/CSA James Webb Space Telescope. Webb solved a puzzle by proving a controversial finding made with the NASA/ESA Hubble Space Telescope more than 20 years ago.
      View the full article
  • Check out these Videos

×
×
  • Create New...