Members Can Post Anonymously On This Site
Instructor-Led TOPS Workshop at MSFC
-
Similar Topics
-
By NASA
Technicians carefully install a piece of equipment to house Gateway’s xenon fuel tanks, part of its advanced electric propulsion system. Gateway’s Power and Propulsion Element, which will make the lunar space station the most powerful solar electric spacecraft ever flown, recently received the xenon and liquid fuel tanks for its journey to and around the Moon.
Technicians in Palo Alto, California carefully install a piece of equipment that will house the tanks. Once fully assembled and launched to lunar orbit, the Power and Propulsion Element’s roll-out solar arrays – together about the size of an American football field endzone – will harness the Sun’s energy to energize xenon gas and produce the thrust to get Gateway to the Moon’s orbit where it will await the arrival of its first crew on the Artemis IV mission.
The Power and Propulsion Element will also carry the European Radiation Sensors Array science experiment provided by ESA (European Space Agency) and JAXA (Japan Aerospace Exploration Agency), one of three Gateway science experiments that will study solar and cosmic radiation. The little understood phenomenon is a chief concern for humans and hardware journeying to deep-space destinations like Mars and beyond.
The Power and Propulsion Element is managed out of NASA’s Glenn Research Center in Cleveland, Ohio and built by Maxar Space Systems of Palo Alto, California.
Hardware for the Gateway space station’s Power and Propulsion element, including its primary structure and fuel tanks ready for assembly, are shown at Maxar Space Systems in Palo Alto, California.Maxar Space Systems An artist’s rendering of the Gateway space station’s Power and Propulsion Element.NASA/Alberto Bertolin A type of advanced electric propulsion system thruster that will be used on Gateway glows blue as it emits ionized xenon gas during testing at NASA’s Glenn Research Center.NASA An artist’s rendering of European Radiation Sensor Array science experiment that will study both radiation and lunar dust. NASA Learn More About Gateway Share
Details
Last Updated Nov 20, 2024 ContactDylan Connelldylan.b.connell@nasa.govLocationJohnson Space Center Related Terms
Gateway Space Station Artemis Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Glenn Research Center Johnson Space Center Explore More
3 min read Gateway: Centering Science
Gateway is set to advance science in deep space, bringing groundbreaking research opportunities to lunar…
Article 3 weeks ago 1 min read Gateway Stands Tall for Stress Test
The Gateway space station’s Habitation and Logistics Outpost has successfully completed static load testing in…
Article 2 months ago 3 min read Gateway: Up Close in Stunning Detail
Witness Gateway in stunning detail with this video that brings the future of lunar exploration…
Article 5 months ago Keep Exploring Discover More Topics From NASA
Space Launch System (SLS)
Orion Spacecraft
Gateway
Human Landing System
View the full article
-
By NASA
The study of X-ray emission from astronomical objects reveals secrets about the Universe at the largest and smallest spatial scales. Celestial X-rays are produced by black holes consuming nearby stars, emitted by the million-degree gas that traces the structure between galaxies, and can be used to predict whether stars may be able to host planets hospitable to life. X-ray observations have shown that most of the visible matter in the universe exists as hot gas between galaxies and have conclusively demonstrated that the presence of “dark matter” is needed to explain galaxy cluster dynamics, that dark matter dominates the mass of galaxy clusters, and that it governs the expansion of the cosmos.
X-ray observations also enable us to probe mysteries of the Universe on the smallest scales. X-ray observations of compact objects such as white dwarfs, neutron stars, and black holes allow us to use the Universe as a physics laboratory to study conditions that are orders of magnitude more extreme in terms of density, pressure, temperature, and magnetic field strength than anything that can be produced on Earth. In this astrophysical laboratory, researchers expect to reveal new physics at the subatomic scale by conducting investigations such as probing the neutron star equation of state and testing quantum electrodynamics with observations of neutron star atmospheres. At NASA’s Marshall Space Flight Center, a team of scientists and engineers is building, testing, and flying innovative optics that bring the Universe’s X-ray mysteries into sharper focus.
A composite X-ray/Optical/Infrared image of the Crab Pulsar. The X-ray image from the Chandra X-ray Observatory (blue and white), reveals exquisite details in the central ring structures and gas flowing out of the polar jets. Optical light from the Hubble Space Telescope (purple) shows foreground and background stars as pinpoints of light. Infrared light from the Spitzer Space Telescope (pink) traces cooler gas in the nebula. Finally, magnetic field direction derived from X-ray polarization observed by the Imaging X-ray Polarimetry Explorer is shown as orange lines. Magnetic field lines: NASA/Bucciantini et al; X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech Unlike optical telescopes that create images by reflecting or refracting light at near-90-degree angles (normal incidence), focusing X-ray optics must be designed to reflect light at very small angles (grazing incidence). At normal incidence, X-rays are either absorbed by the surface of a mirror or penetrate it entirely. However, at grazing angles of incidence, X-rays reflect very efficiently due to an effect called total external reflection. In grazing incidence, X-rays reflect off the surface of a mirror like rocks skipping on the surface of a pond.
A classic design for astronomical grazing incidence optics is the Wolter-I prescription, which consists of two reflecting surfaces, a parabola and hyperbola (see figure below). This optical prescription is revolved around the optical axis to produce a full-shell mirror (i.e., the mirror spans the full circumference) that resembles a gently tapered cone. To increase the light collecting area, multiple mirror shells with incrementally larger diameters and a common focus are fabricated and nested concentrically to comprise a mirror module assembly (MMA).
Focusing optics are critical to studying the X-ray universe because, in contrast to other optical systems like collimators or coded masks, they produce high signal-to-noise images with low background noise. Two key metrics that characterize the performance of X-ray optics are angular resolution, which is the ability of an optical system to discriminate between closely spaced objects, and effective area, which is the light collecting area of the telescope, typically quoted in units of cm2. Angular resolution is typically measured as the half-power diameter (HPD) of a focused spot in units of arcseconds. The HPD encircles half of the incident photons in a focused spot and measures the sharpness of the final image; a smaller number is better.
Schematic of a full-shell Wolter-I X-ray optic mirror module assembly with five concentrically nested mirror shells. Parallel rays of light enter from the left, reflect twice off the reflective inside surface of the shell (first off the parabolic segment and then off the hyperbolic segment), and converge at the focal plane. NASA MSFC NASA Marshall Space Flight Center (MSFC) has been building and flying lightweight, full-shell, focusing X-ray optics for over three decades, always meeting or exceeding angular resolution and effective area requirements. MSFC utilizes an electroformed nickel replication (ENR) technique to make these thin full-shell X-ray optics from nickel alloy.
X-ray optics development at MSFC began in the early 1990s with the fabrication of optics to support NASA’s Advanced X-ray Astrophysics Facility (AXAF-S) and then continued via the Constellation-X technology development programs. In 2001, MSFC launched a balloon payload that included two modules each with three mirrors, which produced the first focused hard X-ray (>10 keV) images of an astrophysical source by imaging Cygnus X-1, GRS 1915, and the Crab Nebula. This initial effort resulted in several follow-up missions over the next 12 years, and became known as the High Energy Replicated Optics (HERO) balloon program.
In 2012, the first of four sounding rocket flights of the Focusing Optics X-ray Solar Imager (FOXSI) flew with MSFC optics onboard, producing the first focused images of the Sun at energies greater than 5 keV. In 2019 the Astronomical Roentgen Telescope X-ray Concentrator (ART-XC) instrument on the Spectr-Roentgen-Gamma Mission launched with seven MSFC-fabricated X-ray MMAs, each containing 28 mirror shells. ART-XC is currently mapping the sky in the 4-30 keV hard X-ray energy range, studying exotic objects like neutron stars in our own galaxy as well as active galactic nuclei, which are spread across the visible universe. In 2021, the Imaging X-ray Polarimetry Explorer (IXPE), flew and is now performing extraordinary science with an MSFC-led team using three, 24-shell MMAs that were fabricated and calibrated in-house.
Most recently, in 2024, the fourth FOXSI sounding rocket campaign launched with a high-resolution MSFC MMA. The optics achieved 9.5 arcsecond HPD angular resolution during pre-flight test with an expected 7 arcsecond HPD in gravity-free flight, making this the highest angular resolution flight observation made with a nickel-replicated X-ray optic. Currently MSFC is fabricating an MMA for the Rocket Experiment Demonstration of a Soft X-ray (REDSoX) polarimeter, a sounding rocket mission that will fly a novel soft X-ray polarimeter instrument to observe active galactic nuclei. The REDSoX MMA optic will be 444 mm in diameter, which will make it the largest MMA ever produced by MSFC and the second largest replicated nickel X-ray optic in the world.
Scientists Wayne Baumgartner (left, crouched) and Nick Thomas (left, standing) calibrate an IXPE MMA in the MSFC 100 m Beamline. Scientist Stephen Bongiorno (right) applies epoxy to an IXPE shell during MMA assembly. NASA MSFC The ultimate performance of an X-ray optic is determined by errors in the shape, position, and roughness of the optical surface. To push the performance of X-ray optics toward even higher angular resolution and achieve more ambitious science goals, MSFC is currently engaged in a fundamental research and development effort to improve all aspects of full-shell optics fabrication.
Given that these optics are made with the Electroformed Nickel Replication technique, the fabrication process begins with creation of a replication master, called the mandrel, which is a negative of the desired optical surface. First, the mandrel is figured and polished to specification, then a thin layer of nickel alloy is electroformed onto the mandrel surface. Next, the nickel alloy layer is removed to produce a replicated optical shell, and finally the thin shell is attached to a stiff holding structure for use.
Each step in this process imparts some degree of error into the final replicated shell. Research and development efforts at MSFC are currently concentrating on reducing distortion induced during the electroforming metal deposition and release steps. Electroforming-induced distortion is caused by material stress built into the electroformed material as it deposits onto the mandrel. Decreasing release-induced distortion is a matter of reducing adhesion strength between the shell and mandrel, increasing strength of the shell material to prevent yielding, and reducing point defects in the release layer.
Additionally, verifying the performance of these advanced optics requires world-class test facilities. The basic premise of testing an optic designed for X-ray astrophysics is to place a small, bright X-ray source far away from the optic. If the angular size of the source, as viewed from the optic, is smaller than the angular resolution of the optic, the source is effectively simulating X-ray starlight. Due to the absorption of X-rays by air, the entire test facility light path must be placed inside a vacuum chamber.
At MSFC, a group of scientists and engineers operate the Marshall 100-meter X-ray beamline, a world-class end-to-end test facility for flight and laboratory X-ray optics, instruments, and telescopes. As per the name, it consists of a 100-meter-long vacuum tube with an 8-meter-long, 3-meter-diameter instrument chamber and a variety of X-ray sources ranging from 0.25 – 114 keV. Across the street sits the X-Ray and Cryogenic Facility (XRCF), a 527-meter-long beamline with an 18-meter-long, 6-meter-diameter instrument chamber. These facilities are available for the scientific community to use and highlight the comprehensive optics development and test capability that Marshall is known for.
Within the X-ray astrophysics community there exist a variety of angular resolution and effective area needs for focusing optics. Given its storied history in X-ray optics, MSFC is uniquely poised to fulfill requirements for large or small, medium- or high-angular-resolution X-ray optics. To help guide technology development, the astrophysics community convenes once per decade to produce a decadal survey. The need for high-angular-resolution and high-throughput X-ray optics is strongly endorsed by the National Academies of Sciences, Engineering, and Medicine report, Pathways to Discovery in Astronomy and Astrophysics for the 2020s.In pursuit of this goal, MSFC is continuing to advance the state of the art in full-shell optics. This work will enable the extraordinary mysteries of the X-ray universe to be revealed.
Project Leads
Dr. Jessica Gaskin and Dr. Stephen Bongiorno, NASA Marshall Space Flight Center (MSFC)
Sponsoring Organizations
The NASA Astrophysics Division supports this work primarily through the Internal Scientist Funding Model Direct Work Package and competed solicitations. This work is also supported by the Heliophysics Division through competed solicitations, as well as by directed work from other government entities.
Share
Details
Last Updated Oct 15, 2024 Related Terms
Astrophysics Astrophysics Division Marshall Astrophysics Marshall Space Flight Center Science-enabling Technology Technology Highlights Explore More
2 min read Hubble Spots a Grand Spiral of Starbursts
Article
4 days ago
6 min read NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus
Article
6 days ago
4 min read NASA’s Hubble Watches Jupiter’s Great Red Spot Behave Like a Stress Ball
Article
6 days ago
View the full article
-
By NASA
4 Min Read Lunar Autonomy Mobility Pathfinder Workshop: A NASA Chief Technologist Sponsored Workshop
OVERVIEW
The NASA chief technologist’s team, within the Office of Technology, Policy, and Strategy (OTPS), is hosting a Lunar Autonomy Mobility Pathfinder (LAMP) workshop on Tuesday, November 12, 2024, to provide a community forum to discuss modeling and simulation testbeds in this domain. The workshop is in coordination with NASA’s Space Technology Mission Directorate.
With the Artemis campaign, NASA will land the first woman and first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever before. Technologies like trusted autonomy are necessary to support these types of sustained operations. Trusted autonomy is a more robust level of autonomy designed for long-term operational use.
The LAMP workshop will be held on Tuesday, November 12, 2024, from 10 a.m. to 5 p.m. PST at the University of Nevada Las Vegas (UNLV) Black Fire Innovation Facility in Las Vegas, Nevada. The Black Fire Innovation Center Building is located at 8400 W. Sunset Blvd. Las Vegas, NV 89113, approximately 20 minutes from the UNLV main campus.
This workshop has been designed to coincide with the 2024 Lunar Surface Innovation Consortium fall meeting (also taking place in Las Vegas, Nevada).
The OTPS solver-in-residence is the main organizer and facilitator for this workshop.
PROGRAM
The LAMP workshop will provide a forum for a discussion on topics that include:
A modeling and simulation (M&S) pathfinder to explore an integrated sim environment for lunar stakeholders from commercial industry, other U.S. government agencies, international partners and academia, to simulate their systems that would eventually operate in the lunar environment and to test interoperability between systems. How to leverage the planned rover missions to 1) calibrate and improve this M&S environment over time, and 2) potentially use them as autonomy testbeds to safely mature algorithms in a relevant environment. Please RSVP for in-person or virtual attendance by registering at the following site:
https://nasaevents.webex.com/weblink/register/rdf4dd38bc3bf176dc32d147513f7b77c
*Please note registration is on an individual basis. If attending with multiple guests, each guest must register for the event separately.
LAMP Workshop Agenda
(All times listed are in PST and subject to change)
10:00 a.m. – 12:00p.m.Modeling and Simulation (M&S) showcase (In-person only & optional)
This is an opportunity for interested participants to show their lunar simulation capabilities inside of UNLV’s Blackfire Innovation esports arena. Space is limited. Please indicate if you are interested in participating when you register, and we will reach out with additional information. 1:00 –2:00p.m.Challenges to Developing Trusted Autonomy
NASA will discuss the challenges of maturing autonomy that can be trusted to operate over long periods of time and how we can work together to overcome those challenges.2:00 –3:00p.m.Pre-Formulation Discussion of a Lunar Autonomy Mobility Pathfinder Modeling and Simulation Environment
Subject matter experts (SMEs) from NASA will layout thoughts on what a digital transformation pathfinder would look like that benefits lunar autonomy efforts across the globe. 3:00 – 3:15p.m.Break3:15 – 4:15p.m.Lunar Testbeds Discussion
This will be a discussion focused on how assets on the moon could be used as testbeds to generate truth data for Earth-based simulations and to validate that autonomy can be trusted in the lunar environment.4:15 – 5:00p.m.Polling and Discussions
Audience feedback will be solicited on various topics. This will include a pre-formulated series of questions and real time polls. CONTACT
For questions, please email:
Dr. Adam Yingling
2024 OTPS Solver-in-Residence
Office of Technology, Policy, and Strategy (OTPS)
NASA Headquarters
Email: adam.j.yingling@nasa.gov
The Solver-in-Residence (SiR) program is a one-year detail position with the chief technologist in NASA’s Office of Technology Policy and Strategy. The program enables a NASA civil servant to propose a one-year investigation on a specific technology challenge and then work to identify solutions to address those challenges.
Share
Details
Last Updated Oct 10, 2024 EditorBill Keeter Related Terms
Office of Technology, Policy and Strategy (OTPS) Space Technology Mission Directorate View the full article
-
By NASA
Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 21 min read
Summary of the 10th SWOT Applications Workshop
Introduction
The tenth Surface Water Ocean Topography (SWOT) Applications Workshop took place December 7–8, 2023 at the California Institute of Technology Keck Institute for Space Studies. The meeting was organized to highlight the work and project status of the SWOT Early Adopters (EAs). NASA’s Applied Sciences Program (which is now housed within the NASA Earth Science in Action element of NASA’s Earth Science Division), the SWOT Project, the Centre National d’Etudes Spatiales (CNES’s), or French space agency’s SWOT Downstream Program, the SWOT Applications Working Group (SAWG), and members of the SWOT science community have coordinated efforts in support of the SWOT Applications Program since 2010.
The 2023 meeting, which was the latest in an annual series organized by the SAWG, welcomed over 100 participants online and in person during the two days, with many joining virtually across different time zones, to share their project status and explore the many facets of operational and applied uses of SWOT data. Presentations covered the current state of and near-term plans for using SWOT data products and highlighted related applied science efforts focused on SWOT. A significant focus explored the use of the new mission data to improve hydrology and ocean models.
After a brief introduction to SWOT and its instruments and a short update on the SWOT EAs, the remainder of this article contains a select group of summaries from EA projects. The complete meeting agenda and a list of presentations are available on the 10th SWOT Application Meeting website.
SWOT Mission Overview and Update
SWOT launched December 16, 2022, from Vandenberg Space Force Base in California. After a successful checkout of the satellite systems, instruments, and data systems, SWOT entered Science Mode on July 21, 2023. It continues to operate nominally as of this writing. A detailed account of SWOT Significant Events since launch is available online.
The goal of SWOT is to make the first global survey of Earth’s surface water, observe the fine details of the ocean’s surface topography, and measure how water bodies change over time. The international partnership is led by NASA and CNES, with contributions from the U.K. Space Agency and the Canadian Space Agency.
The SWOT Science Team is made up of researchers from all over the world with expertise in oceanography and hydrology. Together the team is using SWOT data to study a range of topics, including availability of Earth’s freshwater resources and our changing ocean and coasts. Studies like these are crucial to meet society’s growing needs for clean air and water, to help prepare for and mitigate impacts of extreme weather, and to help the world adapt to long-term changes in climate on continental scales.
SWOT’s payload has been designed to provide the data that allow the SWOT team to study the topics listed in the previous paragraph. While the complete compliment of instruments is listed on the website, the three most relevant to the current article are described here.
Ka-band Radar Interferometer (KaRIn). This state-of-the-art, wide-swath, interferometric radar can measure the ocean, major lake, river, and wetland levels over a 120-km (75-mi) wide swath with a ~20-km (~12-mi) gap along nadir, which is filled by the Jason-class altimeter described below. KaRIn can operate in two modes: It uses low-resolution mode over the ocean with significant onboard processing to reduce data volume; and high-resolution mode over broad, primarily continental regions defined by the SWOT Science Team, where the focus is on hydrological studies as opposed to oceanographic ones. Jason-class Altimeter (nadir altimeter). The altimeter flying on SWOT is similar to those flown on the series of ocean surface topography missions that have operated since 1992, including the (TOPEX)/Poseidon, Jason-1, Jason-2, and Jason-3 missions, and the newest mission, Sentinel 6 Michael Freilich (S6MF), developed in partnership with the European Space Agency (ESA). The altimeter sends and receives signals that travel straight up and down beneath the spacecraft (or nadir-pointing) making it ideal to fill in the “gap” between KaRIn swaths. Microwave Radiometer (radiometer). This radiometer measures the amount of water vapor between SWOT and Earth’s surface. More water vapor present in the atmosphere slows down the radar signals and this instrument aids in correcting the signal. SWOT’s sea surface height (SSH) measurements will be added to the existing 32-year time series of measurements of oceans and large water bodies compiled by the series NASA–CNES altimetry missions listed above. With higher resolution observations, SWOT will enable hydrological research and applications and provide more detailed information on heights and extent of rivers, lakes, reservoirs, and wetlands, as well as derived parameters such as river discharge.
SWOT Early Adopter Overview and Update
The SWOT Early Adopters Program was initiated in 2018 to ensure community preparedness to make use of SWOT data. The program comprises a growing community working to incorporate SWOT data into the operational and applied science activities of their organizations – see Figure 1. The current SWOT EA cohort spans surface hydrology and oceanography domains and organizations, including both U.S. and international private-sector companies, academia, nonprofits, operational agencies, state and national government organizations, and research communities.
Figure 1. Forty SWOT Early Adopter (EA) teams span the globe with a wide range of operational and applied science project topics. Figure credit: NASA The 2023 SWOT Applications Workshop offered an opportunity to assess how the SWOT user community is using the data in anticipation of future SWOT data reprocessing and releases. The 2023 meeting explored three themes: 1) planned and current operational and applied uses of SWOT data; 2) the current state of the data products and access to the data; and 3) a variety of other projects that may/will include SWOT data in their applications.
The first public release of SWOT data came in June 2023, with the release of nadir altimeter and radiometer data. These data had a head-start in processing due to the instrument and processing heritage. These early releases allowed the EA community to begin incorporating SWOT into their operational models and systems. A public release of beta pre-validated SWOT KaRIn data products took place in November 2023, and the subsequent public release of pre-validated SWOT KaRIn data products in February 2024. SWOT KaRIn, nadir altimeter, and radiometer products are now in operational production and routinely available.
Workshop Overview
This workshop focused on the achievements of the SWOT EAs, offering a platform to share their projects with the community as they transition from “early adoption” to simply “adoption” of SWOT as a valuable resource in their system management toolbox. In addition, the meeting provided a space for discussions, an increased community awareness of the gaps and challenges of incorporating SWOT data into operational and decision-support framework for models, modeling systems, and other operational uses. Feedback from these discussions – especially concerning the known limitations of SWOT data with respect to data latency and mission length – will be exceptionally useful to the SWOT Project and Applications Teams.
Meeting Welcome and “Keynote” Presentations
Brad Doorn [NASA Headquarters (HQ)—Programmatic Lead], Annick Sylvestre-Baron [CNES—Programmatic Lead], Parag Vaze [JPL—SWOT Project Manager], and Pierre Sengenes [CNES—Project Lead] gave remarks to open the meeting. They welcomed attendees on behalf of NASA and CNES.
The first morning session closed with two highly relevant and illuminating presentations. Jinbo Wang [JPL] spoke about SWOT KaRIn performance and calibration/validation (Cal/Val) activities. Curtis Chen [JPL] detailed critical and important proclivities of KaRIn data products that EAs may find beneficial as they interpret data results. Understanding the information in Chen’s talk is critical for those planning to use the data.
SWOT Early Adopter Project Updates
The EA project summaries selected for this article provide an overview of the range and depth of the extensive work accomplished by the SWOT EA community to date. These examples illustrate the potential of SWOT data as a tool to manage surface water resources and forecast ocean and coastal conditions via operational systems in the coming years.
Daniel Moreira [Brazil Geological Society (BGS)—Project Investigator] explained that the current gauge network on rivers across the Amazon basin is limited. SWOT data offers unprecedented spatial and temporal coverage of water storage processes and may be beneficial to prepare for floods and extreme events in the basin. Moreira’s group has compared several sites using Global Navigation Satellite System data and a gauge station elevation time series with very good results. In addition, BGS maintains a weekly water level report and a web application that leverages satellite altimetry data from the S6MF and Jason-3 missions for comparison across the Amazon Basin. BGS plans to produce discharge datasets over the Amazon using altimetry.
Isabel Houghton [Sofar Ocean] introduced the Sofar Ocean ship route optimization and navigational safety platform, incorporating 10-day, data-assimilating marine weather forecasts. That data includes significant wave height estimates from both the Sofar spotter buoy network and estimates derived from nadir altimeters on NASA’s S6MF and Jason-3 missions and the joint CNES–Indian Space Research Agency (ISRO) Satellite with ARgos and ALtiKa (SARAL) satellites. (Argos collects data from a floating oceanic buoy network with the same name that CNES operates; AltiKa is a CNES-contributed Ka-band altimeter.) TheWaveWatch III model improves on the forecast through the addition of altimeter data. Houghton explained that Sofar Ocean is in the preliminary stages of using SWOT significant wave height data in their model, which is less noisy than the predecessor altimeters reducing forecast error. Sofar expects SWOT to improve their observation numbers by 50–100% in a given 24-hour period. Additionally, Sofar plan to use KaRIn observations in an Earth system model under development to address waves, circulation, and atmosphere.
Robert Dudley [U.S. Geological Survey (USGS)] presented a project that involved the team integrating data from SWOT and in situ sources together to derive discharge and flow velocity for the Tanana and Yukon Rivers in Alaska. The USGS is collaborating with the Physical Oceanography Distributed Active Archive (PO.DAAC) to integrate SWOT in SatRSQ measurements to develop the Water Information from Space (WISP) dashboard to access time series of SWOT hydrology products. WISP is in development and not yet publicly available. When operational, it will enable comparisons with collocated, ground-gauged time series. WISP contains SWOT orbital ground tracks and will add the SWOT lake database in the future. The dashboard should be publicly available later in 2024.
Gregg Jacobs [U.S. Naval Research Laboratory (NRL)] explained how NRL has evaluated SWOT KaRIn SSH data accuracy and integrated it into ocean forecast models by characterizing along-track errors in early data products to determine the necessary corrections. Jacobs then explained how the team computed daily interpolation of nadir altimeter data at SWOT crossover locations. They found good agreement between the corrected SWOT estimates and interpolated SSH from nadir altimeters and conducted ocean forecast experiments on California SWOT crossover Cal/Val sites – see Figure 2. NRL has had success in assimilating KaRIn data at a resolution of 5 km (~3 mi).
Figure 2. Altimetry data collected over calibration/validation (Cal/Val) sites using traditional nadir altimeter data only [left], a combination of traditional nadir altimeter data and in situ observations [center], and a combination of traditional altimeter data and SWOT altimeter data. The dotted lines indicate the satellite ground track paths. Figure credit: U.S. Naval Research Laboratory Pierre Yves Le Traon [Mercator Ocean International (MOi)] explained that MOi is a non-profit that is now transforming into an intergovernmental organization. He began with a description of the Copernicus Marine Service, which is a long-term partnership between CNES, MOi, and a French company called Collecte Localisation Satellites (CLS) that focuses on ocean monitoring and forecasting. SWOT data will be used to constrain small scales in models – see Figure 3. The preliminary results are in good agreement with CNES Level-3 (L3) products. SWOT KaRIn data will be integrated into the operational Copernicus Marine Service operational forecast portfolio in 2025.
Figure 3. Both these maps show the root mean square (RMS) error in the SWOT 21-day phase data in sea level anomaly (SLA) over one month on the 1/12° Mercator Ocean global forecasting system The image pair contrasts the SLA RMS error without including SWOT data in the assimilation [left] versus when SWOT data are included in the assimilation [right]. Note that including SWOT data make smaller scale errors in the data become more apparent. Figure credit: Mercator Ocean International Guy Schumann [Water in Sight]explained this Swedish start-up company uses SWOT data to validate in situ gauge data in Malawi. Gauge readers and observers collect data at monitoring stations from south to north Malawi to support the government’s efforts in managing water and climate risks. They have used free Short Message Service and leveraged citizen science to develop a cloud platform for data access. For the next step, the project plans to integrate SWOT data into two-dimensional (2D) flood models. This EA project aims to address latency – time delay between collection and transmission of data – and interoperability challenges, enhancing hydrological network optimization as well as demonstrating the diverse complementary value of satellite observations. The group supports codesigned joint explorations, engagement activities, and technology alignment. The CNES hydroweb tool may be very useful in this endeavor, but Schumann acknowledges that there are interoperability challenges that need to be overcome.
Jerry Wegiel [NASA’s Goddard Space Flight Center] explained that the U.S. Air Force’s Weather Land Information System (LIS) is a software framework used by multiple agencies for simulating land/hydrology processes. The Global Hydrology Intelligence (GHI) system (rebranding of LIS) is a comprehensive framework for hydrologic analysis, forecasting, and projections across scales encompassing all aspects of water security and addressing significant hydro-intelligence gaps identified by the defense and national security communities. Integration of SWOT L2 products operationally into the LIS Hydrological Modeling and Analysis Platform (HyMAP) model is expected to improve the global hydrological model data analysis system, as well as improve extreme hydrological event monitoring, reduce forecasting uncertainty, and support water security conflicts.
Alexandre de Amorim Teixeira and Alexandre Abdalla Araujo [both at Agência Nacional de Águas e Saneamento Básico (ANA), or Brazilian National Water and Sanitation Agency] began by explaining that the ANA hydrography datasets [e.g., Base Hidrográfica Ottocodificada (BHO)] and water atlases [e.g., Base Hidrográfica Atlas-Estudos (BHAE)] have been extended using information from the SWOT River Database (SWORD) river reaches, which are roughly 10 km (~6 mi) SWORD-specified sections of a river, in Brazil – see Figure 4. By incorporating SWORD data into the BHAE, over 400,000 reaches have been identified – compared to 20,000 identified previously using SWORD alone. The latest version (6.2) of BHO will combine SWORD and BHAE data increasing numbers exponentially to nearly 5.5 million. The ANA EA project will use SWOT data to support water resource management in Brazil. ANA is working in collaboration with University Brasilia to integrate available gauge information on rivers and reservoirs to fulfill their mandate to determine and report on water availability in the country. They described a sophisticated hexagonal hierarchical geospatial indexing system that will support hydrological and hydrodynamical modeling and cross-validation. The team will use SWOT data pixel cloud or raster products to best serve their needs.
Figure 4. The Agência Nacional de Águas e Saneamento Básico’s (ANA) [Brazilian National Water and Sanitation Agency] SWOT Early Adopter project is extending hydrography datasets, e.g., Base Hidrográfica Ottocodificada (BHO) [top] and water atlases, e.g., Base Hidrográfica Atlas-Estudos (BHAE) [middle] using the SWOT data to produce the SWOT River Database (SWORD) product [bottom] that expands on the extent of the BHO hydrography dataset. Image credit: ANA Data Systems and Products for Early Adopters
In 2021, the SWOT Project Science Team made simulated datasets available for select hydrologic and oceanographic regions. These datasets shared many characteristics in common with future SWOT data products (e.g., formats, metadata, and data contents) and were intended to familiarize users with the expected SWOT science data products.
At this meeting, teams from both the NASA and CNES mission data system and data repositories shared timely and valuable information and updates with the EA community. The talks provided information and insight into what users can expect from SWOT products.
Lionel Zawadzki and Cyril Germineaud [both at CNES] described the use of SWOT data available from CNES through the AVISO (ocean and coastal) and hydroweb.next (hydrology and ocean) data portals. Systems supporting data access include data acquisition and production, data repositories, and ultimately cloud data access through thematic portals.
Catalina Taglialatela and Cassandra Nickles [both at JPL] discussed the use of KaRIn high-resolution and low-resolution SWOT data products available through PO.DAAC, which provides centralized, searchable access that is available using an in-cloud commercial web service through the NASA EarthData portal. The team demonstrated resources and tutorials available via the online PO.DAAC Cookbook: SWOT Chapter, as well as the new Hydrocron SWOT time series applications programming interface (API) for generating time series over water features identified in SWORD and SWODLR, which is a system for creating on-demand L2 SWOT raster products.
Shailen Desai [JPL] explained how KaRIn products depend on upstream orbit, attitude, and radiometer products for optimal accuracy. SWOT KaRIn, nadir altimeter, and radiometer products are now in operational production and routinely available. Product description documents and SWOT algorithm theoretical basis documents are all publicly available.
Curtis Chen [JPL] discussed how the SWOT science data system team have reduced complexities of the KaRIn measurements to ensure robust interpretation of the results. Knowledge of measurement details may be especially important in trying to interpret the pre-validated data products. During his presentation, Chen addressed practical aspects of interpreting KaRIn data products, including answers to frequently asked questions and tips to avoid confusion and misinterpretation in using the data.
Yannice Faugere [CNES] explained how CNES will assimilate SWOT data into Mercator Ocean with value-added elements, including multimission calibration, noise mitigation, and images that blend KaRIn and nadir instruments. A preliminary assessment of L4 products was conducted using one-day Cal/Val orbit measurements with promising results. Tests on 21-day data and an L4 data challenge for community feedback to compare mapping and validation methods are in process.
Complementary Projects
Participants spoke about a number of other projects and programs during the meeting. The selected presentations address elements relevant to SWOT applications.
Charon Birkett [NASA] discussed how SWOT data will be incorporated into the Global REservoir and LAke Monitor (G-REALM) and Global Water Measurements (GWM) portal, to integrate nadir radiometer and KaRIn measurements. G-REALM maintains a 30-plus-year time series of nadir altimeter data from the NASA/CNES reference missions for this measurement (i.e., Topex/Poseidon; Jason -1, -2, and -3; and S6MF) as well as the European Remote Sensing Satellite. GWM is focused on lakes and reservoirs, rivers, and wetland water levels to derive surface extents and storage change.
Stephanie Granger [JPL] introduced the Western Water Applications Office (WWAO), which provides NASA data, technology, and tools for water management to water managers in the western U.S. The WWAO team completes needs assessments for basins – a task complicated by the more than 100 agencies involved in water management activities in the western U.S. Granger identified several activities that could benefit from SWOT data, such as extreme event predictions and impacts, timely streamflow predictions at a sub-basin level, wet/dry indicators from streamflow monitoring, and flood plain mapping.
Babette Tchonang, Dimitris Menemenlis,and Matt Archer [all from JPL] presented a study that evaluates the feasibility of applying the Estimating the Circulation and Climate of the Ocean 4-Dimensional Variational (MITgcm-ECCO 4DVAR) data assimilation framework to a sub-mesoscale resolving model [grid resolution of 1 km (~0.6 mi)] in preparation for future studies to assimilate SSH measurements from SWOT. Two model solutions are nested within the global 1/12° Hybrid Coordinate Ocean Model (HYCOM)/Navy Coupled Ocean Data Assimilation (NCODA) analysis. Comparing the two model solutions against assimilated and withheld in situ observations indicates that the MITgcm-ECCO 4DVAR framework can be applied to the reconstruction of sub-mesoscale ocean variability. This data assimilation system is now being used by the Scripps Institution of Oceanography to support SWOT post-launch activities.
Matt Bonnema [JPL] presented the Observational Products for End-Users from Remote Sensing Analysis (OPERA) project, which produces a suite of surface water extent products, such as Dynamic Surface Water extent (DSWx). The products are based on a variety of optical and radar sensors built on existing satellite data that are freely available from NASA. DSWx gives two dimensions of surface water measurements (i.e., spatial extent), whereas SWOT produces three dimensions of surface water measurement (i.e., spatial extent and elevation). DSWx has the potential to fill in temporal gaps in SWOT observations and to cross-compare DSWx and SWOT when observations are concurrent. DSWx is a valuable source of global water information that can be used to interpret and enhance SWOT’s capabilities.
Renato Frasson [JPL] explained how the U.S. Army Corps of Engineers support the National Geospatial-Intelligence Agency (NGA), which uses water storage and lake/reservoir flux information primarily from NASA’s MODerate resolution Imaging Spectroradiometer (MODIS) that flies on both the Terra and Aqua platforms. SWOT data has a higher spatial resolution for river widths, and NASA–ISRO Synthetic Aperture Radar (NISAR) observations are planned to be incorporated into the OPERA platform.
Cedric David [NASA/JPL] discussed how SWOT data can improve state-of-the-art hydrologic models to address environmental and societal challenges in river system science (e.g., flooding, water security, river biodiversity, changing deltas, and transboundary issues). Model advancements (e.g., U.S. National Water Model) can be realized in areas such as uncertainty quantification, data assimilation, bias correction, and decreasing numbers of in situ observation systems. Incorporating SWOT data into river models will lead to more realistic representations of these rivers, which in turn will improve the users’ ability to understand and effectively manage these critical and threatened water resources.
Workshop Recommendations and Feedback
This 2023 SWOT Applications Workshop provided an opportunity to share early experiences with SWOT data and insight into integration of the data into operational and decision-support workflows and models (e.g., ocean circulation and hydrologic, hydrodynamic, and decision support). Understanding how EAs integrate SWOT data and the associated challenges is critical to provide a clear analytical path for assessing the value of SWOT’s observations.
Integrating satellite observations into models enhances the model’s capability to forecast natural phenomena and monitor remote or inaccessible regions, expanding modeling capabilities dynamically and spatially. The EA-user community shared information on the potential of incorporating SWOT data into local- or community-wide models or modeling systems. SWOT’s high-resolution data – particularly from the KaRIn instrument – can enhance the precision of hydrology and ocean models by enabling detailed simulations of water dynamics. This includes accurate mapping of freshwater bodies and SSH. Both these measurements are crucial for managing water resources, predicting floods, and understanding ocean circulation patterns. The incorporation of SWOT data into model systems enables significant advancement and insights that can inform environmental management policies and practices by supporting more informed decision-making.
Although the SWOT nadir altimeter data products are being operationally produced and distributed through the data centers, the new data products from the novel KaRIn instrument continue to be assessed. An entire year of data is necessary for a more comprehensive assessment of value, ease of use, and degree to which SWOT data will impact operations and decision-making.
Throughout the workshop, EAs shared their experiences and specific needs in regard to early use of SWOT data in their modeling frameworks. Overall impressions were positive, but the actual use of SWOT beta product data was limited to a few projects (e.g., NRL, Sofar Ocean, and Copernicus Marine Service). Overall, the meeting participants supported the need for lower-latency products.
In the coming year, the impact of SWOT data with lower 21-day science orbital repeat frequency and latency on various applications will be understood further. Ultimately, the most important feedback from SWOT EAs is yet to come.
SWOT has the potential to provide invaluable information to operational user communities through its ability to advance understanding of global surface water dynamics. The SWOT Applications Program has successfully engaged a diverse cohort of agencies and the commercial sector to support integrating SWOT data into operational workflows. Moving forward, the program aims to highlight societal benefits, support applied research in hydrology and oceanography, expand user engagement, and provide ongoing training to maximize the effective use of fully validated SWOT data products.
Conclusion
The 2023 SWOT Applications meeting was a successful and timely engagement opportunity, further strengthening the connection between the different collaborating organizations. Many EAs demonstrated early ingest of the preliminary release of KaRIn data, with some having already started using the nadir altimeter data in their operational processes. Engagement will continue as more data, including pre-validated and validated science products, become regularly available with support to the EA community.
Future SWOT Application activities will include continued communication at community meetings and conferences as well as with a broader audience to engage new users for both applied research and operational activities through workshops, hackathons, and telecons. The SAWG will continue working with EAs and the applied and operational user communities to identify and apply value of SWOT to support decision makers and operational agencies.
NASA and CNES data distribution centers will continue to train users in cloud data access, data formats, and preferred formats for different topics, as well as provide EA feedback to improve data products and platform services. NASA and CNES will continue to work with EAs to overcome technical hurdles, help complete their projects, and generate high-impact success stories, as well as expand the extent of SWOT EAs and applied science users to build recognition of SWOT among practitioners.
Acknowledgment: The author wishes to acknowledge the contribution of Stacy Kish [NASA’s Goddard Space Flight Center (GSFC)/Global Science and Technology, Inc. (GST)] for her editing work to reduce/repurpose the full summary report to create a version suitable for the context of The Earth Observer.
Margaret Srinivasan
NASA/Jet Propulsion Laboratory, California Institute of Technology
margaret.srinivasan@jpl.nasa.gov
Share
Details
Last Updated Sep 30, 2024 Related Terms
Earth Science View the full article
-
By NASA
Earth ObserverEarth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries NewsScience in the News Calendars In Memoriam MoreArchives 16 min read
ICESat-2 Hosts Third Applications Workshop
Introduction
The NASA Ice, Cloud, and land Elevation Satellite-2 mission (ICESat-2), launched September 15, 2018, continues the first ICESat mission, delivering invaluable global altimetry data. Notwithstanding its icy acronym, ICESat-2 can do more than measure ice – in fact, the expanded acronym hints at these wider applications. From vegetation to inland surface water to bathymetry, ICESat-2 has emerged as a more versatile mission than originally planned, thanks in part to the ingenuity of research scientists, the Science Team (ST), and users of the data – see Figure 1.
Figure 1. A word cloud designed to highlight terms that occur most frequently in all ICESat-2 publications since 2018. The larger the word, the more often it is used.Figure credit: Aimee Neeley ICESat-2 was among the first NASA missions to develop an applications program that engages both scientists and potential users of the science data to accelerate user uptake. Throughout this program, ICESat-2 has demonstrated the value of Earth Observation data to end users, stakeholders, and decision makers. The ICESat-2 Early Adopter (EA; pre-launch) program, now the Applied User program (post-launch), was created to “promote applications research to provide a fundamental understanding of how ICESat-2 data products can be scaled and integrated into organizations, policy, business, and management activities to improve decision making efforts.” This article summarizes the workshop objectives met through plenary talks, lightning talks, an applied user panel, and a breakout session. The ICESat-2 Applications page contains more about the ICESat-2 Applications Program.
Motivation and Objectives
To meet Applications Program initiatives, the ICESat-2 Applications Team hosted its third Applications workshop June 3–4, 2024 at NASA’s Goddard Space Flight Center (GSFC) in a hybrid environment. A total of 113 participants registered for the workshop, representing multiple government agencies, including NASA Centers, non-profit organizations, and academic organizations – see Figure 2. Approximately 20 individuals attended the workshop in person with the majority participating online through the Webex platform. This workshop provided the space to foster collaboration and to encourage the conceptualization of applications not yet exploited.
Figure 2. A ‘donut’ plot showing the proportion of ICESat-2 Applications Workshop attendees identified by institution. This information was provided during the online registration process.Figure credit: Aimee Neeley The objectives of the Applications workshop were to:
provide an overview of the mission status, data products, and support services from the National Snow and Ice Data Center (NSIDC); build partnerships among applied users, data producers, and end users; foster synergies with all participants, decision makers, and satellite operators; identify new potential applications or products from ICESat-2; review available tools for extracting ICESat-2 data; and understand the challenges faced by applied users, data users, and end users, and identify solutions. The remainder of this article will summarize the meeting highlights. Rather than give a strict chronological survey, the report is organized around the meeting objectives listed above. Readers interested in more details can find the full agenda and slide decks from individual presentations mentioned in this summary on the ICESat-2 Workshop website.
Workshop Overview and Structure
The agenda of the 2024 ICESat-2 Applications workshop was intended to bring together end-users, including ICESat-2 applications developers, satellite operators, and decision makers from government and nongovernmental entities to discuss the current state and future needs of the community – see Figure 3.
On the morning of the first day, the workshop participants contributed to a plenary session and ICESat-2 data tool demonstrations. These presentations were intended to provide a broad overview of the ICESat-2 mission, data, science, and applications. Plenary talks during the afternoon session provided an overview of the Earth Science-to-Action initiative and measuring impacts of science. The afternoon also included lightning talks from participants and an Applied User Panel. The second day consisted of a plenary presentation and more lightning talks from participants. The workshop ended with a thematic breakout session with pre-constructed topics and a report out to create a forum for direct interaction between participants.
Figure 3. Graphic showing the different levels of data available from the NASA Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission.Figure credit: NASA, adapted from the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center’s ICESat-2 page Objective 1: Provide an overview of the status of the mission and current data products and support services from the NSIDC.
To fulfill the first meeting objective, the workshop included a series of overview presentations given by ICESat-2 team members about the status of the ICESat-2 mission and its data products, as well as a review of the NASA Applied Sciences Program.
Aimee Neeley [NASA Goddard Space Flight Center (GSFC)/Science Systems and Applications Inc. (SSAI)—ICESat-2 Mission Applications Lead] and Molly Brown [GSFC/University of Maryland—ICESat-2 Mission Applications Scientist] served as cohosts for the event. Neeley opened the first day with a brief overview of workshop goals, logistics, and the agenda. On the second day she gave a brief overview of the agenda for the day and opened it up for questions.
Thomas Neumann [GSFC—ICESat-2 Project Scientist and Deputy Director of Earth Sciences Division] provided an overview of the ICESat-2 measurement concepts, which includes activity of GPS positioning, pointing angle, altimetry measurements, and ground processing. He continued with an overview of the Advanced Topographic Laser Altimeter System (ATLAS) instrument, the wavelength and spatial resolution of the lasers, and the distributed data products. Neumann presented the mission outlook, with an expected lifespan until December 2035.
Walter Meier [University of Colorado, Boulder (UC, Boulder)—NSIDC DAAC Scientist] provided an overview of ICESat-2 data tools and services. He walked the audience through the ICESat-2 data website, as well as the instructional guides that are available for all the tools and services. Meier provided an overview of ICESat-2 standard data products – see Figure 3. Most of the products have a ~45-day latency while quick look data sets have an ~3-day latency. Future data sets include ATL24 and ATL25 and quick look data sets for ATL03, ATL20, and ATL25. Next, he described webinars and tutorials, access tools, and customization services for different users and workflows, including graphical user interfaces and programmatic tools in Earthaccess and the NSIDC website.
Helen Amanda Fricker [Scripps Institution of Oceanography, University of California (UC), San Diego—ICESat-2 ST Leader and Professor] provided an overview of the ST members and ST goals. Fricker described the ST goals to: 1) provide coordination between the team, project science office, and NASA headquarters; 2) use science talks, posters, and social events to stimulate collaboration within the ST and across disciplines; and 3) maintain the visibility of the ICESat-2 mission through publications, press releases, white papers, open science, and synergies with other missions. Next, Fricker shared the list of ST members that can be found on the ICESat-2 website. She concluded with an overview of a recent publication by Lori Magruder [University of Texas, Austin] and coauthors published in Nature Reviews.
Stephanie Schollaert Uz [NASA GSFC—Applied Sciences Manager] provided an overview of the NASA Applied Science Program, including the current NASA Earth Science Satellite missions that are monitoring Earth systems. The NASA Applied Science Programs “tackle challenges on our home planet in areas for which Earth science information can respond to the urgent needs of our time.” Earth science data products are used to “inform decisions and actions on management, policy and business.” Uz provided examples of applications using Earth science data, including economic activity, active fire mapping, food security, and monitoring air quality – see Figure 4.
Figure 4. Near real-time active fire mapping as well as air quality monitoring and forecasting are available via NASA’s Fire Information for Resource Management System (FIRMS).Figure credit: FIRMS U.S./Canada Molly E. Brown [University of Maryland—ICESat-2 Mission Applications Scientist] began her presentation by defining the term application in the context of this workshop, which includes “innovative uses of mission data products in decision-making activities for societal benefit.” Brown stated that the ICESat-2 Mission Applications program “works to bring our data products into areas where they can help inform policy or decisions that benefit the public.” End users include the private sector, academia, and government agencies. Brown described the benefits of the program and strategies to extend ICESat-2 to new communities – see Figure 5. Brown concluded with an overview of recent publications and new research efforts to assess the impact of ICESat-2 data.
Figure 5. Strategies to extend ICESat-2 to new communities through activities and trainings such as those hosted by the Applied Remote Sensing Training (ARSET) program.Figure credit: Molly Brown Mike Jasinski [NASA GSFC, Hydrological Sciences Laboratory—Assistant Chief for Science] provided an overview of ICESat-2 inland water standard and quick look data products, ATL13QL and ATL22QL. ICESat-2 covers approximately one million lakes each year. Jasinski also listed application areas for water resources decision support, including river elevation and discharge, lake and reservoir water balance and management, and validation of Surface Water and Ocean Topography (SWOT) data. He provided metrics for each data product and quick look product and the advantages and disadvantages of ATL13 and ATL22 data products.
Mary D. Ari [Centers for Disease Control and Prevention, Office of Science—Senior Advisor for Science] provided an overview of the Science Impact Framework (SIF). Ari explained that our partners and public need “evidence to support practice or policy or decision making, accountability for public finds, and research focus to advocate for research priority.” A major goal is to translate findings into practice or action. Next, she presented ways by which impact can be measured, including bibliometrics (quantitative) and value (qualitative). Ari further explained the Science Impact Framework (SIF), which includes five domains of scientific influence: disseminating science, creating awareness, catalyzing action, effecting change, and shaping the future – see Figure 6.
Figure 6. The Science Impact Framework, which allows the impact of scientific work to be quantified and to determine if the science we produce is being put into action.Figure credit: Mary Ari Woody Turner [NASA Headquarters—ICESat-2 Program Applications Lead] provided an overview of NASA’s Earth Science to Action Strategy. Turner explained that NASA’s Earth Science to Action strategy is integral to the Earth Science Division’s 2024–2034 strategic plan. The overall strategy has two objectives: 1) observe, monitor, and understand the Earth System and 2) deliver trusted information to drive Earth resilience activities. He also summarized the “three key pillars” for this new Earth Action paradigm to 1) be user centered, 2) build bridges between research, technology, flight, data, and Earth Action elements, and 3) scale up existing efforts to get NASA data into the hands of end users. Lastly, Turner listed NASA’s core values, including safety, integrity, inclusion, teamwork, excellence, trustworthiness, innovation, and collaboration.
Objective 2: Review available tools for extracting ICESat-2 data for a diverse community.
To achieve this objective, the meeting included a series of presentations in which each speaker described a different tool that is being used to download and analyze ICESat-2 data.
Jessica Scheick [University of New Hampshire] provided an overview of a set of Python tools, named icepyx, that can be used to obtain and manipulate ICESat-2 data. Scheick, who developed icepyx, described how the tools address challenges with ICESat-2 data. Lastly, she performed a live demonstration of icepyx.
Tyler Sutterley [Applied Physics Laboratory/University of Washington] presented a live demonstration of Sliderule, an ICESat-2 plugin module that uses an application programming interface (API) to “query a set of ATL03 input granules for photon heights and locations based on a set of photon-input parameters that select the geographic and temporal extent of the request.”
Joanna D. Millstein [Colorado School of Mines] provided an overview of CryoCloud, which is a “JupyterHub built for NASA cryosphere communities in collaboration with 2i2c.” The goal of CryoCloud is to create a “simple and cost-effective managed cloud environment for training and transitioning new users to cloud workflows and determining community best practices.” CryoCloud makes it possible to “process data faster, minimize downloading and democratize science.” The CryoCloud GitHub provides access to a Slack channel, trainings and tutorials, and community office hours.
Mikala Beig [UC, Boulder—NSIDC User Services] provided and overview of OpenAltimetry, a platform for visualizing and downloading surface elevation data from ICESat and ICESat-2. OpenAltimetry was developed to alleviate the challenges faced by researchers, including the “steep learning curves and heavy demands on computational resources” necessary to download and manipulate large volumes of data. The strengths of OpenAltimetry include fostering user engagement, lowering technical hurdles for visualizing data, and allowing deeper data exploration. Lastly, Beig demonstrated the platform for the audience – see Figure 7.
Figure 7. Searching ICESat-2 tracks in OpenAltimetry, a map-based data visualization and discovery tool for altimetry data.Figure credit: Mikala Beig Objectives 3 and 4: Foster synergies between all participants; Identify new potential applications or products from ATLAS data not currently under investigation.
To meet these two meeting objectives, workshop organizers scheduled a round of lightning talks, where a series of presenters gave five-minute presentations on their research or activities. The talks are distilled below. The reader is directed online to find formal presentation titles and additional information. There was also an applied user panel and a breakout session to facilitate synergies between participants and identify new applications.
Younghyun Koo [Lehigh University/ Cooperative Institute for Research in Environmental Science (CIRES)] described a method to filter landfast ice (or sea ice “fastened” to the coastline) for accurate examination of thermodynamic and dynamic sea ice features using the ICESat-2 ATL10 data product – see Figure 8.
Chandana Gangodagamage [OeilSat—Principal Investigator] described the company’s efforts to track freshwater in the Congo River for the purposes of water resources management and other water-related applications that require river bathymetry data.
Daniel Scherer [Technischen Universität München (TUM), Germany] provided an overview of the ICESat-2 River Surface Slope (IRIS), a global reach-scale water surface slope dataset that provides average and extreme water slopes from ICESat-2 observations. The data can be dowloaded from Zenodo.
Louise Croneborg-Jones [Water In Sight—Chief Executive Officer] described her company’s effort to use satellite data and mobile and cloud technology to digitize river and rainfall observation at scale in Malawi. Water In Sight has emphasized getting local communities involved in monitoring water resources to increase observations of water levels for conservation.
Ravindra Duddu [Vanderbilt University] provided an overview on a project called Modeling Antarctic Iceshelf Calving and Stability (MAGICS), which involves using computation, data, and machine learning to map the rift and crevasse configurations of ice shelves in Antarctica to better understand calving events.
Shawn Serbin [GSFC] discussed use of harmonized above ground products from ICESat-2 and other earth observing platforms, including Global Ecosystem Dynamics Investigation (GEDI), Soil Moisture Active Passive (SMAP), and Moderate Resolution Imaging Spectroradiometer (MODIS), for terrestrial ecosystem carbon cycle reanalysis and near-term, iterative forecasting for North America and the globe.
Wengi Ni-Meister [Hunter College of the City University of New York—ICESat-2 Early Adopter] summarized an effort to retrieve canopy and background reflectivity ratio from ICESat-2 data and use it for the retrieval of vegetation cover and snow distribution in boreal forests.
Morgaine McKibben [GSFC–Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) Applications Lead] provided an overview of NASA’s PACE mission, suggesting possible synergies between ICESat-2 and PACE with the intent of opening the door for further discussion on collaboration between the two missions. (To learn more about planned applications for PACE, see Preparing for Launch and Assessing User Readiness: The 2023 PACE Applications Workshop. (Also published in The Earth Observer, Nov–Dec 2023, 35:6, 25–32.)
Anthony Campbell [GSFC/ University of Maryland, Baltimore County] discussed his group’s research into using ICESat-2 data to monitor changes in coastal wetland migration, including coastal elevation and canopy height.
Brian A Campbell [NASA’s Wallops Flight Facility (WFF)—ICESat-2 Mission Education Lead] described the Global Learning and Observations to Benefit the Environment (GLOBE) program’s network of citizen scientists who collect several different kinds of data using the GLOBE Observer app. He highlighted one data type with particular relevance to ICESat-2. GLOBE Trees – see Figure 8 – equips citizen scientists with the tools to take tree height measurements using their mobile devices. These observations could then be compared to data from NASA satellite missions.
Figure 8. NASA’s Global Learning and Observations to Benefit the Environment (GLOBE) has developed an app called GLOBE Trees that allows users take measurements of tree height data using a mobile device. Those data can then be uploaded, and scientists can use them to validate satellite tree height measurement (e.g., from ICESat-2/ATLAS).Figure credit: Brian Campbell Caio Hamamura [University of Florida/School of Forest, Fisheries & Geomatics Sciences—Postdoctoral Associate] summarized a literature review his team had conducted of studies using ICESat-2 data for land and vegetation applications as well as results of an assessment of the current capability and limitations of ICESat-2 data for land and vegetation applications – see Figure 9.
Figure 9. Illustration of the ATL18 canopy height product at 1 km (~0.6 mi) spatial resolution at the global scale. The height values represent the median of all ATL18 height estimates within a given grid size of 1 km.Figure credit: Jordan Borak and Ciao Hamamura Jacob Comer [Cultural Site Research and Management Foundation] summarized results from an evaluation of the use of ICESat-2 data for archaeological prospection and documentation of archaeological sites – particularly in the Federal States of Micronesia.
Juradana M. Iqrah [University of Texas at San Antonio] described her group’s effort to obtain high resolution sea ice classification and freeboard information from ICESat-2 ATL03 observations to understand the impact of global warming on the melting and retreat of polar sea ice cover.
Michael MacFerrin [National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI)—Coastal Digital Elevation (DEM) Model Team] provided an overview of the NOAA/CIRES ICESat-2 Validation of Elevations Reporting Tool (IVERT) tool, which is used to generate land-based validation statistics of digital elevation models (DEM) anywhere in the word using the ATL03 and ATL08 datasets – see Figure 10.
Figure 10. Digital Elevation Model output before and after Hurricane Michael in Florida, October 2018.Figure credit: Michael MacFerrin Gretchen Imahori [NOAA National Geodetic Survey, Remote Sensing Division] presented an overview of satellite derived bathymetry using ICESat-2 data, including the new Level 3 (L3) bathymetry data product (ATL24) that will be available later in 2024 – see Figure 11.
Figure 11. Bathymetry data from ICESat-2 have been used across a wide variety of morphologies [some of which are illustrated in the photos above] and disciplines. Figure credit: Gretchen Imahori and the ICESat-2 bathymetry working group Objectives 5 and 6: Understand the challenges faced by applied, data users, and end users and identify solutions. Build partnerships between applied users, data producers, and end users.
To achieve these two objectives, planners organized an applied user panel and a breakout session as means to foster conversation among participants. The applied user panel consisted of five panelists– three participating virtually and two in-person. The presenters in the session shared their responses to three prepared discussion prompts: 1) an introduction of ICESat-2 data products; 2) use of ICESat-2 data products for their application; and 3) potential data latency impacts. The conversation was brief, but it provided a unique opportunity to hear from experienced applied users.
A breakout session consisted of pre-planned discussion prompts through two virtual breakout groups and one in-person group. Group One discussed questions that covered examination of ice crevassing and rifting, community tools for shallow water mapping, and slope measurement bias and uncertainties. Group Two discussed a variety of current and potential surface water applications, identified challenges using ICEat-2 data, and developed suggestions to increase the accessibility and usability of ICESat-2 data products. Group Three covered a gamut of topics, including potential products for Alaskan and Canadian communities, increased accessibility to products, and applications through central cloud storage systems, central repositories and detailed documentation, and the desire for future topic-specific workshops and focus sessions.
Conclusion
The 2024 NASA ICESat-2 Applications Workshop was the third in a series of workshops – with the first workshop occurring in 2012, six years prior to launch. The EA program was transitioned to the Applied User program, which deployed a post-launch program per the NASA Early Adopter Handbook “that acts as a continuation of the Early Adopter program to engage with Communities of Practice and Potential.” This workshop provided the space to foster collaboration and conceptualization of applications not yet exploited that may be developed using ICESat-2 data products. The workshop met its objectives and created an environment that fostered collaboration between participants. The workshop was a success, and participants requested another one focused on a thematic topic. Updates, future workshops, and other events will be posted on the ICESat-2 ‘Get Involved’ page.
Aimee Renee Neeley
NASA’s Goddard Space Flight Center/Science Systems and Applications, Inc.
aimee.neeley@nasa.gov
Share
Details
Last Updated Sep 17, 2024 Related Terms
Earth Science View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.