Jump to content

Meeting with World Food Program’s Head of Geospatial Support Unit


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA has awarded the NASA Academic Mission Services 2 (NAMS-2) contract to Crown Consulting Inc., of Arlington, Virginia, to provide the agency’s Ames Research Center in California’s Silicon Valley, aeronautics and exploration technology research and development support.
      NAMS-2 is a single award hybrid cost-plus-fixed-fee indefinite-delivery indefinite-quantity contract with a maximum potential value of $121 million. The contract begins Tuesday, Oct. 1, 2024, with a 60-day phase-in period, followed by a two-year base period, and options to extend performance through November 2029.
      Under this contract, the company will support a broad scope of scientific research and development of new and emerging capabilities and technologies associated with air traffic management, advanced technology, nanoelectronics, and prototype software in support of the Aeronautics Directorate and the Exploration Technology Directorate at NASA Ames. The work also will focus on the improvement of aircraft and airspace safety, as well as the transition of advanced aeronautics technologies into future air vehicles.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Roxana Bardan
      Headquarters, Washington
      202-358-1600
      roxana.bardan@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      rachel.hoover@nasa.gov
      650-604-4789
      Share
      Details
      Last Updated Sep 13, 2024 LocationAmes Research Center View the full article
    • By European Space Agency
      Video: 00:06:50 The first of four satellites that make up ESA’s Cluster mission is coming safely back down to Earth, marking a brilliant end to this remarkable mission.
      The satellite’s orbit was tweaked back in January to target a region as far as possible from populated regions. This ensures that any spacecraft parts that survive the reentry will fall over open ocean.
      During 24 years in space, Cluster has sent back precious data on how the Sun interacts with Earth’s magnetic field, helping us better understand and forecast potentially dangerous space weather. 
      With this first ever targeted reentry, Cluster goes down in history for a different reason, taking ESA well beyond international space safety standards and helping ensure the long-term sustainability of space activities.
      View the full article
    • By NASA
      Credit: NASA NASA has awarded the Center, Operations Maintenance, and Engineering II contract to Jacobs Technology Inc. of Tullahoma, Tennessee, to support operations at the agency’s Langley Research Center in Hampton, Virginia.
      The contract is a cost-plus-fixed-fee indefinite-delivery/indefinite-quantity contract with a maximum potential value of $973.7 million. Following a phase-in period that starts Tuesday, Oct. 1 and runs to Dec. 31, the contract will have a base period of 15 months followed by five optional periods that could extend the contract to the end of 2035.
      Under this contract, Jacobs Technology will assist in crucial research operations, engineering, and maintenance services at NASA Langley to help the center continue its work to solve the mysteries of our home planet, solar system, and beyond. The firm also will provide institutional and research operations support, maintenance and engineering for the center’s facilities, and central utilities operations, among other services.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Share
      Details
      Last Updated Sep 05, 2024 LocationNASA Headquarters Related Terms
      Langley Research Center NASA Centers & Facilities View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Two robotic arms wrapped in gold material sitting on top of a black and silver box.Naval Research Laboratory NASA and the Defense Advanced Research Projects Agency (DARPA) have signed an interagency agreement to collaborate on a satellite servicing demonstration in geosynchronous Earth orbit, where hundreds of satellites provide communications, meteorological, national security, and other vital functions. 
      Under this agreement, NASA will provide subject matter expertise to DARPA’s Robotic Servicing of Geosynchronous Satellites (RSGS) program to help complete the technology development, integration, testing, and demonstration. The RSGS servicing spacecraft will advance in-orbit satellite inspection, repair, and upgrade capabilities. 
      NASA is excited to support our long-term partner and advance important technologies poised to benefit commercial, civil, and national objectives. Together, we will make meaningful, long-lasting contributions to the nation’s in-space servicing, assembly, and manufacturing (ISAM) capabilities.
      Pam Melroy
      NASA Deputy Administrator
      NASA will use expertise from the agency’s On-orbit Servicing, Assembly, and Manufacturing 1 project and other relevant efforts to provide hands-on support to RSGS in the areas of space robotics, systems engineering, spacecraft subsystems, integration and testing, operator training, and spaceflight operations. NASA’s involvement in RSGS will continue advancing the agency’s understanding of and experience with complex ISAM systems.
      DARPA will continue to lead the RSGS program, which has already achieved several important milestones, including the completion of two dexterous robotic arms designed for inspection and service that have been stress-tested for an on-orbit environment and the integration of those arms with their associated electronics, tools, and ancillary hardware to produce the fully integrated robotic payload. 
      Media Contact: Jasmine Hopkins
      Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Space Tech Topics
      STMD Solicitations and Opportunities
      Robotics
      Technology Transfer & Spinoffs
      Artemis
      Share
      Details
      Last Updated Sep 05, 2024 EditorLoura Hall Related Terms
      Space Technology Mission Directorate Technology View the full article
    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      Behind the Scenes at the 2024 Mars 2020 Science Team Meeting
      The Mars 2020 Perseverance Rover Science Team meets in person and online during the July 2024 team meeting in Pasadena, CA. Credits: R. Hogg and J. Maki. The Mars 2020 Science Team meets in Pasadena for 3 days of science synthesis
      It has become a fun tradition for me to write a summary of our yearly in-person Science Team Meetings (2022 meeting and 2023 meeting). I’ve been particularly looking forward to this year’s update given the recent excitement on the team and in the public about Perseverance’s discovery of a potential biosignature, a feature that may have a biological origin but needs more data or further study before reaching a conclusion about the absence or presence of life.
      This past July, ~160 members of the Mars 2020 Science Team met in-person in Pasadena—with another ~50 team members dialed in on-line—for three days of presentations, meetings, and team discussion. For a team that spends most of the year working remotely from around the world, we make the most of these rare opportunities for in-person discussion and synthesis of the rover’s latest science results.
      We spent time discussing Perseverance’s most recent science campaign in the Margin unit, an exposure of carbonate-bearing rocks that occurs along the inner rim of Jezero crater. As part of an effort to synthesize what we’ve learned about the Margin unit over the past year, we heard presentations describing surface and subsurface observations collected from the rover’s entire payload. This was followed by a thought-provoking series of presentations that tackled the three hypotheses we’re carrying for the origin of this unit: sedimentary, volcanic (pyroclastic), or crystalline igneous.
      Some of our liveliest discussion occurred during presentations about Neretva Vallis, Jezero’s inlet valley that once fed the sedimentary fan and lake system within the crater. Data from the RIMFAX instrument took center stage as we debated the origin and age relationship of the Bright Angel outcrop to other units we’ve studied in the crater.
      This context is especially important because the Bright Angel outcrop is home to the Cheyava Falls rock, which contains intriguing features we’ve been calling “leopard spots,” small white spots with dark rims observed in red bedrock of Bright Angel. On the last day of the team meeting, data from our recent “Apollo Temple” abrasion at Cheyava Falls was just starting to arrive on Earth, and team members from the PIXL and SHERLOC teams were huddled in the hallway and at the back of the conference room trying to digest these new results in real time. We had special “pop-up” presentations during which SHERLOC reported compelling evidence for organics in the new abrasion, and PIXL showed interesting new data about the light-toned veins that crosscut this rock.
      Between debates about the Margin unit, updates on recently published studies of the Jezero sedimentary fan sequence, and discussion of the newest rocks at Bright Angel, this team meeting was one of our most exciting yet. It also marked an important transition for the Mars 2020 science mission as we prepare to ascend the Jezero crater rim, leaving behind—at least for now—the rocks inside the crater. I can only imagine the interesting new discoveries we’ll make during the upcoming year, and I can’t wait to report back next summer!
      Written by Katie Stack Morgan, Mars 2020 Deputy Project Scientist at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Aug 30, 2024 Related Terms
      Blogs Explore More
      4 min read Sols 4289-4290: From Discovery Pinnacle to Kings Canyon and Back Again


      Article


      1 day ago
      3 min read Sols 4287-4288: Back on the Road


      Article


      2 days ago
      3 min read Perseverance Kicks off the Crater Rim Campaign!
      Perseverance is officially headed into a new phase of scientific investigation on the Jezero Crater…


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...