Members Can Post Anonymously On This Site
SENER’s SIROM system interconnect testing in ESA’s ORL
-
Similar Topics
-
By NASA
NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
“Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
For more on HLS, visit:
https://www.nasa.gov/humans-in-space/human-landing-system
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
Explore More
8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
Article 1 day ago
r
View the full article
-
By NASA
In the unforgiving lunar environment, the possibility of an astronaut crewmember becoming incapacitated due to unforeseen circumstances (injury, medical emergency, or a mission-related accident) is a critical concern, starting with the upcoming Artemis III mission, where two astronaut crewmembers will explore the Lunar South Pole. The Moon’s surface is littered with rocks ranging from 0.15 to 20 meters in diameter and craters spanning 1 to 30 meters wide, making navigation challenging even under optimal conditions. The low gravity, unique lighting conditions, extreme temperatures, and availability of only one person to perform the rescue, further complicate any rescue efforts. Among the critical concerns is the safety of astronauts during Extravehicular Activities (EVAs). If an astronaut crewmember becomes incapacitated during a mission, the ability to return them safely and promptly to the human landing system is essential. A single crew member should be able to transport an incapacitated crew member distances up to 2 km and a slope of up to 20 degrees on the lunar terrain without the assistance of a lunar rover. This pressing issue opens the door for innovative solutions. We are looking for a cutting-edge design that is low in mass and easy to deploy, enabling one astronaut crewmember to safely transport their suited (343 kg (~755lb)) and fully incapacitated partner back to the human landing system. The solution must perform effectively in the Moon’s extreme South Pole environment and operate independently of a lunar rover. Your creativity and expertise could bridge this critical gap, enhancing the safety measures for future lunar explorers. By addressing this challenge, you have the opportunity to contribute to the next “giant leap” in human space exploration.
Award: $45,000 in total prizes
Open Date: November 14, 2024
Close Date: January 23, 2025
For more information, visit: https://www.herox.com/NASASouthPoleSafety
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
Crews at NASA’s Stennis Space Center work Jan. 21-22, 2020, to install the first flight core stage of NASA’s powerful SLS (Space Launch System) rocket on the B-2 side of the Thad Cochran Test Stand for a Green Run test series. Operations required crews to lift the massive core stage from a horizontal position into a vertical orientation, a procedure known as “break over.” Once the stage was oriented in a horizontal position on the night of Jan. 21, crews tied it in place to await favorable wind conditions. The following morning, crews began the process of raising, positioning, and securing the stage on the stand. NASA/Stennis The future is now at NASA’s Stennis Space Center near Bay St. Louis, Mississippi – at least when it comes to helping power the next great era of human space exploration.
NASA Stennis is contributing directly to the agency’s effort to land the first woman, the first person of color, and its first international partner astronaut on the Moon – for the benefit of all humanity. Work at the nation’s largest – and premier – propulsion test site will help power SLS (Space Launch System) rockets on future Artemis missions to enable long-term lunar exploration and prepare for the next giant leap of sending the first astronauts to Mars.
“We play a critical role to ensure the safety of astronauts on future Artemis missions,” NASA Stennis Space Center Director John Bailey said. “Our dedicated workforce is excited and proud to be part of NASA’s return to the Moon.”
NASA Stennis achieved an RS-25 testing milestone in April at the Fred Haise Test Stand. Completion of the successful RS-25 certification series provided critical data for L3Harris (formerly known as Aerojet Rocketdyne) to produce new RS-25 engines, using modern processes and manufacturing techniques. The engines will help power SLS rockets beginning with Artemis V.
The first four Artemis missions are using modified space shuttle main engines also tested at NASA Stennis. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power the SLS rocket to produce more than 8.8 million pounds of total combined thrust at liftoff.
NASA’s powerful SLS rocket is the only rocket that can send the Orion spacecraft, astronauts, and cargo to the Moon on a single mission.
Following key test infrastructure upgrades near the Fred Haise Test Stand, NASA Stennis will be ready for more RS-25 engine testing. NASA has awarded L3Harris contracts to provide 24 new engines, supporting SLS launches for Artemis V through Artemis IX.
“Every RS-25 engine that launches Artemis to space will be tested at NASA Stennis,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “We take pride in helping to power this nation’s human space exploration program. We also take great care in testing these engines because they are launching astronauts to space. We always have safety in mind.”
NASA’s Stennis Space Center conducts a successful hot fire of the first flight core stage of NASA’s powerful SLS (Space Launch System) rocket on the B-2 side of the Thad Cochran Test Stand on March 18, 2021. NASA employees, as well as NASA astronauts Jessica Meir and Zena Cardman, watched the milestone moment. The hot fire of more than eight minutes marked the culmination of a Green Run series of tests on the stage and its integrated systems. NASA/Stennis In addition to RS-25 testing, preparations are ongoing at the Thad Cochran Test Stand (B-2) for future testing of the agency’s new exploration upper stage. The more powerful SLS second stage, which will send astronauts and cargo to deep space aboard the Orion spacecraft, is being built at NASA’s Michoud Assembly Facility in New Orleans.
Before its first flight, the NASA Stennis test team will conduct a series of Green Run tests on the new stage’s integrated systems to demonstrate it is ready to fly. Crews completed installation of a key component for testing the upper stage in October. The lift and installation of the 103-ton interstage simulator component, measuring 31 feet in diameter and 33 feet tall, provided crews best practices for moving and handling the actual flight hardware when it arrives to NASA Stennis.
The exploration upper stage Green Run test series will culminate with a hot fire of the stage’s four RL10 engines, made by L3Harris, the lead SLS engines contractor.
“All of Mississippi shares in our return to the Moon with the next great era of human space exploration going through NASA Stennis,” Bailey said. “Together, we can be proud of the state’s contributions to NASA’s great mission.”
For information about NASA’s Stennis Space Center, visit:
Stennis Space Center – NASA
Share
Details
Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center Explore More
5 min read NASA Stennis – An Ideal Place for Commercial Companies
Article 13 mins ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
Article 14 mins ago 5 min read NASA Stennis Adapts with Purpose to Power Nation’s Space Dreams
Article 14 mins ago Keep Exploring Discover Related Stennis Topics
Propulsion Test Engineering
NASA Stennis Front Door
Multi-User Test Complex
Doing Business with NASA Stennis
View the full article
-
By NASA
Teams with NASA and Lockheed Martin prepare to conduct testing on NASA’s Orion spacecraft on Thursday, Nov. 7, 2024, in the altitude chamber inside the Neil A. Armstrong Operations and Checkout building at NASA’s Kennedy Space Center in Florida. Lockheed Martin/David Wellendorf Teams lifted NASA’s Orion spacecraft for the Artemis II test flight out of the Final Assembly and System Testing cell and moved it to the altitude chamber to complete further testing on Nov. 6 inside the Neil A. Armstrong Operations and Checkout building at NASA’s Kennedy Space Center in Florida.
Engineers returned the spacecraft to the altitude chamber, which simulates deep space vacuum conditions, to complete the remaining test requirements and provide additional data to augment data gained during testing earlier this summer.
The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.
Image credit: Lockheed Martin/David Wellendorf
View the full article
-
By NASA
NASA/Carla Thomas NASA’s X-59 quiet supersonic research aircraft sits in its run stall at Lockheed Martin’s Skunk Works facility in Palmdale, California, in this image from Oct. 30, 2024.
The engine-run tests, which began Oct. 30, allow the X-59 team to verify the aircraft’s systems are working together while powered by its own engine. In previous tests, the X-59 used external sources for power. The engine-run tests set the stage for the next phase of the experimental aircraft’s progress toward flight.
After the engine runs, the X-59 team will move to aluminum bird testing, where data will be fed to the aircraft under both normal and failure conditions. The team will then proceed with a series of taxi tests, where the aircraft will be put in motion on the ground. These tests will be followed by final preparations for first flight.
Image credit: NASA/Carla Thomas
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.