Jump to content

Jonathan Lunine Appointed Chief Scientist of NASA’s Jet Propulsion Laboratory


Recommended Posts

  • Publishers
Posted
Jonathan Lunine
As part of his new role as JPL’s chief scientist, Jonathan Lunine has also been appointed professor of planetary science with the Division of Geological and Planetary Science at Caltech.
NASA/JPL-Caltech

In his new role, his leadership will be critical in fostering an environment of scientific innovation and excellence, ensuring that JPL remains at the forefront of discovery.

Distinguished planetary scientist and astrophysicist Jonathan I. Lunine has been appointed chief scientist of NASA’s Jet Propulsion Laboratory. He will officially assume his role Aug. 16.

As chief scientist, Lunine will guide the laboratory’s scientific research and development efforts, drive innovation across JPL’s missions and programs, and enhance collaborations with NASA Headquarters, NASA centers, Caltech, academia, the science community, government agencies, and industry partners. In addition, he will oversee the formulation of JPL’s scientific policies and priorities and guide the integrity of missions that JPL manages for NASA.

“I’m elated that Jonathan is joining JPL,” said Laurie Leshin, director of JPL. “As chief scientist, he will play a critical role in fostering innovation and excellence, ensuring that JPL remains at the forefront of scientific discovery and innovation as we dare mighty things together.”

Lunine currently serves as the David C. Duncan Professor in the Physical Sciences and chair of the Department of Astronomy at Cornell University in Ithaca, New York. A Caltech alumnus, he has performed pioneering research on the formation and evolution of planetary systems, the nature of planetary interiors and atmospheres, and where environments suited for life might exist in the solar system and beyond. His deep expertise will help JPL continue to seek answers to fundamental questions that crosscut the diverse science portfolio of the laboratory.

“My first experience working with scientists and engineers at JPL was over 40 years ago as a Caltech graduate student,” said Lunine. “From that time to the present, it has been clear to me that no other institution matches its combination of scientific breadth and engineering capability. JPL’s portfolio of missions and research projects across the gamut — from our home planet to the solar system, heliosphere, and universe beyond — is an extraordinary resource to the nation. I am thrilled to be able to play a leadership role on the science side of this remarkable institution.”

Lunine has collaborated with JPL on numerous missions. He was a guest investigator for the ultraviolet spectrometer on NASA’s Voyager 2 Neptune encounter and an interdisciplinary scientist on the Cassini/Huygens mission, and he is co-investigator on the agency’s Juno mission to Jupiter as well as for the MISE (Mapping Imaging Spectrometer for Europa) instrument on NASA’s Europa Clipper mission. Lunine is also a member of the gravity science team for Europa Clipper and the Gravity & Geophysics of Jupiter and Galilean Moons gravity experiment on the ESA (European Space Agency) JUICE (Jupiter Icy Moons Explorer) mission.

In addition, he served on the science working group as an interdisciplinary scientist for NASA’s James Webb Space Telescope and has contributed to concept studies for solar system and exoplanet characterization missions. A member of the National Academy of Sciences, he has chaired or co-chaired numerous advisory and strategic planning committees for the Academy, NASA, and the National Science Foundation.

As part of his new role, Lunine has also been appointed professor of planetary science with the Division of Geological and Planetary Sciences at Caltech.

“Jonathan will bring a tremendous amount of experience in planetary science to the Division of Geological and Planetary Sciences and the broader Caltech community,” said John Grotzinger, chair of the Division of Geological and Planetary Sciences at Caltech. “He has worked on a remarkably diverse set of science questions spanning the solar system and extending to exoplanets. We are thrilled to have him join our faculty.” A division of Caltech in Pasadena, California, JPL began in 1936 and ultimately built and helped launch America’s first satellite, Explorer 1, in 1958. By the end of that year, Congress established NASA and JPL became a part of the agency. Since then, JPL has managed such historic missions as Voyager, Galileo, Cassini, the Mars Exploration Rover program, the Perseverance Mars rover, and many more.

News Media Contact

Veronica McGregor / Matthew Segal
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-9452 / 818-354-8307
veronica.c.mcgregor@jpl.nasa.gov / matthew.j.segal@jpl.nasa.gov

2024-078

Share

Details

Last Updated
Jun 06, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      OTPS shares an annual letter from the Agency Chief Technologist (ACT), updates on various studies in the technology domain within OTPS, overviews of the center chief technologists, and vignettes of various technology projects across the agency. Read the full report, A Year in Review 2024 from NASA’s Agency Chief Technologist.
      Share
      Details
      Last Updated Dec 18, 2024 EditorBill Keeter Related Terms
      Office of Technology, Policy and Strategy (OTPS) View the full article
    • By NASA
      NASA/CXC/SAO/D. Bogensberger et al; Image Processing: NASA/CXC/SAO/N. Wolk; Even matter ejected by black holes can run into objects in the dark. Using NASA’s Chandra X-ray Observatory, astronomers have found an unusual mark from a giant black hole’s powerful jet striking an unidentified object in its path.
      The discovery was made in a galaxy called Centaurus A (Cen A), located about 12 million light-years from Earth. Astronomers have long studied Cen A because it has a supermassive black hole in its center sending out spectacular jets that stretch out across the entire galaxy. The black hole launches this jet of high-energy particles not from inside the black hole, but from intense gravitational and magnetic fields around it.
      The image shows low-energy X-rays seen by Chandra represented in pink, medium-energy X-rays in purple, and the highest-energy X-rays in blue.
      In this latest study, researchers determined that the jet is — at least in certain spots — moving at close to the speed of light. Using the deepest X-ray image ever made of Cen A, they also found a patch of V-shaped emission connected to a bright source of X-rays, something that had not been seen before in this galaxy.
      Called C4, this source is located close to the path of the jet from the supermassive black hole and is highlighted in the inset. The arms of the “V” are at least about 700 light-years long. For context, the nearest star to Earth is about 4 light-years away.
      Source C4 in the Centaurus A galaxy.NASA/CXC/SAO/D. Bogensberger et al; Image Processing: NASA/CXC/SAO/N. Wolk; While the researchers have ideas about what is happening, the identity of the object being blasted is a mystery because it is too distant for its details to be seen, even in images from the current most powerful telescopes.
      The incognito object being rammed may be a massive star, either by itself or with a companion star. The X-rays from C4 could be caused by the collision between the particles in the jet and the gas in a wind blowing away from the star. This collision can generate turbulence, causing a rise in the density of the gas in the jet. This, in turn, ignites the X-ray emission seen with Chandra.
      The shape of the “V,” however, is not completely understood. The stream of X-rays trailing behind the source in the bottom arm of the “V” is roughly parallel to the jet, matching the picture of turbulence causing enhanced X-ray emission behind an obstacle in the path of the jet. The other arm of the “V” is harder to explain because it has a large angle to the jet, and astronomers are unsure what could explain that.
      This is not the first time astronomers have seen a black hole jet running into other objects in Cen A. There are several other examples where a jet appears to be striking objects — possibly massive stars or gas clouds. However, C4 stands out from these by having the V-shape in X-rays, while other obstacles in the jet’s path produce elliptical blobs in the X-ray image. Chandra is the only X-ray observatory capable of seeing this feature. Astronomers are trying to determine why C4 has this different post-contact appearance, but it could be related to the type of object that the jet is striking or how directly the jet is striking it.
      A paper describing these results appears in a recent issue of The Astrophysical Journal. The authors of the study are David Bogensberger (University of Michigan), Jon M. Miller (University of Michigan), Richard Mushotsky (University of Maryland), Niel Brandt (Penn State University), Elias Kammoun (University of Toulouse, France), Abderahmen Zogbhi (University of Maryland), and Ehud Behar (Israel Institute of Technology).
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features a series of images focusing on a collision between a jet of matter blasting out of a distant black hole, and a mysterious, incognito object.
      At the center of the primary image is a bright white dot, encircled by a hazy purple blue ring tinged with neon blue. This is the black hole at the heart of the galaxy called Centaurus A. Shooting out of the black hole is a stream of ejected matter. This stream, or jet, shoots in two opposite directions. It shoots toward us, widening as it reaches our upper left, and away from us, growing thinner and more faint as it recedes toward the lower right. In the primary image, the jet resembles a trail of hot pink smoke. Other pockets of granular, hot pink gas can be found throughout the image. Here, pink represents low energy X-rays observed by Chandra, purple represents medium energy X-rays, and blue represents high energy X-rays.
      Near our lower right, where the jet is at its thinnest, is a distinct pink “V”, its arms opening toward our lower right. This mark is understood to be the result of the jet striking an unidentified object that lay in its path. A labeled version of the image highlights this region, and names the point of the V-shape, the incognito object, C4. A wide view version of the image is composited with optical data.
      At the distance of Cen A, the arms of the V-shape appear rather small. In fact, each arm is at least 700 light-years long. The jet itself is 30,000 light-years long. For context, the nearest star to the Sun is about 4 light-years away.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By Space Force
      Space Force officials have selected 14 senior master sergeants and 25 master sergeants for promotion in the 24S9 and 25S8 promotion cycles, respectively.

      View the full article
    • By NASA
      The overarching purpose of the OCKO is to cultivate and sustain a learning culture at Goddard in support of mission success. We have instituted various processes and programs for lessons learned and critical knowledge identification, sharing, and application. The focus of the OCKO is to promote local learning practices that enhances domain-specific expertise within an expanded framework of how NASA works.  The Goddard OCKO provides leadership, coordination and support to center organizations to effectively identify lessons and critical knowledge that can be used to support mission execution.
      Mission success at Goddard is driven by many factors including, but not limited to, teamwork, leadership, decision making and risk-informed prioritization of lessons. The OCKO has developed many technical case studies that touch on broad organizational issues, project implementation, technology and engineering development, procurement and contract management challenges, and other topics that contribute to mission success. Our learning programs and knowledge sharing activities are designed to transfer the experiences, technical wisdom and values embedded in our policies, procedures and processes.
      The OCKO, whether through formal dissenting opinion processes, pause-and-learn exercises, or project reflective learning sessions, encourages our workforce to speak up in support of mission success. We promote a healthy culture where project teams discuss major events, milestones and reviews to ascertain “what happened and why it happened,” how to sustain strengths, and how to improve on weaknesses to enable collective discovery of contextual lessons for institutional learning.
      As the Chief Knowledge Officer (CKO) of the NASA Goddard Space Flight Center, it is my sincere desire to help assure that Goddard operates as a learning organization to enhance the likelihood of mission success.
      Moses Adoko, Chief Knowledge Officer 
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Callista PuchmeyerCredit: NASA Cleveland State University (CSU) inducted Callista Puchmeyer, chief counsel at NASA’s Glenn Research Center in Cleveland, into the CSU College of Law Hall of Fame during a ceremony on Nov. 1.  
      Puchmeyer provides expert legal advice to NASA Glenn’s center director and other senior leaders. She also manages Glenn’s Office of the General Counsel, a diverse legal staff that advises Glenn clients on a broad spectrum of federal matters. 
      Established in 2017, CSU’s Law Hall of Fame honors the outstanding contributions of its distinguished alumni, faculty, staff, friends, and community leaders. 
      Return to Newsletter View the full article
  • Check out these Videos

×
×
  • Create New...