Jump to content

Jonathan Lunine Appointed Chief Scientist of NASA’s Jet Propulsion Laboratory


NASA

Recommended Posts

  • Publishers
Jonathan Lunine
As part of his new role as JPL’s chief scientist, Jonathan Lunine has also been appointed professor of planetary science with the Division of Geological and Planetary Science at Caltech.
NASA/JPL-Caltech

In his new role, his leadership will be critical in fostering an environment of scientific innovation and excellence, ensuring that JPL remains at the forefront of discovery.

Distinguished planetary scientist and astrophysicist Jonathan I. Lunine has been appointed chief scientist of NASA’s Jet Propulsion Laboratory. He will officially assume his role Aug. 16.

As chief scientist, Lunine will guide the laboratory’s scientific research and development efforts, drive innovation across JPL’s missions and programs, and enhance collaborations with NASA Headquarters, NASA centers, Caltech, academia, the science community, government agencies, and industry partners. In addition, he will oversee the formulation of JPL’s scientific policies and priorities and guide the integrity of missions that JPL manages for NASA.

“I’m elated that Jonathan is joining JPL,” said Laurie Leshin, director of JPL. “As chief scientist, he will play a critical role in fostering innovation and excellence, ensuring that JPL remains at the forefront of scientific discovery and innovation as we dare mighty things together.”

Lunine currently serves as the David C. Duncan Professor in the Physical Sciences and chair of the Department of Astronomy at Cornell University in Ithaca, New York. A Caltech alumnus, he has performed pioneering research on the formation and evolution of planetary systems, the nature of planetary interiors and atmospheres, and where environments suited for life might exist in the solar system and beyond. His deep expertise will help JPL continue to seek answers to fundamental questions that crosscut the diverse science portfolio of the laboratory.

“My first experience working with scientists and engineers at JPL was over 40 years ago as a Caltech graduate student,” said Lunine. “From that time to the present, it has been clear to me that no other institution matches its combination of scientific breadth and engineering capability. JPL’s portfolio of missions and research projects across the gamut — from our home planet to the solar system, heliosphere, and universe beyond — is an extraordinary resource to the nation. I am thrilled to be able to play a leadership role on the science side of this remarkable institution.”

Lunine has collaborated with JPL on numerous missions. He was a guest investigator for the ultraviolet spectrometer on NASA’s Voyager 2 Neptune encounter and an interdisciplinary scientist on the Cassini/Huygens mission, and he is co-investigator on the agency’s Juno mission to Jupiter as well as for the MISE (Mapping Imaging Spectrometer for Europa) instrument on NASA’s Europa Clipper mission. Lunine is also a member of the gravity science team for Europa Clipper and the Gravity & Geophysics of Jupiter and Galilean Moons gravity experiment on the ESA (European Space Agency) JUICE (Jupiter Icy Moons Explorer) mission.

In addition, he served on the science working group as an interdisciplinary scientist for NASA’s James Webb Space Telescope and has contributed to concept studies for solar system and exoplanet characterization missions. A member of the National Academy of Sciences, he has chaired or co-chaired numerous advisory and strategic planning committees for the Academy, NASA, and the National Science Foundation.

As part of his new role, Lunine has also been appointed professor of planetary science with the Division of Geological and Planetary Sciences at Caltech.

“Jonathan will bring a tremendous amount of experience in planetary science to the Division of Geological and Planetary Sciences and the broader Caltech community,” said John Grotzinger, chair of the Division of Geological and Planetary Sciences at Caltech. “He has worked on a remarkably diverse set of science questions spanning the solar system and extending to exoplanets. We are thrilled to have him join our faculty.” A division of Caltech in Pasadena, California, JPL began in 1936 and ultimately built and helped launch America’s first satellite, Explorer 1, in 1958. By the end of that year, Congress established NASA and JPL became a part of the agency. Since then, JPL has managed such historic missions as Voyager, Galileo, Cassini, the Mars Exploration Rover program, the Perseverance Mars rover, and many more.

News Media Contact

Veronica McGregor / Matthew Segal
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-9452 / 818-354-8307
veronica.c.mcgregor@jpl.nasa.gov / matthew.j.segal@jpl.nasa.gov

2024-078

Share

Details

Last Updated
Jun 06, 2024

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Callista PuchmeyerCredit: NASA Cleveland State University (CSU) inducted Callista Puchmeyer, chief counsel at NASA’s Glenn Research Center in Cleveland, into the CSU College of Law Hall of Fame during a ceremony on Nov. 1.  
      Puchmeyer provides expert legal advice to NASA Glenn’s center director and other senior leaders. She also manages Glenn’s Office of the General Counsel, a diverse legal staff that advises Glenn clients on a broad spectrum of federal matters. 
      Established in 2017, CSU’s Law Hall of Fame honors the outstanding contributions of its distinguished alumni, faculty, staff, friends, and community leaders. 
      Return to Newsletter View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
      Crews at NASA’s Stennis Space Center work Jan. 21-22, 2020, to install the first flight core stage of NASA’s powerful SLS (Space Launch System) rocket on the B-2 side of the Thad Cochran Test Stand for a Green Run test series. Operations required crews to lift the massive core stage from a horizontal position into a vertical orientation, a procedure known as “break over.” Once the stage was oriented in a horizontal position on the night of Jan. 21, crews tied it in place to await favorable wind conditions. The following morning, crews began the process of raising, positioning, and securing the stage on the stand. NASA/Stennis The future is now at NASA’s Stennis Space Center near Bay St. Louis, Mississippi – at least when it comes to helping power the next great era of human space exploration.  
      NASA Stennis is contributing directly to the agency’s effort to land the first woman, the first person of color, and its first international partner astronaut on the Moon – for the benefit of all humanity. Work at the nation’s largest – and premier – propulsion test site will help power SLS (Space Launch System) rockets on future Artemis missions to enable long-term lunar exploration and prepare for the next giant leap of sending the first astronauts to Mars.  
      “We play a critical role to ensure the safety of astronauts on future Artemis missions,” NASA Stennis Space Center Director John Bailey said. “Our dedicated workforce is excited and proud to be part of NASA’s return to the Moon.”  
      NASA Stennis achieved an RS-25 testing milestone in April at the Fred Haise Test Stand. Completion of the successful RS-25 certification series provided critical data for L3Harris (formerly known as Aerojet Rocketdyne) to produce new RS-25 engines, using modern processes and manufacturing techniques. The engines will help power SLS rockets beginning with Artemis V.   
      The first four Artemis missions are using modified space shuttle main engines also tested at NASA Stennis. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power the SLS rocket to produce more than 8.8 million pounds of total combined thrust at liftoff.   
      NASA’s powerful SLS rocket is the only rocket that can send the Orion spacecraft, astronauts, and cargo to the Moon on a single mission.   
      Following key test infrastructure upgrades near the Fred Haise Test Stand, NASA Stennis will be ready for more RS-25 engine testing. NASA has awarded L3Harris contracts to provide 24 new engines, supporting SLS launches for Artemis V through Artemis IX.  
      “Every RS-25 engine that launches Artemis to space will be tested at NASA Stennis,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “We take pride in helping to power this nation’s human space exploration program. We also take great care in testing these engines because they are launching astronauts to space. We always have safety in mind.” 
      NASA’s Stennis Space Center conducts a successful hot fire of the first flight core stage of NASA’s powerful SLS (Space Launch System) rocket on the B-2 side of the Thad Cochran Test Stand on March 18, 2021. NASA employees, as well as NASA astronauts Jessica Meir and Zena Cardman, watched the milestone moment. The hot fire of more than eight minutes marked the culmination of a Green Run series of tests on the stage and its integrated systems.  NASA/Stennis In addition to RS-25 testing, preparations are ongoing at the Thad Cochran Test Stand (B-2) for future testing of the agency’s new exploration upper stage. The more powerful SLS second stage, which will send astronauts and cargo to deep space aboard the Orion spacecraft, is being built at NASA’s Michoud Assembly Facility in New Orleans.   
      Before its first flight, the NASA Stennis test team will conduct a series of Green Run tests on the new stage’s integrated systems to demonstrate it is ready to fly. Crews completed installation of a key component for testing the upper stage in October. The lift and installation of the 103-ton interstage simulator component, measuring 31 feet in diameter and 33 feet tall, provided crews best practices for moving and handling the actual flight hardware when it arrives to NASA Stennis.   
      The exploration upper stage Green Run test series will culminate with a hot fire of the stage’s four RL10 engines, made by L3Harris, the lead SLS engines contractor.  
      “All of Mississippi shares in our return to the Moon with the next great era of human space exploration going through NASA Stennis,” Bailey said. “Together, we can be proud of the state’s contributions to NASA’s great mission.”   
      For information about NASA’s Stennis Space Center, visit:  
      Stennis Space Center – NASA  
      Share
      Details
      Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      5 min read NASA Stennis – An Ideal Place for Commercial Companies
      Article 13 mins ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
      Article 14 mins ago 5 min read NASA Stennis Adapts with Purpose to Power Nation’s Space Dreams
      Article 14 mins ago Keep Exploring Discover Related Stennis Topics
      Propulsion Test Engineering
      NASA Stennis Front Door
      Multi-User Test Complex
      Doing Business with NASA Stennis
      View the full article
    • By NASA
      Portraits of Mike Kincaid, associate administrator, Office of STEM Engagement (left), and Alexander MacDonald, chief economist (right). NASA Administrator Bill Nelson announced Monday Mike Kincaid, associate administrator, Office of STEM Engagement (OSTEM), and Alexander MacDonald, chief economist, will retire from the agency.
      Following Kincaid’s departure on Nov. 30, Kris Brown, deputy associate administrator for strategy and integration in OSTEM, will serve as acting associate administrator for that office beginning Dec. 1, and after MacDonald’s departure on Dec. 31, research economist Dr. Akhil Rao from NASA’s Office of Technology, Policy and Strategy will serve as acting chief economist.
      “I’d like to express my sincere gratitude to Mike Kincaid and Alex MacDonald for their service to NASA and our country,” said Nelson. “Both have been essential members of the NASA team – Mike since his first days as an intern at Johnson Space Center and Alex in his many roles at the agency. I look forward to working with Kris Brown and Dr. Akhil Rao in their acting roles and wish Mike and Alex all the best in retirement.”
      As associate administrator of NASA’s Office of STEM Engagement, Kincaid led the agency’s efforts to inspire and engage Artemis Generation students and educators in science, technology, engineering, and mathematics (STEM). He also chaired NASA’s STEM Board, which assesses the agency’s STEM engagement functions and activities, as well as served as a member of Federal Coordination in STEM, a multiagency committee focused on enhancing STEM education efforts across the federal government. In addition, Kincaid was NASA’s representative on the International Space Education Board, leading global collaboration in space education, sharing best practices, and uniting efforts to foster interest in space, science, and technology among students worldwide.
      Having served at NASA for more than 37 years, Kincaid first joined the agency’s Johnson Space Center in Houston as an intern in 1987, and eventually led organizations at Johnson in various capacities including, director of education, deputy director of human resources, deputy chief financial officer and director of external relations. Kincaid earned a bachelor’s degree from Texas A&M and a master’s degree from University of Houston, Clear Lake.
      MacDonald served as the first chief economist at NASA. He was previously the senior economic advisor in the Office of the Administrator, as well as the founding program executive of NASA’s Emerging Space Office within the Office of the Chief Technologist. MacDonald has made significant contributions to the development of NASA’s Artemis and Moon to Mars strategies, NASA’s strategy for commercial low Earth orbit development, NASA’s Earth Information Center, and served as the program executive for the International Space Station National Laboratory, leading it through significant leadership changes. He also is the author and editor of several NASA reports, including “Emerging Space: The Evolving Landscape of 21st Century American Spaceflight,” “Public-Private Partnerships for Space Capability Development,” “Economic Development of Low Earth Orbit,” and NASA’s biennial Economic Impact Report.
      As chief economist, MacDonald has guided NASA’s economic strategy, including increasing engagement with commercial space companies, and influenced the agency’s understanding of space as an engine of economic growth. MacDonald began his career at NASA’s Ames Research Center in the Mission Design Center, and served at NASA’s Jet Propulsion Laboratory as an executive staff specialist on commercial space before moving to NASA Headquarters. MacDonald received his bachelor’s degree in economics from Queen’s University in Canada, his master’s degree in economics from the University of British Columbia, and obtained his doctorate on the long-run economic history of American space exploration from the University of Oxford.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Meira Bernstein / Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / abbey.a.donaldson@nasa.gov
      View the full article
    • By NASA
      Listen to Chief AI Officer Dave Salvagnini represent NASA in a Federal Executive Forum webinar on “Artificial Intelligence Strategies in Government Progress and Best Practices 2024.”
      I see an acceptance of AI as the digital assistant, that capability that is going to enable every member of the workforce to be more effective with their time.
      Dave Salvagnini
      NASA Chief Artificial Intelligence Officer, and Chief Data Officer
      Featuring Chief AI Officers and technology experts at the IRS, Office of the National Coordinator for Health Information Technology, Red Hat, Deloitte, and Pure Storage, this discussion covers current AI use cases across the private and public sectors. Artificial intelligence, particularly GenAI, is changing landscapes ranging from medicine to tax systems to aeronautics. The webinar covers AI use cases for medical devices, tax amendments, and more, including a segment on how NASA is using AI capabilities for earth sciences, climate modeling, and deep space exploration. Although NASA has a long history with AI, Salvagnini notes, GenAI is changing the way we view and use these technologies. How do we equip the workforce to democratized, accessible AI capabilities, and what policies should we create to mitigate potential risks like bias, inaccuracies, and copyright issues?
      The webinar participants voice similar AI priorities in the coming year: building infrastructure to use these technologies at scale, equipping the workforce with training and resources, delivering AI capabilities that increase efficiencies, and establishing governance and risk management policies. The episode ends with a discussion of the near future, with each technology leader outlining their agency’s expected output and accomplishments regarding AI. At NASA, Salvagnini expects a perspective shift toward AI in our daily work. “I see an acceptance of AI as the digital assistant, that capability that is going to enable every member of the workforce to be more effective with their time.” 
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Jacquelyn Shuman visually assesses a prescribed fire at Ft. Stewart in Georgia, working with partner organizations as part of the Department of Defense Ft. Stewart 2024 Fire Research Campaign. USFS/Linda Chappell Jacquelyn Shuman, FireSense Project Scientist at NASA Ames Research Center, originally wanted to be a veterinarian. By the time she got to college, Shuman had switched interests to biology, which became a job teaching middle and high school science. Teaching pivoted to finance for a year, before Shuman returned to the science world to pursue a PhD.

      It was in a forest ecology class taught by her future PhD advisor, Herman “Hank” Shugart, that she first discovered a passion for ecosystems and dynamic vegetation that led her into the world of fire science, and eventually to NASA Ames.

      While Shuman’s path into the world of fire science was not a direct one, she views her diverse experiences as the key to finding a fulfilling career. “Do a lot of different things and try a lot of different things, and if one thing isn’t connecting with you, then do something different,” Shuman said.

      Diving into the World of Fire

      Shuman’s PhD program focused on boreal forest dynamics across Russia, examining how the forest changes in response to climate change and wildfire. During her research, she worked mainly with scientists from Russia, Canada, and the US through the Northern Eurasia Earth Science Partnership Initiative (NEESPI), where Shugart served as the NEESPI Chief Scientist. “The experience of having a highly supportive mentor, being a part of the NEESPI community, and working alongside other inspiring female scientists from across the globe helped me to stay motivated within my own research,” Shuman said.

      After completing her PhD, Shuman wanted to become involved in collaborative science with a global impact, which led her to the National Center for Atmospheric Research (NCAR). There, she spent seven years working as a project scientist on the Next Generation Ecosystem Experiment NGEE-Tropics) on a dynamic vegetation model project called FATES (Functionally Assembled Terrestrial Ecosystem Simulator). As part of the FATES team, Shuman used computer modeling to test vegetation structure and function in tropical and boreal forests after wildfires, and was the lead developer for updating the fire portion of the model.

      This figure shows fire characteristics from an Earth system model that uses vegetation structure and interactive fire. The FATES model captures the fire intensity associated with burned land and grass growth in the Southern Hemisphere. Shuman et al. 2024 GMD Fire has also played a powerful role in Shuman’s personal life. In 2021, the Marshall Fire destroyed neighborhoods near her hometown of Boulder, Colorado, causing over $513 million of damage and securing its place as the state’s most destructive wildfire. Despite this, Shuman is determined to not live in fear. “Fire is part of our lives, it’s a part of the Earth system, and it’s something we can plan for. We can live more sustainably with fires.” The way to live safely in a fire-inclusive ecosystem, according to Shuman, is to develop ways to accurately track and forecast wildfires and smoke, and to respond to them efficiently: efforts the fire community is continuously working on improving.

      The Fire Science Community

      Collaboration is a critical element of wildland fire management. Fire science is a field that involves practitioners such as firefighters and land managers, but also researchers such as modelers and forecasters; the most effective efforts, according to Shuman, come when this community works together. “People in fire science might be out in the field and carrying a drip torch and marching along in the hilltops and the grasslands or be behind a computer and analyzing remote sensing data,” Shuman said. “We need both pieces.”

      Protecting communities from wildfire impacts is one of the most fulfilling aspects of Shuman’s career, and a goal that unites this community. “Fire research poses tough questions, but the people who are thinking about this are the people who are acting on it,” Shuman said. “They are saying, ‘What can we do? How can we think about this? What information do we need? What are the questions?’ It’s a special community to be a part of.”

      Looking to the Future of Fire

      Currently at NASA Ames Research Center, Shuman is the Project Scientist for FireSense: a project focused on delivering NASA science and technology to practitioners and operational agencies. Shuman acts as the lead for the project office, identifying and implementing tools and strategies. Shuman still does ecosystem modeling work, including implementing vegetation models that forecast the impact of fire, but also spends time traveling to active fires across the country so she can help partners implement NASA tools and strategies in real time.

      FireSense Project Scientist Jacquelyn Shuman stands with Roger Ottmar (United States Forest Service), surveying potential future locations for prescribed burns in Fishlake National Forest. NASA Ames/Milan Loiacono
      “Right now, many different communities are all recognizing that we can partner to identify the best path forward,” Shuman said. “We have an opportunity to use everyone’s strengths and unique perspectives. It can be a devastating thing for a community and an ecosystem when a fire happens. Everyone is interested in using all this collective knowledge to do more, together.”


      Written by Molly Medin, NASA Ames Research Center

      Share
      Details
      Last Updated Oct 17, 2024 Related Terms
      General Earth Science Earth Science Division Explore More
      4 min read Navigating Space and Sound: Jesse Bazley Supports Station Integration and Colleagues With Disabilities
      Article 18 hours ago 3 min read Sacrifice and Success: NASA Engineer Honors Family Roots
      Article 19 hours ago 7 min read What is a Coral Reef?
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...