Members Can Post Anonymously On This Site
Jonathan Lunine Appointed Chief Scientist of NASA’s Jet Propulsion Laboratory
-
Similar Topics
-
By NASA
Teresa Sindelar always knew she wanted to be a part of human spaceflight, but she was unsure how to make that dream a reality until a chance encounter with former NASA astronaut Tom Stafford when she was 11 years old.
The pair met in a local jewelry shop near Sindelar’s Nebraska home, where Gen. Stafford was signing autographs. In addition to his photo, Gen. Stafford gave Sindelar a valuable tip – she should check out the Kansas Cosmosphere, a space museum in Hutchinson, Kansas. “I proceeded to attend every camp the Cosmosphere offered as a student, interned during college, and worked there full time while earning my graduate degree,” Sindelar said.
Official portrait of Teresa Sindelar.NASA She discovered a passion for teaching and mentoring young students through her work in the museum’s education department and a stint as a high school science teacher. When she began looking for opportunities at NASA, she sought a position that melded instruction with technical work. “I like pouring into others and watching them grow,” she said.
Today, Sindelar is a chief training officer (CTO) within the Flight Operations Directorate at NASA’s Johnson Space Center in Houston. Along with her fellow CTOs, Sindelar oversees the correct and complete training of NASA astronauts, crew members representing international partners, and all flight controllers. “I put the pieces together,” she said. “It is my job to make sure instructors, schedulers, outside partners, facility managers, and others are all in sync.” She added that CTOs have a unique position because they see the big picture of a training flow and understand the long-term training goals and objectives.
Teresa Sindelar received a 2025 Space Flight Awareness Program Honoree Award, presented by NASA astronaut Randy Bresnik.NASA “I get to do a lot of cool things and go to a lot of cool places,” she said, noting that the training facilities at Johnson and other NASA centers, as well as facilities managed by international partners, are top-notch. While she does enjoy watching astronauts work through problems and learn new systems, she has a special fondness for flight controller training and mentoring young professionals. “What fills my cup the most is seeing a brand-new employee right out of college blossom into a confident flight controller, do their job well, and make our missions better,” she said. “I like knowing that I had something to do with that.”
Sindelar has been part of the Johnson team since 2010 and worked as an educator in what was then called the center’s Office of Education and as a crew training instructor in the Space Medicine Operations Directorate before becoming a CTO. In March 2025, Sindelar received a Space Flight Awareness Program Honoree Award for her outstanding leadership in the Private Astronaut Mission (PAM) program, which is an important component of NASA’s strategy for enabling a robust and competitive commercial economy in low Earth orbit. As the lead CTO for the third PAM, Axiom Mission 3, Sindelar managed training while identifying critical inefficiencies, enhancing mission safety and performance. She spearheaded a key stakeholder retreat to streamline operations, reorganized training resources for improved accessibility, and implemented efficiency improvements that optimized mission support. Sindelar’s work was recognized during an award ceremony at NASA’s Kennedy Space Center in Florida, and she got to attend the launch of NASA’s SpaceX Crew-10 mission as a special guest.
In her 15 years with the agency, she has learned the importance of leading by example. “My team needs to see that I meet the bar I set,” she said. “Leading is about motivating your people so they are committed, not just compliant.”
Teresa Sindelar (front row, third from left) and her Space Medicine Operations crew training team with the crew members of Expedition 48.NASA Keeping a team motivated and on track is particularly important to training success and safety. “We only get a matter of months to train astronauts to do the most hazardous activities that humans have done, or to train flight controllers who literally have the mission and the lives of astronauts in their hands,” Sindelar said, adding that they cannot afford to have an unfocused or indifferent team.
Sindelar observed that Johnson’s training team is acutely aware of their responsibilities. “We live and work in the same communities as the crew members,” she said. “We see them at school functions, at the grocery store, at the park. We know their families are counting on us to bring their loved ones home safely.”
She has also learned that her voice matters. “When I was a young professional, I just never felt I could be influential, but the only person holding me back was me,” she said. “I had to learn to trust in my own instincts. That was definitely outside of my comfort zone.” She credits her mentors with helping her build confidence and knowing when and how to speak up. “I have had many giants of the spaceflight community mold and shape me in my career, from my counselors at the Cosmosphere all the way to flight directors and astronauts,” she said. “It is my privilege to learn from them, and I am grateful to each of them.”
Outside of work, Sindelar uses her voice in a different way – as part of her church choir. She also plays piano, stating that she is as passionate about music and volunteerism as she is about human spaceflight. She is a member of the Friendswood Volunteer Fire Department, as well, serving on its rehab team and as the department’s chaplain
Teresa Sindelar (second from right) and her family with a Friendswood Volunteer Fire Department fire engine. Image courtesy of Teresa Sindelar As NASA prepares to return humans to the Moon and journey on to Mars, Sindelar hopes she has taught the next generation of explorers enough so they can show the world the wonders of the universe. “This next generation will see and do things my generation never even thought of,” she said, adding that it is time for them to start leading. “Use your voice. Take care of each other along the way. Reach out and help the next one in line.”
Sindelar keeps a reminder of that important message on her desk: the picture Gen. Stafford signed all those years ago.
Explore More
3 min read NASA Aircraft, Sensor Technology, Aid in Texas Flood Recovery Efforts
Article 5 days ago 3 min read Aaisha Ali: From Marine Biology to the Artemis Control Room
Article 7 days ago 4 min read NASA Mission Monitoring Air Quality from Space Extended
Article 2 weeks ago View the full article
-
By Space Force
Chief of Space Operations Gen. Chance Saltzman traveled to Canada to attend the Royal Canadian Air Force Change of Command ceremony,
View the full article
-
By NASA
A black hole has blasted out a surprisingly powerful jet in the distant universe, according to a study from NASA’s Chandra X-ray Observatory.X-ray: NASA/CXC/CfA/J. Maithil et al.; Illustration: NASA/CXC/SAO/M. Weiss; Image Processing: NASA/CXC/SAO/N. Wolk A black hole has blasted out a surprisingly powerful jet in the distant universe, according to a new study from NASA’s Chandra X-ray Observatory and discussed in our latest press release. This jet exists early enough in the cosmos that it is being illuminated by the leftover glow from the big bang itself.
Astronomers used Chandra and the Karl G. Jansky Very Large Array (VLA) to study this black hole and its jet at a period they call “cosmic noon,” which occurred about three billion years after the universe began. During this time most galaxies and supermassive black holes were growing faster than at any other time during the history of the universe.
The main graphic is an artist’s illustration showing material in a disk that is falling towards a supermassive black hole. A jet is blasting away from the black hole towards the upper right, as Chandra detected in the new study. The black hole is located 11.6 billion light-years from Earth when the cosmic microwave background (CMB), the leftover glow from the big bang, was much denser than it is now. As the electrons in the jets fly away from the black hole, they move through the sea of CMB radiation and collide with microwave photons. These collisions boost the energy of the photons up into the X-ray band (purple and white), allowing them to be detected by Chandra even at this great distance, which is shown in the inset.
Researchers, in fact, identified and then confirmed the existence of two different black holes with jets over 300,000 light-years long. The two black holes are 11.6 billion and 11.7 billion light-years away from Earth, respectively. Particles in one jet are moving at between 95% and 99% of the speed of light (called J1405+0415) and in the other at between 92% and 98% of the speed of light (J1610+1811). The jet from J1610+1811 is remarkably powerful, carrying roughly half as much energy as the intense light from hot gas orbiting the black hole.
The team was able to detect these jets despite their great distances and small separation from the bright, growing supermassive black holes — known as “quasars” — because of Chandra’s sharp X-ray vision, and because the CMB was much denser then than it is now, enhancing the energy boost described above.
When quasar jets approach the speed of light, Einstein’s theory of special relativity creates a dramatic brightening effect. Jets aimed toward Earth appear much brighter than those pointed away. The same brightness astronomers observe can come from vastly different combinations of speed and viewing angle. A jet racing at near-light speed but angled away from us can appear just as bright as a slower jet pointed directly at Earth.
The researchers developed a novel statistical method that finally cracked this challenge of separating effects of speed and of viewing angle. Their approach recognizes a fundamental bias: astronomers are more likely to discover jets pointed toward Earth simply because relativistic effects make them appear brightest. They incorporated this bias using a modified probability distribution, which accounts for how jets oriented at different angles are detected in surveys.
Their method works by first using the physics of how jet particles scatter the CMB to determine the relationship between jet speed and viewing angle. Then, instead of assuming all angles are equally likely, they apply the relativistic selection effect: jets beamed toward us (smaller angles) are overrepresented in our catalogs. By running ten thousand simulations that match this biased distribution to their physical model, they could finally determine the most probable viewing angles: about 9 degrees for J1405+0415 and 11 degrees for J1610+1811.
These results were presented by Jaya Maithil (Center for Astrophysics | Harvard & Smithsonian) at the 246th meeting of the American Astronomical Society in Anchorage, AK, and are also being published in The Astrophysical Journal. A preprint is available here. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release is supported by an artist’s illustration of a jet blasting away from a supermassive black hole.
The black hole sits near the center of the illustration. It resembles a black marble with a fine yellow outline. Surrounding the black hole is a swirling disk, resembling a dinner plate tilted to face our upper right. This disk comprises concentric rings of fiery swirls, dark orange near the outer edge, and bright yellow near the core.
Shooting out of the black hole are two streaky beams of silver and pale violet. One bright beam shoots up toward our upper right, and a second somewhat dimmer beam shoots in the opposite direction, down toward our lower left. These beams are encircled by long, fine, corkscrewing lines that resemble stretched springs.
This black hole is located 11.6 billion light-years from Earth, much earlier in the history of the universe. Near this black hole, the leftover glow from the big bang, known as the cosmic microwave background or CMB, is much denser than it is now. As the electrons in the jets blast away from the black hole, they move through the sea of CMB radiation. The electrons boost the energies of the CMB light into the X-ray band, allowing the jets to be detected by Chandra, even at this great distance.
Inset at our upper righthand corner is an X-ray image depicting this interaction. Here, a bright white circle is ringed with a band of glowing purple energy. The jet is the faint purple line shooting off that ring, aimed toward our upper right, with a blob of purple energy at its tip.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Earth scientist Compton J. Tucker has been elected to the National Academy of Sciences for his work creating innovative tools to track the planet’s changing vegetation from space. It’s research that has spanned nearly 50 years at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, where he is a visiting scientist after retiring in March.
Tucker’s research began with identifying wavelengths of light that are absorbed or reflected as plants undergo photosynthesis, and has evolved into calculating the health and productivity of vegetation over time with satellites.
“I’m honored and surprised,” Tucker said of his election. “There were opportunities at the Goddard Space Flight Center that have enabled this work that couldn’t be found elsewhere. There were people who built satellites, who understood satellite data, and had the computer code to process it. All the work I’ve done has been part of a team, with other people contributing in different ways. Working at NASA is a team effort of science and discovery that’s fun and intellectually rewarding.”
Earth scientist Compton Tucker, who has studied remote sensing of vegetation at NASA Goddard for 50 years, has been elected to the National Academy of Sciences.Courtesy Compton Tucker Tucker earned his master’s and doctoral degrees from Colorado State University, where he worked on a National Science Foundation-funded project analyzing spectrometer data of grassland ecosystems. In 1975, he came to NASA Goddard as a postdoctoral fellow and used what he learned in his graduate work to modify the imager on National Oceanic and Atmospheric Administration (NOAA) meteorological satellites and modify Landsat’s thematic mapper instrument.
He became a civil servant at the agency in 1977, and continued work with radiometers to study vegetation – first with handheld devices, then with NOAA’s Advanced Very High Resolution Radiometer satellite instruments. He has also used data from Landsat satellites, Moderate Resolution Imaging Spectroradiometer instruments, and commercial satellites. His scientific papers have been cited 100,000 times, and one of his recent studies mapped 10 billion individual trees across Africa’s drylands to inventory carbon storage at the tree level.
“The impact of Compton Tucker’s work over the last half-century at Goddard is incredible,” said Dalia Kirschbaum, director of the Earth Sciences Division at NASA Goddard. “Among his many achievements, he essentially developed the technique of using satellites to study photosynthesis from plants, which people have used to monitor droughts, forecast crop shortages, defeat the desert locust, and even predict disease outbreaks. This is a well-deserved honor.”
Goddard scientist Compton Tucker’s work using remote sensing instruments to study vegetation involved field work in Iceland in 1976, left, graduate student research at Colorado State University in the early 1970s, top right, and analyzing satellite data stored on tape reels at Goddard.Courtesy Compton Tucker The National Academy of Sciences was proposed by Abraham Lincoln and established by Congress in 1863, charged with advising the United States on science and technology. Each year, up to 120 new members are elected “in recognition of their distinguished and continuing achievements in original research,” according to the organization.
In addition his role as a visiting scientist at Goddard, Tucker is also an adjunct professor at the University of Maryland and a consulting scholar at the University of Pennsylvania’s University Museum. He was awarded the National Air and Space Collins Trophy for Current Achievement in 1993 and the Vega Medal by the Swedish Society of Anthropology and Geography in 2014. He is a fellow of the American Association for the Advancement of Science and the American Geophysical Union, and won the Senior Executive Service Presidential Rank Award for Meritorious Service in 2017, among other honors.
By Kate Ramsayer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jun 05, 2025 EditorErica McNameeContactKate D. Ramsayerkate.d.ramsayer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
Goddard Space Flight Center Earth General Landsat Moderate Resolution Imaging Spectroradiometer (MODIS) View the full article
-
By Space Force
Chief Master Sergeant of the Space Force, John Bentivegna, visited Buckley Space Force Base, Colo., on May 27, 2025.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.