Members Can Post Anonymously On This Site
The 2024 FAA Data Challenge
-
Similar Topics
-
By NASA
5 min read
How NASA Science Data Defends Earth from Asteroids
Artist’s impression of NASA’s DART mission, which collided with the asteroid Dimorphos in 2022 to test planetary defense techniques. Open science data practices help researchers identify asteroids that pose a hazard to Earth, opening the possibility for deflection should an impact threat be identified. NASA/Johns Hopkins APL/Steve Gribben The asteroid 2024 YR4 made headlines in February with the news that it had a chance of hitting Earth on Dec. 22, 2032, as determined by an analysis from NASA’s Center for Near Earth Object Studies (CNEOS) at the agency’s Jet Propulsion Laboratory in Southern California. The probability of collision peaked at over 3% on Feb. 18 — the highest ever recorded for an object of its size. This sparked concerns about the damage the asteroid might do should it hit Earth.
New data collected in the following days lowered the probability to well under 1%, and 2024 YR4 is no longer considered a potential Earth impactor. However, the event underscored the importance of surveying asteroid populations to reveal possible threats to Earth. Sharing scientific data widely allows scientists to determine the risk posed by the near-Earth asteroid population and increases the chances of identifying future asteroid impact hazards in NASA science data.
“The planetary defense community realizes the value of making data products available to everyone,” said James “Gerbs” Bauer, the principal investigator for NASA’s Planetary Data System Small Bodies Node at the University of Maryland in College Park, Maryland.
How Scientists Spot Asteroids That Could Hit Earth
Professional scientists and citizen scientists worldwide play a role in tracking asteroids. The Minor Planet Center, which is housed at the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, collects and verifies vast numbers of asteroid and comet position observations submitted from around the globe. NASA’s Small Bodies Node distributes the data from the Minor Planet Center for anyone who wants to access and use it.
A near-Earth object (NEO) is an asteroid or comet whose orbit brings it within 120 million miles of the Sun, which means it can circulate through Earth’s orbital neighborhood. If a newly discovered object looks like it might be an NEO, information about the object appears on the Minor Planet Center’s NEO Confirmation Page. Members of the planetary science community, whether or not they are professional scientists, are encouraged to follow up on these objects to discover where they’re heading.
The asteroid 2024 YR4 as viewed on January 27, 2025. The image was taken by the Magdalena Ridge 2.4m telescope, one of the largest telescopes in NASA’s Planetary Defense network. Asteroid position information from observations such as this one are shared through the Minor Planet Center and NASA’s Small Bodies Node to help scientists pinpoint the chances of asteroids colliding with Earth. NASA/Magdalena Ridge 2.4m telescope/New Mexico Institute of Technology/Ryan When an asteroid’s trajectory looks concerning, CNEOS alerts NASA’s Planetary Defense Coordination Office at NASA Headquarters in Washington, which manages NASA’s ongoing effort to protect Earth from dangerous asteroids. NASA’s Planetary Defense Coordination Office also coordinates the International Asteroid Warning Network (IAWN), which is the worldwide collaboration of asteroid observers and modelers.
Orbit analysis centers such as CNEOS perform finer calculations to nail down the probability of an asteroid colliding with Earth. The open nature of the data allows the community to collaborate and compare, ensuring the most accurate determinations possible.
How NASA Discovered Risks of Asteroid 2024 YR4
The asteroid 2024 YR4 was initially discovered by the NASA-funded ATLAS (Asteroid Terrestrial-impact Last Alert System) survey, which aims to discover potentially hazardous asteroids. Scientists studied additional data about the asteroid from different observatories funded by NASA and from other telescopes across the IAWN.
At first, 2024 YR4 had a broad uncertainty in its future trajectory that passed over Earth. As the planetary defense community collected more observations, the range of possibilities for the asteroid’s future position on Dec. 22, 2032 clustered over Earth, raising the apparent chances of collision. However, with the addition of even more data points, the cluster of possibilities eventually moved off Earth.
This visualization from NASA’s Center for Near Earth Object Studies shows the evolution of the risk corridor for asteroid 2024 YR4, using data from observations made up to Feb. 23, 2025. Each yellow dot represents the asteroid’s possible location on Dec. 22, 2032. As the range of possible locations narrowed, the dots at first converged on Earth, before skewing away harmlessly. NASA/JPL/CNEOS Having multiple streams of data available for analysis helps scientists quickly learn more about NEOs. This sometimes involves using data from observatories that are mainly used for astrophysics or heliophysics surveys, rather than for tracking asteroids.
“The planetary defense community both benefits from and is beneficial to the larger planetary and astronomy related ecosystem,” said Bauer, who is also a research professor in the Department of Astronomy at the University of Maryland. “Much of the NEO survey data can also be used for searching astrophysical transients like supernova events. Likewise, astrophysical sky surveys produce data of interest to the planetary defense community.”
How Does NASA Stop Asteroids From Hitting Earth?
In 2022, NASA’s DART (Double Asteroid Redirection Test) mission successfully impacted with the asteroid Dimorphos, shortening the time it takes to orbit around its companion asteroid Didymos by 33 minutes. Didymos had no chance of hitting Earth, but the DART mission’s success means that NASA has a tested technique to consider when addressing a future asteroid potential impact threat.
Artist’s impression of NASA’s upcoming NEO Surveyor mission, which will search for potentially hazardous near-Earth objects. The mission will follow open data practices to improve the chances of identifying dangerous asteroids. NASA/JPL-Caltech To increase the chances of discovering asteroid threats to Earth well in advance, NASA is working on a new space-based observatory, NEO Surveyor, which will be the first spacecraft specifically designed to look for asteroids and comets that pose a hazard to Earth. The mission is expected to launch in the fall of 2027, and the data it collects will be available to everyone through NASA archives.
“Many of the NEOs that pose a risk to Earth remain to be found,” Bauer said. “An asteroid impact has a very low likelihood at any given time, but consequences could be high, and open science is an important component to being vigilant.”
For more information about NASA’s approach to sharing science data, visit:
https://science.nasa.gov/open-science.
By Lauren Leese
Web Content Strategist for the Office of the Chief Science Data Officer
Share
Details
Last Updated Apr 10, 2025 Related Terms
Open Science Planetary Defense Explore More
2 min read Citizen Scientists Use NASA Open Science Data to Research Life in Space
Article
1 week ago
5 min read Old Missions, New Discoveries: NASA’s Data Archives Accelerate Science
Article
1 week ago
3 min read NASA Open Data Turns Science Into Art
Article
1 month ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Explore This Section Science Science Activation NASA Science Supports Data… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read
NASA Science Supports Data Literacy for K-12 Students
Data – and our ability to understand and use it – shapes nearly every aspect of our world, from decisions in our lives to the skills we need in the workplace and more. All of us, as either producers or consumers of data, will experience how it can be used to problem-solve and think critically as we navigate the world around us. For that reason, Data Science has become an increasingly essential and growing field that combines the collection, organization, analysis, interpretation, and sharing of data in virtually every area of life. As more data become more openly available, our Data Science skills will be of increasing importance. And yet, there is a widening gap between what students learn in school and the skills they will need to succeed in a data-driven world. The integration of Data Science into K-12 education opens doors to higher education, high-paying careers, and empowering learners to eventually participate in the creation of new knowledge and understanding of our world, and at least 29 states have reported some level of data science implementation at the K-12 level, including standard or framework adoption, course piloting, and educator professional learning.
In February 2025, the first-ever Data Science Education K-12: Research to Practice Conference (DS4E) took place in San Antonio, TX. A number of representatives from NASA’s Science Activation program and other NASA partners attended and presented along with over 250 educators, researchers, and school leaders from across the nation. Science Activation projects share a passion for helping people of all ages and backgrounds connect with NASA science experts, content, experiences, and learning resources, and the AEROKATS & ROVER Education Network (AREN); Place-Based Learning to Advance Connections, Education, and Stewardship (PLACES); Global Learning and Observations to Benefit the Environment (GLOBE) Mission Earth; and My NASA Data teams did just that. Their presentations at the conference included:
“BYOD – Build or Bring Your Own Data: Developing K-12 Datasets” (PLACES) “Using NASA Data Resources as a Tool to Support Storytelling with Data in K-12 Education” (My NASA Data) “Place-Based Data Literacy: Real People, Real Places, Real Data” (AREN) Conference participants expressed interest in learning more about NASA assets, including data and subject matter experts. Stemming from their participation in this first DS4E, several Science Activation teams are collaborating to potentially host regional events next year under the umbrella of this effort (PLACES in particular), a wonderful example of how Science Activation project teams help lead the charge in the advancement of key Science, Technology, Education, and Mathematics (STEM) fields, such as Data Science, to activate minds and promote a deeper understanding of our world and beyond.
Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
Data Science Education K-12 Research to Practice Conference Share
Details
Last Updated Apr 09, 2025 Editor NASA Science Editorial Team Related Terms
Science Activation Earth Science Grades 5 – 8 for Educators Grades 9-12 for Educators Grades K – 4 for Educators Opportunities For Educators to Get Involved Opportunities For Researchers to Get Involved Explore More
3 min read Findings from the Field: A Research Symposium for Student Scientists
Article
1 day ago
34 min read Style Guidelines for ‘The Earth Observer’ Newsletter
Article
1 day ago
5 min read Connected Learning Ecosystems: Educators Gather to Empower Learners and Themselves
Article
2 days ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
NASA has selected 12 student teams to develop solutions for storing and transferring the super-cold liquid propellants needed for future long-term exploration beyond Earth orbit.
The agency’s 2025 Human Lander Challenge is designed to inspire and engage the next generation of engineers and scientists as NASA and its partners prepare to send astronauts to the Moon through the Artemis campaign in preparation for future missions to Mars. The commercial human landing systems will serve as the primary mode of transportation that will safely take astronauts and, later, large cargo from lunar orbit to the surface of the Moon and back.
For its second year, the competition invites university students and their faculty advisors to develop innovative, “cooler” solutions for in-space cryogenic, or super cold, liquid propellant storage and transfer systems. These cryogenic fluids, like liquid hydrogen or liquid oxygen, must stay extremely cold to remain in a liquid state, and the ability to effectively store and transfer them in space will be increasingly vital for future long-duration missions. Current technology allows cryogenic liquids to be stored for a relatively short amount of time, but future missions will require these systems to function effectively over several hours, weeks, and even months.
The 12 selected finalists have been awarded a $9,250 development stipend to further develop their concepts in preparation for the next stage of the competition.
The 2025 Human Lander Challenge finalist teams are:
California State Polytechnic University, Pomona, “THERMOSPRING: Thermal Exchange Reduction Mechanism using Optimized SPRING” Colorado School of Mines, “MAST: Modular Adaptive Support Technology” Embry-Riddle Aeronautical University, “Electrical Capacitance to High-resolution Observation (ECHO)” Jacksonville University, “Cryogenic Complex: Cryogenic Tanks and Storage Systems – on the Moon and Cislunar Orbit” Jacksonville University, “Cryogenic Fuel Storage and Transfer: The Human Interface – Monitoring and Mitigating Risks” Massachusetts Institute of Technology, “THERMOS: Translunar Heat Rejection and Mixing for Orbital Sustainability” Old Dominion University, “Structural Tensegrity for Optimized Retention in Microgravity (STORM)” Texas A&M University, “Next-generation Cryogenic Transfer and Autonomous Refueling (NeCTAR)” The College of New Jersey, “Cryogenic Orbital Siphoning System (CROSS)” The Ohio State University, “Autonomous Magnetized Cryo-Couplers with Active Alignment Control for Propellant Transfer (AMCC-AAC) University of Illinois, Urbana-Champaign, “Efficient Cryogenic Low Invasive Propellant Supply Exchange (ECLIPSE)” Washington State University, “CRYPRESS Coupler for Liquid Hydrogen Transfer” Finalist teams will now work to submit a technical paper further detailing their concepts. They will present their work to a panel of NASA and industry judges at the 2025 Human Lander Competition Forum in Huntsville, Alabama, near NASA’s Marshall Space Flight Center, in June 2025. The top three placing teams will share a total prize purse of $18,000.
“By engaging college students in solving critical challenges in cryogenic fluid technologies and systems-level solutions, NASA fosters a collaborative environment where academic research meets practical application,” said Tiffany Russell Lockett, office manager for the Human Landing System Mission Systems Management Office at NASA Marshall. “This partnership not only accelerates cryogenics technology development but also prepares the Artemis Generation – the next generation of engineers and scientists – to drive future breakthroughs in spaceflight.”
NASA’s Human Lander Challenge is sponsored by the agency’s Human Landing System Program within the Exploration Systems Development Mission Directorate and managed by the National Institute of Aerospace.
For more information on NASA’s 2025 Human Lander Challenge, including team progress, visit the challenge website.
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
View the full article
-
By NASA
13 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Getty Images University Student Research Challenge (USRC) seeks to challenge students to propose new ideas/concepts that are relevant to NASA Aeronautics. USRC will provide students, from accredited U.S. colleges or universities, with grants for their projects and with the challenge of raising cost share funds through a crowdfunding campaign. The process of creating and implementing a crowdfunding campaign acts as a teaching accelerator – requiring students to act like entrepreneurs and raise awareness about their research among the public.
The solicitation goal can be accomplished through project ideas such as advancing the design, developing technology or capabilities in support of aviation, by demonstrating a novel concept, or enabling advancement of aeronautics-related technologies.
Eligibility: NASA funding is available to all accredited U.S. institutions of higher education (e.g. universities, four-year colleges, community colleges, or other two-year institutions). Students must be currently enrolled (part-time or full-time) at the institution. NASA has no set expectations as to the team size. The number of students participating in the investigation is to be determined by the scope of the project and the student Team Leader.
The USRC solicitation is currently Closed with Proposals next due June 26, 2025. Please visit NSPIRES to receive alerts when more information is available.
A USRC Q&A/Info Session and Proposal Workshop will be held May 12, 2025, at 2pm ET ahead of the USRC Submission deadline in June 2025. Join the Q&A
Please email us at HQ-USRC@mail.nasa.gov if you have any questions or to schedule a 1 on 1.
USRC Awards
Context-Aware Cybersecurity for UAS Traffic Management (Texas A&M University)
Developing, testing, and pursuing transition of an aviation-context-aware network authentication and segmentation function, which holistically manages cyber threats in future UAS traffic control systems.
Student Team: Vishwam Raval (Team Lead), Michael Ades, Garett Haynes, Sarah Lee, Kevin Lei, Oscar Leon, McKenna Smith, Nhan Nick Truong
Faculty Mentors: Jaewon Kim and Sandip Roy
Selected: 2025
Reconnaissance and Emergency Aircraft for Critical Hurricane Relief (North Carolina State University)
Developing and deploying advanced unmanned aerial systems designed to locate, communicate with, and deliver critical supplies to stranded individuals in the wake of natural disasters.
Student Team: Tobias Hullette (Team Lead), Jose Vizcarrondo, Rishi Ghosh, Caleb Gobel, Lucas Nicol, Ajay Pandya, Paul Randolph, Hadie Sabbah
Faculty Mentor: Felix Ewere
Selected: 2025
Design and Prototyping of a 9-phase Dual-Rotor Motor for Supersonic Electric Turbofan (Colorado School of Mines)
Designing and prototyping a scaled-down 9-phase dual-rotor motor (DRM) for a supersonic electric turbofan.
Student Team: Mahzad Gholamian (Team Lead), Garret Reader, Mykola Mazur, Mirali Seyedrezaei
Faculty Mentor: Omid Beik
Selected: 2024
Project F.I.R.E (Fire Intervention Retardant Expeller) (Cerritos Community College)
Mitigating wildfires with drone released fire retardant pellets.
Student Team: Angel Ortega Barrera (Team Lead), Larisa Mayoral, Paola Mayoral Jimenez, Jenny Rodriguez, Logan Stahl, Juan Villa
Faculty Mentor: Janet McLarty-Schroeder
Selected: 2024
Learning cooperative policies for adaptive human-drone teaming in shared airspace (Cornell University)
Enabling new coordination and communication models for smoother, more efficient, and robust air traffic flow.
Student Team: Mehrnaz Sabet (Team Lead), Aaron Babu, Marcus Lee, Joshua Park, Francis Pham, Owen Sorber, Roopak Srinivasan, Austin Zhao
Faculty Mentor: Sanjiban Choudhury, Susan Fussell
Selected: 2024
Crowdfunding Website
Investigation on Cryogenic Fluid Chill-Down Time for Supersonic Transport Usage (University of Washington, Seattle)
Investigating reducing the boil-off of cryogenic fluids in pipes using vortex generators.
Student Team: Ryan Fidelis (Team Lead), Alexander Ala, Kaleb Shaw
Faculty Mentor: Fiona Spencer, Robert Breidenthal
Selected: 2024
Crowdfunding Website
Web Article: “Students win NASA grant to develop AI for safer aerial traffic“
Clean Forever-Flying Drones: Utilizing Ocean Water for Hydrogen Extraction in Climate Monitoring (Purdue University)
An ocean-based fueling station and a survey drone that can refuel in remote areas.
Student Team: Holman Lau (Team Lead), Nikolai Baranov, Andrej Damjanov, Chloe Hardesty, Smit Kapadia
Faculty Mentor: Li Qiao
Selected: 2023
Crowdfunding Website
Intelligent drone for detection of people during emergency response operation (Louisiana State University and A&M College)
Using machine learning algorithms for images and audio data, integrated with gas sensing for real-time detection of people on UAS.
Student Team: Jones Essuman (Team Lead), Tonmoy Sarker, Samer Tahboub
Faculty Mentor: Xiangyu Meng
Selected: 2023
Crowdfunding Website
Advancing Aerospace Materials Design through High-Fidelity Computational Peridynamic Modeling and Modified SVET Validation of Corrosion Damage (California State University, Channel Islands)
Modeling electrochemical corrosion nonlocally and combining efforts from bond-based and state-based theory.
Student Team: Trent Ruiz (Team Lead), Isaac Cisneros, Curtis Hauck
Faculty Mentor: Cynthia Flores
Selected: 2023
Crowdfunding Website
Swarm Micro UAVs for Area Mapping in GPS-denied Areas (Embry-Riddle Aeronautical University)
Using swarm robotics to map complex environments and harsh terrain with Micro Aerial Vehicles (MAVs)
Student Team: Daniel Golan (Team Lead), Stanlie Cerda-Cruz, Kyle Fox, Bryan Gonzalez, Ethan Thomas
Faculty Mentor: Sergey V. Drakunov
Selected: 2023
Crowdfunding Website
Web Article: “Student Research on Drone Swarm Mapping Selected to Compete at NASA Challenge“
AeroFeathers—Feathered Airfoils Inspired by the Quiet Flight of Owls (Michigan Tech University)
Creating new propeller blades and fixed wing design concepts that mimic the features of an
owl feather and provide substantial noise reduction benefits.
Student Team: William Johnston (Team Lead), Pulitha Godakawela Kankanamalage, Amulya Lomte, Maria Jose Carrillo Munoz, Brittany Wojciechowski, Laura Paige Nobles, Gabrielle Mathews
Faculty Mentor: Bhisham Sharma
Selected: 2023
Crowdfunding Website
Laser Energized Aerial Drone System (LEADS) for Sustained Sensing Applications (Michigan State University)
Laser based, high-efficiency optical power transfer for UAV charging for sustained flight and monitoring.
Student Team: Gavin Gardner (Team Lead), Ryan Atkinson, Brady Berg, Ross Davis, Gryson Gardner, Malachi Keener, Nicholas Michaels
Faculty Mentor: Woongkul Lee
Selected: 2023
Crowdfunding Website
LEADS team Website
UAM Contingency Diagnosis Toolkit (Ohio State University)
A UAM contingency diagnosis toolkit which that includes cognitive work requirements (CWRs) for human operators, information sharing requirements, and representational designs.
Student Team: Connor Kannally (Team Lead), Izzy Furl, Luke McSherry, Abhinay Paladugu
Faculty Mentor: Martijn IJtsma
Selected: 2023
Crowdfunding Website
Project Website
Web Article: “NASA Awards $80K to Ohio State students through University Research Challenge“
Hybrid Quadplane Search and Rescue Missions (NC A&T University)
An autonomous search and rescue quadplane UAS supported by an unmanned mobile landing platform/recharge station ground vehicle.
Student Team: Luis Landivar Olmos (Team Lead), Dakota Price, Amilia Schimmel, Sean Tisdale
Faculty Mentor: A. Homaifar
Selected: 2023
Crowdfunding Website
Drone Based Water Sampling and Quality Testing – Special Application in the Raritan River (Rutgers University, New Brunswick)
An autonomous water sampling drone system.
Student Team: Michael Leitner (Team Lead), Xavier Garay, Mohamed Haroun, Ruchit Jathania, Caleb Lippe, Zachary Smolder, Chi Hin Tam
Faculty Mentor: Onur Bilgen
Selected: 2023
Crowdfunding Website
Project Website
Development of a Low-Cost Open-Source Wire Arc Additive Manufacturing Machine – Arc One (Case Western Reserve University)
A small-scale, modular, low-cost, and open-source Wire Arc Additive Manufacturing (WAAM) platform.
Student Team: Vishnushankar Viraliyur Ramasamy (Team Lead), Robert Carlstrom, Bathlomew Ebika, Jonathan Fu, Anthony Lino, Garrett Tieng
Faculty Mentor: John Lewandowski
Selected: 2023
Crowdfunding Website
Web Article: “PhD student wins funding from NASA and develops multidisciplinary team of undergraduate students to build novel machine“
Low Cost and Efficient eVTOL Platform Leveraging Opensource for Accessibility (University of Nevada, Las Vegas)
Lowering the barrier of entry into eVTOL deployment and development with a low cost, efficient, and open source eVTOL platform
Student Team: Martin Arguelles-Perez (Team Lead), Benjamin Bishop, Isabella Laurito, Genaro Marcial Lorza, Eman Yonis
Faculty Mentor: Venkatesan Muthukumar
Selected: 2022
Applying Space-Based Estimation Techniques to Drones in GPS-Denied Environments (University Of Texas, Austin)
Taking real-time inputs from flying drones and outputting an accurate state estimation with 3-D error ellipsoid visualization
Student Team: James Mitchell Roberts (Team Lead), Lauren Byram, Melissa Pires
Faculty Mentor: Adam Nokes
Selected: 2022
Crowdfunding Website
Project Website
Web Article: “GPS-free Drone Tech Proposal Lands Undergrads Spot in NASA Challenge“
Underwing Distributed Ducted Fan ‘FanFoil’ Concept for Transformational Aerodynamic and Aeroacoustic Performance (Texas Tech University, Lubbock)
Novel highly under-cambered airfoils with electric ducted fans featuring ’samara’ maple seed inspired blades for eVTOL application
Student Team: Jack Hicks (Team Lead), Harrison Childre, Guilherme Fernandes, David Gould, Lorne Greene, Muhammad Waleed Saleem, Nathan Shapiro
Faculty Mentor: Victor Maldonado
Selected: 2022
Crowdfunding Website
Web Articles: “Improving Ducted-Fan eVTOL Efficiency” (AvWeek), “Sky Taxies“
Urban Cargo Delivery Using eVTOL Aircrafts (University Of Illinois, Chicago)
A bi-objective optimization formulation minimizing total run costs of a two-leg cargo delivery system and community noise exposure to eVTOL operations
Student Team: Nahid Parvez Farazi (Team Lead), Amy Hofstra, Son Nguyen
Faculty Mentor: Bo Zou
Selected: 2022
Crowdfunding Website
Web Article: “PhD student awarded NASA grant to investigate urban cargo delivery systems“
Congestion Aware Path Planning for Optimal UAS Traffic Management (University Of Illinois, Urbana-Champaign)
A feasible, provably safe, and quantifiably optimal path planning framework considering fully autonomous UAVs in urban environments
Student Team: Minjun Sung (Team Lead), Christoph Aoun, Ivy Fei, Christophe Hiltebrandt-McIntosh, Sambhu Harimanas Karumanchi, Ran Tao
Faculty Mentor: Naira Hovakimyan
Selected: 2022
Crowdfunding Website
Web Article: “NASA funds UAV traffic management research“
AeroZepp: Aerostat Enabled Drone Glider Delivery System / Whisper Ascent: Quiet Drone Delivery (University of Delaware)
An aerostat enabled low-energy UAV payload delivery system
Student Team: Wesley Connor (Team Lead), Abubakarr Bah, Karlens Senatus
Faculty Mentor: Suresh Advani
Selected: 2022
Crowdfunding Website
Sustainable Transport Research Aircraft for Test Operation (STRATO) (Rutgers University, New Brunswick)
An open source, efficiently driven, optimized Active Flow Control (AFC) enhanced control surface for UAV research platforms
Student Team: Daulton James (Team Lead), Jean Alvarez, Frederick Diaz, Michael Ferrell, Shriya Khera, Connor Magee, Roy Monge Hidalgo, Bertrand Smith
Faculty Mentor: Edward DeMauro
Selected: 2022
Crowdfunding Website
Web Articles: “SoE Students Eligible for NASA University Student Research Challenge Award“, “Senior Design Team Captures NASA Research Challenge“
A recorded STRATO USRC Tech Talk
Dronehook: A Novel Fixed-Wing Package Retrieval System (University Of Notre Dame)
Envisioning a world where items can be retrieved from remote locations in a simple fashion from efficient fixed-wing UAVs
Student Team: Konrad Rozanski (Team Lead), Dillon Coffey, Bruce Smith, Nicholas Orr
Faculty Mentor: Jane Cleland-Huang
Selected: 2021
Crowdfunding Website
Web Article: “Notre Dame student team wins NASA research award for drone scoop and grab technology“
Aerial Intra-city Delivery Electric Drones (AIDED) with High Payload Capacity (Michigan State University)
A high-payload capacity delivery drone capable of safely latching and charging on electrified public transportation systems
Student Team: Yuchen Wang (Team Lead), Hunter Carmack, Kindred Griffis, Luke Lewallen, Scott Newhard, Caroline Nicholas, Shukai Wang, Kyle White
Faculty Mentor: Woongkul Lee
Selected: 2021
AIDED Crowdfunding Website
AIDED Project Website or Team Website
Web Articles: “Spartan Engineers win NASA research award” and “NASA Aeronautics amplification“; “Ross Davis & Gavin Gardner on The Guy Gordon Show“; “MSU Students Create Delivery Drone for NASA“; “Student drone project flying high with help from NASA“
A recorded USRC Tech Talk
Robotic Fabrication Work Cell for Customizable Unmanned Aerial Systems (Virginia Polytechnic Institute & State University)
A robotic, multi-process work cell to autonomously fabricate topologically optimized UASs tailored for immediate application needs
Student Team: Tadeusz Kosmal (Team Lead), Kieran Beaumont, Om Bhavsar, Eric Link, James Lowe
Faculty Mentor: Christopher Williams
Selected: 2021
Crowdfunding Website
RAV-FAB Project Website
Web Articles: “Drones that fly away from a 3D printer: Undergraduates create science nonfiction” and “3D printing breaks out of the box / VTx / Virginia Tech“
NASA VT USRC Web Article: “USRC Students Sees Success with Crowdfunding, NASA Grants“
Publication: Hybrid additive robotic workcell for autonomous fabrication of mechatronic systems – A case study of drone fabrication – ScienceDirect
Team Social Media: Instagram: @ravfab_vt; LinkedIn: @rav-fab; YouTube
View RAV-FAB USRC Tech Talk #1 or USRC Tech Talk #2
Real Time Quality Control in Additive Manufacturing Using In-Process Sensing and Machine Learning (Cornell University)
A high-precision and low-cost intelligent sensor-based quality control technology for Additive Manufacturing
Student Team: Adrita Dass (Team Lead), Talia Turnham, Benjamin Steeper, Chenxi Tian, Siddharth Patel, Akula Sai Pratyush, Selina Kirubakar
Faculty Mentor: Atieh Moridi
Selected: 2021
Crowdfunding Website
AMAS Project Website
Web Article: “Students win NASA challenge with 3D-printer smart sensor“
A recorded USRC Tech Talk on this topic
AVIATA: Autonomous Vehicle Infinite Time Apparatus (University of California, Los Angeles)
A drone swarm system capable of carrying a payload in the air indefinitely
Student Team: Chirag Singh (Team Lead), Ziyi Peng, Bhrugu Mallajosyula, Willy Teav, David Thorne, James Tseng, Eric Wong, Axel Malahieude, Ryan Nemiroff, Yuchen Yao, Lisa Foo
Faculty Mentor: Jeff Eldredge
Selected: 2020
Crowdfunding Website
AVIATA Project Website
A recorded USRC Tech Talk on AVIATA
The recorded poster session at the TACP Showcase 2021
Redundant Flight Control System for BVLOS UAV Operations (Embry-Riddle Aeronautical University)
A redundant flight control system as a “back-up” to the primary flight computer to enhance safety of sUAS
Student Team: Robert Moore (Team Lead), Joseph Ayd, and Todd Martin
Faculty Mentor: John Robbins
Selected: 2020
Crowdfunding Website
Web Articles: “NASA Web Article“; “Drone Innovation Top Embry-Riddle Entrepreneurship Competition“
Follow the team’s progress at: https://www.facebook.com/Assured Autonomy
A recorded USRC Tech Talk on this topic
The recorded poster session at the TACP Showcase 2021
Multi-Mode Hybrid Unmanned Delivery System: Combining Fixed-Wing and Multi-Rotor Aircraft with Ground Vehicles (Rutgers University)
Extending drone delivery distance with a multi-mode hybrid delivery system
Student Team: Paul Wang (Team Lead), Nolan Angelia, Muhammet Ali Gungor
Faculty Mentor: Onur Bilgen
Selected: 2020
Crowdfunding Website
A recorded USRC Tech Talk on this topic
The recorded poster session at the TACP Showcase 2021
AVIS: Active Vortex Inducing System for Flow Separation Control to Improve Airframe Efficiency (Georgia Institute of Technology)
Use an array of vortex generators that can be adjusted throughout flight to increase wing efficiency
Student Team: Michael Gamarnik (Team Lead), Shiva Khanna Yamamoto, Noah Mammen, Tommy Schrager, Bethe Newgent
Faculty Mentor: Kelly Griendling
Selected: 2020
Go to AVIS team site
A recorded USRC Tech Talk on AVIS
The recorded poster session at the TACP Showcase 2021
NASA Web Article
Hybrid Airplanes – An Optimum and Modular Approach (California Polytechnic State University, San Luis Obispo)
Model and test powertrain to maximize the efficiency of hybrid airplanes
Student Team: Nicholas Ogden (Team Lead), Joseph Shy, Brandon Bartlett, Ryker Bullis, Chino Cruz, Sara Entezar, Aaron Li, Zach Yamauchi
Faculty Mentor: Paulo Iscold
Selected: 2019
A recorded USRC Tech Talk on this topic
The recorded poster session at the TACP Showcase 2021
ATLAS Air Transportation (South Dakota State University)
A multipurpose, automated drone capable of comfortably lifting the weight of an average person
Student Team: Isaac Smithee (Team Lead), Wade Olson, Nicolas Runge, Ryan Twedt, Anthony Bachmeier, Matthew Berg, Sterling Berg
Faculty Mentors: Marco Ciarcia, Todd Letcher
Selected: 2019
A recorded USRC Tech Talk #1 and USRC Tech Talk #2 on ATLAS
The recorded poster session at the TACP Showcase 2021
Software-Defined GPS Augmentation Network for UAS Navigation (University Of Oklahoma, Norman)
A novel solution of enhanced GPS navigation for unmanned aerial vehicles
Student Team: Robert Rucker (Team Lead), Alex Zhang, Jakob Fusselman, Matthew GilliamMentors: Dr. Yan (Rockee) Zhang (Faculty Mentor), Dr Hernan Suarez (Team Technical Mentor)
Faculty Mentors: Marco Ciarcia, Todd Letcher
Selected: 2019
Crowdfunding Website
A recorded USRC Tech Talk on this topic
The recorded poster session at the TACP Showcase 2021
UAV Traffic Information Exchange Network (Purdue University)
A blockchain-inspired secure, scalable, distributed, and efficient communication framework to support large scale UAV operations
Student Team: Hsun Chao (Team Lead) and Apoorv Maheshwari
Faculty Mentors: Daniel DeLaurentis (Faculty Mentor), Shashank Tamaskar
Selected: 2018
Web Article: “Student-developed communication network for UAVs interests NASA“
The recorded poster session at the TACP Showcase 2021
University Student Research Challenge
University Leadership Initiative
University Innovation Project
Transformative Aeronautics Concepts Program
Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
4 min read NASA University Research Program Makes First Award to a Community College Project
Article 1 month ago 3 min read NASA Selects New Round of Student-Led Aviation Research Awards
Article 1 month ago 4 min read NASA Selects University Teams to Explore Innovative Aeronautical Research
Article 1 year ago Keep Exploring Discover More Topics From NASA
Missions
Humans In Space
Solar System Exploration
Follow Us on Social Media
Explore NASA’s History
Share
Details
Last Updated Apr 03, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
University Student Research Challenge View the full article
-
By European Space Agency
Image: This image shows Webb’s recent observation of the asteroid 2024 YR4 using both its Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI). Data from NIRCam shows reflected light, while the MIRI observations show thermal light.
On 8 March 2025, the NASA/ESA/CSA James Webb Space Telescope turned its watchful eye toward asteroid 2024 YR4, which we now know poses no significant threat to Earth in 2032 and beyond.
This is the smallest object targeted by Webb to date, and one of the smallest objects to have its size directly measured.
Observations were taken to study the thermal properties of 2024 YR4, including how quickly it heats up and cools down and how hot it is at its current distance from the Sun. These measurements indicate that this asteroid does not share properties observed in larger asteroids. This is likely a combination of its fast spin and lack of fine-grained sand on its surface. Further research is needed, however this is considered consistent with a surface dominated by rocks that are roughly fist-sized or larger.
Asteroid 2024 YR4 was recently under close watch by the team at ESA's Near Earth Objects Coordination Centre, located in Italy. Planetary defence experts from the Agency's Space Safety programme worked with NASA and the international asteroid community to closely watch this object and refine its orbit, which was eventually determined to not pose a risk of Earth impact. Read details on this unusual campaign via ESA's Rocket Science blog and in news articles here and here.
Webb’s observations indicate that the asteroid measures roughly 60 meters (comparable to the height of a 15-story building).
The new observations from Webb not only provide unique information about 2024 YR4’s size, but can also complement ground-based observations of the object's position to help improve our understanding of the object’s orbit and future trajectory.
Note: This post highlights data from Webb science in progress, which has not yet been through the peer-review process.
[Image description: A collage of three images showing the black expanse of space. Two-thirds of the collage is taken up by the black background sprinkled with small, blurry galaxies in orange, blue, and white. There are two images in a column at the right side of the collage. On the right side of the main image, not far from the top, a very faint dot is outlined with a white square. At the right, there are two zoomed in views of this area. The top box is labeled NIRCam and shows a fuzzy dot at the center of the inset. The bottom box is labeled MIRI and shows a fuzzy pinkish dot.]
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.