Jump to content

Pioneering Research for Early Prediction of Alzheimer’s and Related Dementias EUREKA Challenge


Recommended Posts

  • Publishers
Posted
Group of people in silhouette with a lightbulb hovering above them to symbolize a great idea coming from a team of solvers.

The National Institute on Aging (NIA), a component of the National Institutes of Health (NIH) seeks to stimulate the use of data resources with appropriate sample diversity, including data relevant to under-resourced, underserved communities disproportionately burdened by AD/ADRD. For example, for Asian, Black, or Hispanic older adults, the protein amyloid – which has long been considered a biomarker for AD – might have a smaller role in determining cognitive impairment than other factors such as co-occurring chronic medical conditions (hypertension, diabetes) and sociodemographic and systemic factors, each of which has been found to contribute to racial and ethnic disparities in dementia diagnoses (below; Wilkins et al., 2022). This highlights the importance of also identifying novel (non-amyloid, non-tau) biomarkers and non-biological (e.g., social determinants of health) predictors in adults from underrepresented racial and ethnic groups (Dark and Walker, 2022). The goal is to inform novel approaches to early detection that might ultimately lead to more accurate tests, tools, and methodologies for clinical and research purposes.

Government Agency: National Institutes of Health

Award: Phase 1: $200,000; Phase 2: $250,000; Phase 3: $200,000

Open Date: Phase 1: September 2023; Phase 2: September 2024; Phase 3: September 2025

Close date: Phase 1: January 2024; Phase 2: TBD; Phase 3: TBD

For more information, visit: https://www.drivendata.org/competitions/group/nih-nia-alzheimers-adrd-competition/

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s SpaceX 32nd commercial resupply services mission, scheduled to lift off from the agency’s Kennedy Space Center in April, is heading to the International Space Station with experiments that include research on whether plant DNA responses in space correlate to human aging and disease, and measuring the precise effects of gravity on time.  
      Discover more details about the two experiments’ potential impacts on space exploration and how they can enhance life on Earth: 
      “Second Guessing” Time in Space 
      As outlined in Einstein’s general theory of relativity, how we experience the passage of time is influenced by gravity. However, there is strong evidence to believe this theory may not be complete and that there are unknown forces at play. These new physics effects may manifest themselves in small deviations from Einstein’s prediction.  
      The ACES (Atomic Clock Ensemble in Space) investigation is an ESA (European Space Agency) mission that aims to help answer fundamental physics questions. By comparing a highly precise atomic clock in space with numerous ground atomic clocks around the world, ACES could take global time synchronization and clock comparison experiments to new heights.  
      Sponsored by NASA, United States scientists are participating in the mission in various ways, including contributing ground station reference clocks. Scheduled to collect data for 30 months, this vast network of precise clocks is expected to provide fresh insights into the exact relationship between gravity and time, set new limits for unknown forces, and improve global time synchronization.  
      In addition to investigating the laws of physics, ACES will enable new terrestrial applications such as relativistic geodesy, which involves measuring Earth’s shape and gravitational field with extreme precision. These advancements are critical to space navigation, satellite operations, and GPS systems. For example, without understanding the time fluctuations between Earth and medium Earth orbit, GPS would be progressively less accurate. 
      A robotic arm will attach ACES to the Columbus Laboratory module aboard the International Space Station. Image courtesy of ESA  Probing Plants for Properties to Protect DNA 
      The APEX-12 (Advanced Plant EXperiment-12) investigation will test the hypothesis that induction of telomerase activity in space protects plant DNA molecules from damage elicited by cellular stress evoked by the combined spaceflight stressors experienced by seedlings grown aboard the space station. It is expected that results will lead to a better understanding of differences between human and plant telomere behavior in space.   
      Data on telomerase activity in plants could be leveraged not only to develop therapies for age-related diseases in space and on Earth, but also for ensuring food crops are more resilient to spaceflight stress. 
      Telomeres and telomerase influence cell division and cell death, two processes crucial to understanding aging in humans. Telomeres are the protective end caps of chromosomes. Each time a cell divides, the telomeres shorten slightly, essentially acting as a biological clock for cell aging. Conversely, telomerase is an enzyme that adds nucleotide sequences to the ends of telomeres, lengthening them and counteracting their shortening.  
      In humans, telomere shortening is linked to various age-related conditions, such as cardiovascular diseases and certain cancers. In astronauts, studies have shown that spaceflight leads to changes in telomere length, with a notable lengthening observed. This phenomenon carries potential implications for astronaut health outcomes. By contrast, plant telomere length did not change during spaceflight, despite a dramatic increase in telomerase activity.
      A microscopic image of plant telomeres taken under a fluorescent microscope. The chromosomes are highlighted in blue. The telomeres are highlighted in yellow. Image courtesy of Texas A&M University  How this benefits space exploration: Experiments aboard NASA’s SpaceX CRS-32 mission is twofold. One, they have the potential to significantly enhance precision timekeeping, which is necessary to improve space navigation and communication. Two, they can provide insights into how plants adapt to protect DNA molecules from cellular stress caused by environmental factors experienced in spaceflight, in an effort to sustain plant life in space. 
      How this benefits humanity: The experiments conducted on NASA’s SpaceX CRS-32 mission offer a range of potential benefits to humanity. First, improving precision timekeeping for more accurate GPS technology. Second, capturing data about how telomerase activity correlates to cellular stress in plants, which could lead to assays which better correlate telomerase activity and cellular stress and provide fundamental research to contribute to potential therapies for humans.   
      Learn more about the investigations:
      ACES (Atomic Clock Ensemble in Space)

      Atomic Clock Ensemble in Space (ACES) is a European Space Agency (ESA) mission that aims to help answer fundamental physics questions.


      APEX-12 (Advanced Plant EXperiment-12)

      Advanced Plant EXperiment-12 (APEX-12) will test the hypothesis that induction of telomerase, a protein complex, activity in space protects plant DNA molecules from damage elicited by cellular stress evoked by the combined spaceflight stressors experienced by seedlings grown aboard the space station.


      About BPS 
      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth. 
      View the full article
    • By NASA
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA has announced the winners of it’s 31st Human Exploration Rover Challenge . The annual engineering competition – one of the agency’s longest standing student challenges – wrapped up on April 11 and April 12, at the U.S. Space & Rocket Center in Huntsville, Alabama, near NASA’s Marshall Space Flight Center. NASA NASA has announced the winning student teams in the 2025 Human Exploration Rover Challenge. This year’s competition challenged teams to design, build, and test a lunar rover powered by either human pilots or remote control. In the human-powered division, Parish Episcopal School in Dallas, Texas, earned first place in the high school division, and the Campbell University in Buies Creek, North Carolina, captured the college and university title. In the remote-control division, Bright Foundation in Surrey, British Columbia, Canada, earned first place in the middle and high school division, and the Instituto Tecnologico de Santa Domingo in the Dominican Republic, captured the college and university title.
      The annual engineering competition – one of NASA’s longest standing student challenges – wrapped up on April 11 and April 12, at the U.S. Space & Rocket Center in Huntsville, Alabama, near NASA’s Marshall Space Flight Center. The complete list of 2025 award winners is provided below:
      Human-Powered High School Division 
      First Place: Parish Episcopal School, Dallas, Texas Second Place: Ecambia High School, Pensacola, Florida Third Place: Centro Boliviano Americano – Santa Cruz, Bolivia Human-Powered College/University Division 
      First Place: Campbell University, Buies Creek, North Carolina Second Place: Instituto Tecnologico de Santo Domingo, Dominican Republic Third Place: University of Alabama in Huntsville Remote-Control Middle School/High School Division
      First Place: Bright Foundation, Surrey, British Columbia, Canada Second Place: Assumption College, Brangrak, Bangkok, Thailand Third Place: Erie High School, Erie, Colorado Remote-Control College/University Division
      First Place: Instituto Tecnologico de Santo Domingo, Dominican Republic Second Place: Campbell University, Buies Creek, North Carolina Third Place: Tecnologico de Monterey – Campus Cuernvaca, Xochitepec, Morelos, Mexico Ingenuity Award 
       Queen’s University, Kingston, Ontario, Canada Phoenix Award 
      Human-Powered High School Division: International Hope School of Bangladesh, Uttara, Dhaka, Bangladesh College/University Division: Auburn University, Auburn, Alabama Remote-Control Middle School/High School Division: Bright Foundation, Surrey, British Columbia, Canada College/University Division: Southwest Oklahoma State University, Weatherford, Oklahoma Task Challenge Award 
      Remote-Control Middle School/High School Division: Assumption College, Bangrak, Bangkok, Thailand College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Project Review Award 
      Human-Powered High School Division: Parish Episcopal School, Dallas, Texas College/University Division: Campbell University, Buies Creek, North Carolina Remote-Control Middle School/High School Division: Bright Foundation, Surrey, British Columbia, Canada College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Featherweight Award 
      Campbell University, Buies Creek, North Carolina Safety Award 
      Human-Powered High School Division: Parish Episcopal School, Dallas, Texas College/University Division: University of Alabama in Huntsville Crash and Burn Award 
      Universidad de Monterrey, Nuevo Leon, Mexico (Human-Powered Division) Team Spirit Award 
      Instituto Tecnologico de Santo Domingo, Dominican Republic (Human-Powered Division) STEM Engagement Award 
      Human-Powered High School Division: Albertville Innovation School, Albertville, Alabama College/University Division: Instituto Tecnologico de Santo Domingo, Dominican Republic Remote-Control Middle School/High School Division: Instituto Salesiano Don Bosco, Santo Domingo, Dominican Republic College/University Division: Tecnologico de Monterrey, Nuevo Leon, Mexico Social Media Award
      Human-Powered High School Division: International Hope School of Bagladesh, Uttara, Dhaka, Bangladesh College/University Division: Universidad Catolica Boliviana “San Pablo” La Paz, Bolivia Remote-Control Middle School/High School Division: ATLAS SkillTech University, Mumbai, Maharashtra, India College/University Division: Instituto Salesiano Don Bosco, Santo Domingo, Dominican Republic Most Improved Performance Award
      Human-Powered High School Division: Space Education Institute, Leipzig, Germany College/University Division: Purdue University Northwest, Hammond, Indiana Remote-Control Middle School/High School Division: Erie High School, Erie, Colorado College/University Division: Campbell University, Buies Creek, North Carolina Pit Crew Award
      Human-Powered High School Division: Academy of Arts, Career, and Technology, Reno, Nevada College/University Division: Queen’s University, Kingston, Ontario, Canada Artemis Educator Award
      Fabion Diaz Palacious from Universidad Catolica Boliviana “San Pablo” La Paz, Bolivia Rookie of the Year
      Deira International School, Dubai, United Arab Emirates

      More than 500 students with 75 teams from around the world participated in the  31st year of the competition. Participating teams represented 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations. Teams were awarded points based on navigating a half-mile obstacle course, conducting mission-specific task challenges, and completing multiple safety and design reviews with NASA engineers. 
      NASA expanded the 2025 challenge to include a remote-control division, Remote-Operated Vehicular Research, and invited middle school students to participate. 
      “This student design challenge encourages the next generation of scientists and engineers to engage in the design process by providing innovative concepts and unique perspectives,” said Vemitra Alexander, who leads the challenge for NASA’s Office of STEM Engagement at Marshall. “This challenge also continues NASA’s legacy of providing valuable experiences to students who may be responsible for planning future space missions, including crewed missions to other worlds.”
      The rover challenge is one of NASA’s eight Artemis Student Challenges reflecting the goals of the Artemis campaign, which will land Americans on the Moon while establishing a long-term presence for science and exploration, preparing for future human missions to Mars. NASA uses such challenges to encourage students to pursue degrees and careers in the fields of science, technology, engineering, and mathematics. 
      The competition is managed by NASA’s Southeast Regional Office of STEM Engagement at Marshall. Since its inception in 1994, more than 15,000 students have participated – with many former students now working at NASA, or within the aerospace industry.    
      To learn more about the Human Exploration Rover Challenge, please visit: 
      https://www.nasa.gov/roverchallenge/home/index.html
      News Media Contact
      Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034
      taylor.goodwin@nasa.gov
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA and SpaceX are launching the company’s 32nd commercial resupply services mission to the International Space Station later this month, bringing a host of new research to the orbiting laboratory. Aboard the SpaceX Dragon spacecraft are experiments focused on vision-based navigation, spacecraft air quality, materials for drug and product manufacturing, and advancing plant growth with less reliance on photosynthesis.
      This and other research conducted aboard the space station advances future space exploration, including missions to the Moon and Mars, and provides many benefits to humanity.
      Investigations traveling to the space station include:
      Robotic spacecraft guidance
      Smartphone Video Guidance Sensor-2 (SVGS-2) uses the space station’s Astrobee robots to demonstrate using a vision-based sensor developed by NASA to control a formation flight of small satellites. Based on a previous in-space demonstration of the technology, this investigation is designed to refine the maneuvers of multiple robots and integrate the information with spacecraft systems.
      Potential benefits of this technology include improved accuracy and reliability of systems for guidance, navigation, and control that could be applied to docking crewed spacecraft in orbit and remotely operating multiple robots on the lunar or Martian surface.
      Two of the space station’s Astrobee robots are used to test a vision-based guidance system for Smartphone Video Guidance Sensor (SVGS)NASA Protection from particles
      During spaceflight, especially long-duration missions, concentrations of airborne particles must be kept within ranges safe for crew health and hardware performance. The Aerosol Monitors investigation tests three different air quality monitors in space to determine which is best suited to protect crew health and ensure mission success. The investigation also tests a device for distinguishing between smoke and dust. Aboard the space station, the presence of dust can cause false smoke alarms that require crew member response. Reducing false alarms could save valuable crew time while continuing to protect astronaut safety.
      Better materials, better drugs
      The DNA Nano Therapeutics-Mission 2 produces a special type of molecule formed by DNA-inspired, customizable building blocks known as Janus base nanomaterials. It also evaluates how well the materials reduce joint inflammation and whether they can help regenerate cartilage lost due to arthritis. These materials are less toxic, more stable, and more compatible with living tissues than current drug delivery technologies.
      Environmental influences such as gravity can affect the quality of these materials and delivery systems. In microgravity, they are larger and have greater uniformity and structural integrity. This investigation could help identify the best formulations and methods for cost-effective in-space production. These nanomaterials also could be used to create novel systems targeting therapy delivery that improves patient outcomes with fewer side effects.
      Stem cells grown along the Janus base nanomaterials (JBNs) made aboard the International Space Station.University of Connecticut Next-generation pharmaceutical nanostructures
      The newest Industrial Crystallization Cassette (ADSEP-ICC) investigation adds capabilities to an existing protein crystallization facility. The cassette can process more sample types, including tiny gold particles used in devices that detect cancer and other diseases or in targeted drug delivery systems. Microgravity makes it possible to produce larger and more uniform gold particles, which improves their use in research and real-life applications of technologies related to human health.
      Helping plants grow
      Rhodium USAFA NIGHT examines how tomato plants respond to microgravity and whether a carbon dioxide replacement can reduce how much space-grown plants depend on photosynthesis. Because photosynthesis needs light, which requires spacecraft power to generate, alternatives would reduce energy use. The investigation also examines whether using supplements increases plant growth on the space station, which has been observed in preflight testing on Earth. In future plant production facilities aboard spacecraft or on celestial bodies, supplements could come from available organic materials such as waste.
      Understanding how plants adapt to microgravity could help grow food during long-duration space missions or harsh environments on Earth.
      Hardware for the Rhodium Plant LIFE, which was the first in a series used to study how space affects plant growth.NASA Atomic clocks in space
      An ESA (European Space Agency) investigation, Atomic Clock Ensemble in Space (ACES), examines fundamental physics concepts such as Einstein’s theory of relativity using two next-generation atomic clocks operated in microgravity. Results have applications to scientific measurement studies, the search for dark matter, and fundamental physics research that relies on highly accurate atomic clocks in space. The experiment also tests a technology for synchronizing clocks worldwide using global navigation satellite networks.
      An artist’s concept shows the Atomic Clock Ensemble in Space hardware mounted on the Earth-facing side of the space station’s exterior.ESA Download high-resolution photos and videos of the research mentioned in this article.
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Latest News from Space Station Research
      Station Benefits for Humanity
      Space Station Research Results
      View the full article
    • By NASA
      Explore This Section Science Science Activation Findings from the Field: A… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      Findings from the Field: A Research Symposium for Student Scientists
      Within the scientific community, peer review has become the process norm for which an author’s research or ideas undergo careful examination by other experts in their field. It encourages each scientist to meet the high standards that they themselves, as writers and reviewers, have aided in setting. It has become essential to the academic writing practice.
      Historically, the peer review process has been limited to higher education and scholars more established in their academic careers. It has been required by only the more reputable publications, which can mean that lesser-known journals that don’t require this rigorous peer review process contain lower quality or less reliable information.
      In an effort to give scientists of all ages the opportunity to participate in and contribute to the advancement of human knowledge in a meaningful and reliable way, the Gulf of Maine Research Institute (GMRI) began publishing Findings from the Field, a journal of student ecological and environmental science, launched in 2017. Students conduct authentic scientific inquiry, subject their research to the peer review process, and submit their revised work for editorial board review before publication—the same process a NASA scientist must go through! This hands-on, real-world experience in scientific communication sharpens these young scientists’ skills and immerses them in the collaborative nature of research—an essential foundation for the next generation of scientists.
      After 7 years and 7 published volumes, Findings from the Field was ready to expand, and the Findings Student Research Symposium was launched. The Symposium was a success from the start, with 65 student scientists joining the event the first year and attendance climbing to 95 for year two. On March 10, 2025, GMRI (the anchor institution for the NASA Science Activation program’s Learning Ecosystems Northeast (LENE) project) welcomed nearly 100 young scientists, ranging from grades 5-12. These students, representing eight schools across Maine and New Hampshire, came together to share their research and engage in an evolving, intergenerational scientific community—one that fosters curiosity, collaboration, and scientific discovery.
      Students presented their research through posters and live presentations, covering topics ranging from invasive green crab species, to the changing landscapes of Ash and Hemlock trees, and more. By connecting students with professional researchers, fostering peer discussions, and providing a platform for publishing legitimate scientific work, the Findings Symposium is a launch pad for the future of the scientific community.
      One important element of the Symposium is the opportunity for young scientists to dialogue with professional scientists. Students engaged with researchers from Markus Frederich’s lab at the University of New England, volunteers from local organizations like Unum and Avangrid, and expert staff from GMRI.
      Student Madalyn Bartlett from Sacoppee Valley Middle School shared, “It makes me feel really proud, because I get to talk to professional scientists that have a lot of experience in this, and it make me feel like I am contributing to something bigger than my school and my community.”
      These interactions emphasize that science isn’t confined to white coats and labs—it’s about curiosity, observation, and shared knowledge. The keynote speaker, Kat Gardner-Vandy from a former NASA Science Activation project team, Native Earth | Native Sky, reinforced this message, inspiring students to see themselves as vital contributors to science and our collective knowledge about the world.
      The Learning Ecosystems Northeast project is supported by NASA under cooperative agreement award number NNX16AB94A and is part of NASA’s Science Activation Portfolio. Learn more about Learning Ecosystems Northeast: https://www.learningecosystemsnortheast.org/
      Native Earth | Native Sky’s Kat Gardner-Vandy delivering the keynote speech to students at the Findings Symposium. Share








      Details
      Last Updated Apr 08, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation Earth Science Opportunities For Students to Get Involved Explore More
      34 min read Style Guidelines for ‘The Earth Observer’ Newsletter 


      Article


      2 hours ago
      5 min read Connected Learning Ecosystems: Educators Gather to Empower Learners and Themselves


      Article


      24 hours ago
      3 min read NSTA Hyperwall Schedule


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      NASA has selected 12 student teams to develop solutions for storing and transferring the super-cold liquid propellants needed for future long-term exploration beyond Earth orbit.
      The agency’s 2025 Human Lander Challenge is designed to inspire and engage the next generation of engineers and scientists as NASA and its partners prepare to send astronauts to the Moon through the Artemis campaign in preparation for future missions to Mars. The commercial human landing systems will serve as the primary mode of transportation that will safely take astronauts and, later, large cargo from lunar orbit to the surface of the Moon and back.
      For its second year, the competition invites university students and their faculty advisors to develop innovative, “cooler” solutions for in-space cryogenic, or super cold, liquid propellant storage and transfer systems. These cryogenic fluids, like liquid hydrogen or liquid oxygen, must stay extremely cold to remain in a liquid state, and the ability to effectively store and transfer them in space will be increasingly vital for future long-duration missions. Current technology allows cryogenic liquids to be stored for a relatively short amount of time, but future missions will require these systems to function effectively over several hours, weeks, and even months.
      The 12 selected finalists have been awarded a $9,250 development stipend to further develop their concepts in preparation for the next stage of the competition.
      The 2025 Human Lander Challenge finalist teams are:
      California State Polytechnic University, Pomona, “THERMOSPRING: Thermal Exchange Reduction Mechanism using Optimized SPRING” Colorado School of Mines, “MAST: Modular Adaptive Support Technology” Embry-Riddle Aeronautical University, “Electrical Capacitance to High-resolution Observation (ECHO)” Jacksonville University, “Cryogenic Complex: Cryogenic Tanks and Storage Systems – on the Moon and Cislunar Orbit” Jacksonville University, “Cryogenic Fuel Storage and Transfer: The Human Interface – Monitoring and Mitigating Risks” Massachusetts Institute of Technology, “THERMOS: Translunar Heat Rejection and Mixing for Orbital Sustainability” Old Dominion University, “Structural Tensegrity for Optimized Retention in Microgravity (STORM)” Texas A&M University, “Next-generation Cryogenic Transfer and Autonomous Refueling (NeCTAR)” The College of New Jersey, “Cryogenic Orbital Siphoning System (CROSS)” The Ohio State University, “Autonomous Magnetized Cryo-Couplers with Active Alignment Control for Propellant Transfer (AMCC-AAC) University of Illinois, Urbana-Champaign, “Efficient Cryogenic Low Invasive Propellant Supply Exchange (ECLIPSE)” Washington State University, “CRYPRESS Coupler for Liquid Hydrogen Transfer” Finalist teams will now work to submit a technical paper further detailing their concepts. They will present their work to a panel of NASA and industry judges at the 2025 Human Lander Competition Forum in Huntsville, Alabama, near NASA’s Marshall Space Flight Center, in June 2025. The top three placing teams will share a total prize purse of $18,000.
      “By engaging college students in solving critical challenges in cryogenic fluid technologies and systems-level solutions, NASA fosters a collaborative environment where academic research meets practical application,” said Tiffany Russell Lockett, office manager for the Human Landing System Mission Systems Management Office at NASA Marshall. “This partnership not only accelerates cryogenics technology development but also prepares the Artemis Generation – the next generation of engineers and scientists – to drive future breakthroughs in spaceflight.”
      NASA’s Human Lander Challenge is sponsored by the agency’s Human Landing System Program within the Exploration Systems Development Mission Directorate and managed by the National Institute of Aerospace.
      For more information on NASA’s 2025 Human Lander Challenge, including team progress, visit the challenge website.
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
  • Check out these Videos

×
×
  • Create New...