Members Can Post Anonymously On This Site
Gaia: Milky Way’s last major collision was surprisingly recent
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Have you ever wanted to find all your favorite NASA technology in one place? NASA stakeholders did, too! We listened to your feedback, brainstormed user-focused features, and created the most robust technology system to date.
NASA’s Space Technology Mission Directorate is excited to announce the release of TechPort version 4.0 – your gateway into our technology community. NASA tuned into feedback from the public, industry, academia, and our internal audiences to make significant updates to the TechPort system. From improvements in usability, customizability, and analysis views, users will now be able to search and explore NASA’s vast portfolio of technologies more easily than ever before.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Video introducing 4 new features of TechPort 4.0.NASA “When it comes to the ever-growing advancements in space technology, we need a system that encompasses a modernized look and feel coupled with a more intuitive interface,” said Alesyn Lowry, director for Strategic Planning & Integration for STMD at NASA Headquarters in Washington. “TechPort 4.0 offers just that. As the largest and most significant update to TechPort in the past five years, users will now be able to enjoy the most accessible, user-friendly, and all-encompassing version yet.”
Check out the five features of TechPort 4.0 and how they can help you research NASA’s cutting-edge technology projects and partnerships:
1. New and Improved Homepage
Featuring a new look and feel, users are able to search NASA’s comprehensive system of vast technologies. Including over 18,000 current and historical NASA technologies, users will now have more access to knowledge about the agency’s technology development at the touch of their fingertips! The modernized look and feel lends itself to a more intuitive interface that upgrades technology search capabilities.
2. Advanced Search
One of the most exciting features of TechPort 4.0 is the new capability to search and filter on all fields associated with technologies. This advanced filtering feature will allow users to uncover the exact information they are seeking, creating a more accessible and swifter experience for users.
3. New Grid View
Expanding upon the previous view, TechPort 4.0 offers a new grid view that enables users to view even more project data all at once. This upgrade also allows a user to customize all of the fields visible in search results, tailor how the data is sorted, and filter on any visible field. This new view provides a familiar interface tailored to data analysis needs that require rapid review of multiple data facets simultaneously.
4. NASA Technology Taxonomy Recommendation (T-Rex)
NASA’s Technology Taxonomy provides a structure for technology classification spanning over 350 categories. The Taxonomy is featured in TechPort, and all technologies in the system align to at least one Taxonomy area, making it easy to view technologies of interest. Technologists from various fields, including academia and nonprofits, now have the opportunity to use the T-Rex tool to automatically classify their technology according to the NASA Taxonomy. Serving as a machine learning model, TechPort will offer more organization and an easier way for users to access relevant information.
5. Funding Opportunities
Now, users can get connected, too! If your TechPort research is inspiring you to think about solving an aerospace or technology challenge, TechPort 4.0 gives users easy access to relevant opportunities and information on how to apply.
Launch into TechPort 4.0 to embark on your journey into our technology community. With the wide range of improvements in accessibility and customizability, explore NASA technologies like never before!
Gabrielle Thaw
Keep Exploring Discover More Topics From NASA
Space Technology Mission Directorate
TechPort – Find it, Build it, Share it.
Technology Transfer & Spinoffs
STMD Solicitations and Opportunities
View the full article
-
By NASA
Webb Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read Found: First Actively Forming Galaxy as Lightweight as Young Milky Way
Hundreds of overlapping objects at various distances are spread across this field. At the very center is a tiny galaxy nicknamed Firefly Sparkle that looks like a long, angled, dotted line. Smaller companions are nearby. Credits:
NASA, ESA, CSA, STScI, Chris Willott (National Research Council Canada), Lamiya Mowla (Wellesley College), Kartheik Iyer (Columbia University) For the first time, NASA’s James Webb Space Telescope has detected and “weighed” a galaxy that not only existed around 600 million years after the big bang, but is also similar to what our Milky Way galaxy’s mass might have been at the same stage of development. Other galaxies Webb has detected at this time period are significantly more massive. Nicknamed the Firefly Sparkle, this galaxy is gleaming with star clusters — 10 in all — each of which researchers examined in great detail.
Image A: Firefly Sparkle Galaxy and Companions in Galaxy Cluster MACS J1423 (NIRCam Image)
For the first time, astronomers using NASA’s James Webb Space Telescope have identified a galaxy, nicknamed the Firefly Sparkle, that not only is in the process of assembling and forming stars around 600 million years after the big bang, but also weighs about the same as our Milky Way galaxy if we could “wind back the clock” to weigh it as it developed. Two companion galaxies are close by, which may ultimately affect how this galaxy forms and builds mass over billions of years. NASA, ESA, CSA, STScI, Chris Willott (National Research Council Canada), Lamiya Mowla (Wellesley College), Kartheik Iyer (Columbia University) “I didn’t think it would be possible to resolve a galaxy that existed so early in the universe into so many distinct components, let alone find that its mass is similar to our own galaxy’s when it was in the process of forming,” said Lamiya Mowla, co-lead author of the paper and an assistant professor at Wellesley College in Massachusetts. “There is so much going on inside this tiny galaxy, including so many different phases of star formation.”
Webb was able to image the galaxy in crisp detail for two reasons. One is a benefit of the cosmos: A massive foreground galaxy cluster radically enhanced the distant galaxy’s appearance through a natural effect known as gravitational lensing. And when combined with the telescope’s specialization in high-resolution infrared light, Webb delivered unprecedented new data about the galaxy’s contents.
Image B: Galaxy Cluster MACS J1423 (NIRCam Image)
In this image from NASA’s James Webb Space Telescope, thousands of glimmering galaxies are bound together by their own gravity, making up a massive cluster formally classified as MACS J1423. The largest, bright white oval is a supergiant elliptical galaxy. The galaxy cluster acts like a lens, magnifying and distorting the light of objects that lie well behind it, an effect known as gravitational lensing. NASA, ESA, CSA, STScI, Chris Willott (National Research Council Canada), Lamiya Mowla (Wellesley College), Kartheik Iyer (Columbia University) “Without the benefit of this gravitational lens, we would not be able to resolve this galaxy,” said Kartheik Iyer, co-lead author and NASA Hubble Fellow at Columbia University in New York. “We knew to expect it based on current physics, but it’s surprising that we actually saw it.”
Mowla, who spotted the galaxy in Webb’s image, was drawn to its gleaming star clusters, because objects that sparkle typically indicate they are extremely clumpy and complicated. Since the galaxy looks like a “sparkle” or swarm of lightning bugs on a warm summer night, they named it the Firefly Sparkle galaxy.
Reconstructing the Galaxy’s Appearance
The research team modeled what the galaxy might have looked like if it weren’t stretched and discovered that it resembled an elongated raindrop. Suspended within it are two star clusters toward the top and eight toward the bottom. “Our reconstruction shows that clumps of actively forming stars are surrounded by diffuse light from other unresolved stars,” said Iyer. “This galaxy is literally in the process of assembling.”
Webb’s data shows the Firefly Sparkle galaxy is on the smaller side, falling into the category of a low-mass galaxy. Billions of years will pass before it builds its full heft and a distinct shape. “Most of the other galaxies Webb has shown us aren’t magnified or stretched, and we are not able to see their ‘building blocks’ separately. With Firefly Sparkle, we are witnessing a galaxy being assembled brick by brick,” Mowla said.
Stretched Out and Shining, Ready for Close Analysis
Since the galaxy is warped into a long arc, the researchers easily picked out 10 distinct star clusters, which are emitting the bulk of the galaxy’s light. They are represented here in shades of pink, purple, and blue. Those colors in Webb’s images and its supporting spectra confirmed that star formation didn’t happen all at once in this galaxy, but was staggered in time.
“This galaxy has a diverse population of star clusters, and it is remarkable that we can see them separately at such an early age of the universe,” said Chris Willott from the National Research Council of Canada’s Herzberg Astronomy and Astrophysics Research Centre, a co-author and the observation program’s principal investigator. “Each clump of stars is undergoing a different phase of formation or evolution.”
The galaxy’s projected shape shows that its stars haven’t settled into a central bulge or a thin, flattened disk, another piece of evidence that the galaxy is still forming.
Image C: Illustration of the Firefly Sparkle Galaxy in the Early Universe (Artist’s Concept)
This artist concept depicts a reconstruction of what the Firefly Sparkle galaxy looked like about 600 million years after the big bang if it wasn’t stretched and distorted by a natural effect known as gravitational lensing. This illustration is based on images and data from NASA’s James Webb Space Telescope. Illustration: NASA, ESA, CSA, Ralf Crawford (STScI). Science: Lamiya Mowla (Wellesley College), Guillaume Desprez (Saint Mary’s University) Video: “Firefly Sparkle” Reveals Early Galaxy
‘Glowing’ Companions
Researchers can’t predict how this disorganized galaxy will build up and take shape over billions of years, but there are two galaxies that the team confirmed are “hanging out” within a tight perimeter and may influence how it builds mass over billions of years.
Firefly Sparkle is only 6,500 light-years away from its first companion, and its second companion is separated by 42,000 light-years. For context, the fully formed Milky Way is about 100,000 light-years across — all three would fit inside it. Not only are its companions very close, the researchers also think that they are orbiting one another.
Each time one galaxy passes another, gas condenses and cools, allowing new stars to form in clumps, adding to the galaxies’ masses. “It has long been predicted that galaxies in the early universe form through successive interactions and mergers with other tinier galaxies,” said Yoshihisa Asada, a co-author and doctoral student at Kyoto University in Japan. “We might be witnessing this process in action.”
The team’s research relied on data from Webb’s CAnadian NIRISS Unbiased Cluster Survey (CANUCS), which includes near-infrared images from NIRCam (Near-Infrared Camera) and spectra from the microshutter array aboard NIRSpec (Near-Infrared Spectrograph). The CANUCS data intentionally covered a field that NASA’s Hubble Space Telescope imaged as part of its Cluster Lensing And Supernova survey with Hubble (CLASH) program.
This work has been published on December 11, 2024 in the journal Nature.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Downloads
Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
View/Download the research results from the journal Nature.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Claire Blome – cblome@stsci.edu, Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
Video: How are Distant Galaxies Magnified Through Gravitational Lensing?
Article: Webb Science: Galaxies Through Time
Article: Spectroscopy 101
Interactive: Learn how the Webb microshutter array (MSA) works
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is a galaxy?
What is the Webb Telescope?
SpacePlace for Kids
En Español
¿Qué es una galaxia?
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Galaxies
Galaxies Stories
Universe
Share
Details
Last Updated Dec 10, 2024 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
Astrophysics Galaxies Galaxy clusters Goddard Space Flight Center Gravitational Lensing James Webb Space Telescope (JWST) Science & Research The Universe View the full article
-
By NASA
On flight day 13, Orion reached its maximum distance from Earth during the Artemis I mission when it was 268,563 miles away from our home planet. Orion has now traveled farther than any other spacecraft built for humans.NASA The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign and will pave the way to land astronauts on the Moon on Artemis III and future missions. The crew of four aboard the agency’s Orion spacecraft will travel around the Moon and back to confirm the spacecraft’s systems operate as designed with crew aboard in the actual environment of deep space. Through Artemis, NASA will send astronauts – including the first woman, first person of color, and its first international partner astronaut – to explore the Moon for scientific discovery, economic benefits, and to build the foundation for crewed missions to Mars.
On Dec. 5, NASA updated its timelines for the missions and shared the results of an investigation into the Orion heat shield after it experienced an unexpected loss of charred material during re-entry of the Artemis I uncrewed test flight in late 2022.
Here are some frequently asked questions about Artemis II, NASA’s recent updates, and the agency’s path to the Moon and Mars.
What is Orion?
NASA’s Orion spacecraft is where our crew live while traveling to and from deep space. Orion is built to take humans farther than they’ve ever gone before. On Artemis missions, Orion will carry crews of four astronauts from Earth to space, provide emergency abort capability, sustain them as they venture to the Moon, and safely return them to Earth from deep space speeds and temperatures.
What is a heat shield and why is it important?
When Orion travels back from deep space, its journey through Earth’s atmosphere generates intense temperatures of up to 5,000 degrees Fahrenheit on parts of the spacecraft. The 16-foot diameter protective heat shield on the bottom of the capsule is designed to dissipate that heat and keep the crew inside safe. Orion’s heat shield is primarily composed of Avcoat, a material designed to wear away as it heats up.
What abnormal behavior did you see on the Artemis I heat shield?
NASA flew the uncrewed Artemis I mission in late 2022 to test Orion, the agency’s SLS rocket, and the ground systems needed to launch them, testing these elements together for the first time to ensure engineers understand everything about the systems before flights with astronauts. The successful test flight sent Orion past the Moon and provided valuable data to ensure our deep space spacecraft and other systems are ready for crewed missions. When Orion returned to Earth, engineers saw variations across Orion’s heat shield they did not expect. Some of the charred material had broken off. If a crew had been aboard the flight, they would have remained safe, but understanding the phenomenon has been the subject of an extensive investigation since the test flight.
What did NASA’s find as the cause of the issue?
Engineers determined that as Orion was returning from its uncrewed mission around the Moon, gases generated inside the heat shield’s ablative outer material called Avcoat were not able to vent and dissipate as expected. This allowed pressure to build up and horizontal cracking to occur near the surface of the charred layer, causing some charred material to break off in several locations.
For Artemis II, engineers will limit how long Orion spends in the temperature range in which the Artemis I heat shield phenomenon occurred by modifying how far Orion can fly between when it enters Earth atmosphere and lands. Engineers already are assembling and integrating the Orion spacecraft for Artemis III based on lessons learned from Artemis I and implementing enhancements to how heat shields for crewed returns from lunar landing missions are manufactured to achieve uniformity and consistent permeability. A more detailed description is here.
Why did NASA decide to use the current heat shield?
Extensive data from the investigation has given engineers confidence the heat shield for Artemis II can be used to safely fly the mission’s crew around the Moon and back. NASA will modify the trajectory by shortening how far Orion can fly between when it enters Earth’s atmosphere and splashes down in the Pacific Ocean. This will limit how long Orion spends in the temperature range in which the Artemis I heat shield phenomenon occurred. The heat shield for the test flight is already attached to Orion.
When will Artemis II take place?
The Artemis II test flight will be NASA’s first mission with crew aboard the SLS (Space Launch System) rocket and Orion spacecraft and will pave the way to land astronauts on the Moon on Artemis III. Artemis II builds on the success of the uncrewed Artemis I mission and will demonstrate a broad range of capabilities needed on lunar missions. The 10-day flight will help to confirm all of the spacecraft’s systems operate as designed with crew aboard in the actual environment of deep space. The mission is targeted for April 2026.
The updated timeline for the Artemis II flight is informed by technical issues engineers are troubleshooting including with an Orion battery issue and its environmental control system. The heat shield was installed in June 2023 and the root cause investigation took place in parallel to other assembly and testing activities to preserve as much schedule as possible.
What are the astronauts doing during the mission delay?
NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and Canadian Space Agency (CSA) astronaut Jeremy Hansen will continue training for the mission. More intensive training will begin about six months before launch.
About the Artemis Campaign
What is Artemis?
NASA is establishing a long-term presence at the Moon for scientific exploration and discovery with our commercial and international partners, learning how to live and work far from home, and preparing for future human exploration of Mars – we call this endeavor Artemis. Under Artemis, NASA will land the first woman, first person of color, and first international partner astronaut on the Moon, using innovative technologies to explore more of the lunar surface than ever before.
Why is NASA going back to the Moon?
NASA is going back to the Moon for scientific discovery, economic benefits, and inspiration for a new generation of explorers: the Artemis Generation. Artemis is a new approach to America’s space exploration efforts — it is the most technically challenging, collaborative, international endeavor humanity has ever set out to do. What we learn from expanding scientific knowledge and developing new technologies will be applied to improve life on Earth. Samples from the lunar South Pole could tell us more about the formation of our planet and origins of our solar system. We are meeting this challenge by investing in American ingenuity and leadership to advance our understanding of the universe for the benefit of all.
What makes Artemis different from Apollo?
The Apollo Program successfully landed 12 men near the equator of the Moon in the 1960s and 1970s. Under Artemis, NASA is going to the lunar South Pole region, where no humans have ever set foot, in new ways with commercial and international partners. The agency is leading the largest international coalition in space to push humanity farther than ever before for the benefit of all, developing capabilities for astronauts to live and work on the Moon before our next giant leap – human exploration of Mars.
What happens after Artemis II?
Artemis III will build on the crewed Artemis II flight test, adding new capabilities with the human landing system and advanced spacesuits to send the first humans to explore the lunar South Pole region. Over the course of about 30 days a crew of four will launch atop the Space Launch System rocket in Orion and travel to a special lunar orbit where they will dock with SpaceX’s Starship human landing system. Two Artemis crew members will transfer from Orion to Starship and descend to the lunar surface. There, they will collect samples, perform science experiments, and observe the Moon’s environment before returning in Starship to Orion waiting in lunar orbit. The mission is planned for mid-2027.
NASA is also working with SpaceX to further develop the company’s Starship lander requirements for Artemis IV. These requirements include landing more mass on the Moon and docking with the agency’s Gateway lunar space station for crew transfer. NASA will use Blue Origin’s human landing system for Artemis V.
View the full article
-
By European Space Agency
As the launch of the Sentinel-1C satellite approaches, we reflect on some of the many ways the Copernicus Sentinel-1 mission has given us remarkable radar insights into our planet over the years.
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Use your mouse to explore this 360-degree view of Gediz Vallis channel, a region of Mars that NASA’s Curiosity rover surveyed before heading west to new adventures. NASA/JPL-Caltech/MSSS The rover captured a 360-degree panorama before leaving Gediz Vallis channel, a feature it’s been exploring for the past year.
NASA’s Curiosity rover is preparing for the next leg of its journey, a monthslong trek to a formation called the boxwork, a set of weblike patterns on Mars’ surface that stretches for miles. It will soon leave behind Gediz Vallis channel, an area wrapped in mystery. How the channel formed so late during a transition to a drier climate is one big question for the science team. Another mystery is the field of white sulfur stones the rover discovered over the summer.
Curiosity imaged the stones, along with features from inside the channel, in a 360-degree panorama before driving up to the western edge of the channel at the end of September.
The rover is searching for evidence that ancient Mars had the right ingredients to support microbial life, if any formed billions of years ago, when the Red Planet held lakes and rivers. Located in the foothills of Mount Sharp, a 3-mile-tall (5-kilometer-tall) mountain, Gediz Vallis channel may help tell a related story: what the area was like as water was disappearing on Mars. Although older layers on the mountain had already formed in a dry climate, the channel suggests that water occasionally coursed through the area as the climate was changing.
Scientists are still piecing together the processes that formed various features within the channel, including the debris mound nicknamed “Pinnacle Ridge,” visible in the new 360-degree panorama. It appears that rivers, wet debris flows, and dry avalanches all left their mark. The science team is now constructing a timeline of events from Curiosity’s observations.
NASA’s Curiosity captured this panorama using its Mastcam while heading west away from Gediz Vallis channel on Nov. 2, 2024, the 4,352nd Martian day, or sol, of the mission. The Mars rover’s tracks across the rocky terrain are visible at right.NASA/JPL-Caltech/MSSS The science team is also trying to answer some big questions about the sprawling field of sulfur stones. Images of the area from NASA’s Mars Reconnaissance Orbiter (MRO) showed what looked like an unremarkable patch of light-colored terrain. It turns out that the sulfur stones were too small for MRO’s High-Resolution Imaging Science Experiment (HiRISE) to see, and Curiosity’s team was intrigued to find them when the rover reached the patch. They were even more surprised after Curiosity rolled over one of the stones, crushing it to reveal yellow crystals inside.
Science instruments on the rover confirmed the stone was pure sulfur — something no mission has seen before on Mars. The team doesn’t have a ready explanation for why the sulfur formed there; on Earth, it’s associated with volcanoes and hot springs, and no evidence exists on Mount Sharp pointing to either of those causes.
“We looked at the sulfur field from every angle — from the top and the side — and looked for anything mixed with the sulfur that might give us clues as to how it formed. We’ve gathered a ton of data, and now we have a fun puzzle to solve,” said Curiosity’s project scientist Ashwin Vasavada at NASA’s Jet Propulsion Laboratory in Southern California.
NASA’s Curiosity Mars rover captured this last look at a field of bright white sulfur stones on Oct. 11, before leaving Gediz Vallis channel. The field was where the rover made the first discovery of pure sulfur on Mars. Scientists are still unsure exactly why theses rocks formed here. Spiderwebs on Mars
Curiosity, which has traveled about 20 miles (33 kilometers) since landing in 2012, is now driving along the western edge of Gediz Vallis channel, gathering a few more panoramas to document the region before making tracks to the boxwork.
Viewed by MRO, the boxwork looks like spiderwebs stretching across the surface. It’s believed to have formed when minerals carried by Mount Sharp’s last pulses of water settled into fractures in surface rock and then hardened. As portions of the rock eroded away, what remained were the minerals that had cemented themselves in the fractures, leaving the weblike boxwork.
On Earth, boxwork formations have been seen on cliffsides and in caves. But Mount Sharp’s boxwork structures stand apart from those both because they formed as water was disappearing from Mars and because they’re so extensive, spanning an area of 6 to 12 miles (10 to 20 kilometers).
Scientists think that ancient groundwater formed this weblike pattern of ridges, called boxwork, that were captured by NASA’s Mars Reconnaissance Orbiter on Dec. 10, 2006. The agency’s Curiosity rover will study ridges similar to these up close in 2025.NASA/JPL-Caltech/University of Arizona This weblike crystalline structure called boxwork is found in the ceiling of the Elk’s Room, part of Wind Cave National Park in South Dakota. NASA’s Curiosity rover is preparing for a journey to a boxwork formation that stretches for miles on Mars’ surface. “These ridges will include minerals that crystallized underground, where it would have been warmer, with salty liquid water flowing through,” said Kirsten Siebach of Rice University in Houston, a Curiosity scientist studying the region. “Early Earth microbes could have survived in a similar environment. That makes this an exciting place to explore.”
More About Curiosity
Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems (formerly Ball Aerospace & Technologies Corp.), in Boulder, Colorado. JPL manages the Mars Reconnaissance Orbiter Project for NASA’s Science Mission Directorate in Washington.
For more about these missions:
science.nasa.gov/mission/msl-curiosity
science.nasa.gov/mission/mars-reconnaissance-orbiter
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2024-160
Share
Details
Last Updated Nov 18, 2024 Related Terms
Curiosity (Rover) Jet Propulsion Laboratory Mars Mars Science Laboratory (MSL) Explore More
4 min read Precision Pointing Goes the Distance on NASA Experiment
Article 4 days ago 5 min read NASA’s EMIT Will Explore Diverse Science Questions on Extended Mission
Article 4 days ago 4 min read NASA Data Helps International Community Prepare for Sea Level Rise
Article 5 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.