Jump to content

The Marshall Star for June 5, 2024


NASA

Recommended Posts

  • Publishers
26 Min Read

The Marshall Star for June 5, 2024

NASA Marshall Space Flight Center Director Joseph Pelfrey, left, addresses an audience of academic and industry stakeholders at the 29th annual Tennessee Valley Corridor National Summit in Nashville on May 30.

LIFTOFF! NASA Astronauts Pilot First Starliner Crewed Test to Station

NASA astronauts Butch Wilmore and Suni Williams are safely in orbit on the first crewed flight test aboard Boeing’s Starliner spacecraft bound for the International Space Station.

As part of NASA’s Boeing Crew Flight Test, the astronauts lifted off at 9:52 a.m. CDT June 5 on a ULA (United Launch Alliance) Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station on an end-to-end test of the Starliner system.

cft-liftoff.jpg?w=1665
A United Launch Alliance Atlas V rocket with Boeing’s Starliner spacecraft aboard launches from Space Launch Complex 41 at Cape Canaveral Space Force Station on June 5. NASA’s Boeing Crew Flight Test is the first launch with astronauts of the Boeing spacecraft and United Launch Alliance Atlas V rocket to the International Space Station as part of the agency’s Commercial Crew Program.
NASA/Joel Kowsky

“Two bold NASA astronauts are well on their way on this historic first test flight of a brand-new spacecraft,” said NASA Administrator Bill Nelson. “Boeing’s Starliner marks a new chapter of American exploration. Human spaceflight is a daring task – but that’s why it’s worth doing. It’s an exciting time for NASA, our commercial partners, and the future of exploration. Go Starliner, Go Butch and Suni!”

As part of NASA’s Commercial Crew Program, the flight test will help validate the transportation system, launch pad, rocket, spacecraft, in-orbit operations capabilities, and return to Earth with astronauts aboard as the agency prepares to certify Starliner for rotational missions to the space station. Starliner previously flew two uncrewed orbital flights, including a test to and from the space station, along with a pad abort demonstration.

“With Starliner’s launch, separation from the rocket, and arrival on orbit, Boeing’s Crew Flight Test is right on track,” said Mark Nappi, vice president and program manager of Boeing’s Commercial Crew Program. “Everyone is focused on giving Suni and Butch a safe, comfortable, ride and performing a successful test mission from start to finish.”

During Starliner’s flight, Boeing will monitor a series of automatic spacecraft maneuvers from its mission control center in Houston. NASA teams will monitor space station operations throughout the flight from the Mission Control Center at the agency’s Johnson Space Center.

“Flying crew on Starliner represents over a decade of work by the Commercial Crew Program and our partners at Boeing and ULA,” said Steve Stich, manager, Commercial Crew Program, at NASA’s Johnson Space Center. “For many of us, this is a career-defining moment bringing on a new crew transportation capability for our agency and our nation. We are going to take it one step at a time, putting Starliner through its paces, and remaining vigilant until Butch and Suni safely touch down back on Earth at the conclusion of this test flight.”

Starliner will autonomously dock to the forward-facing port of the station’s Harmony module at approximately 11:15 a.m. June 6, and remain at the orbital laboratory for about a week.

Wilmore and Williams will help verify the spacecraft is performing as intended by testing the environmental control system, the displays and control system, and by maneuvering the thrusters, among other tests during flight.

After a safe arrival at the space station, Wilmore and Williams will join the Expedition 71 crew of NASA astronauts Michael Barratt, Matt Dominick, Tracy C. Dyson, and Jeanette Epps, and Roscosmos cosmonauts Nikolai Chub, Alexander Grebenkin, and Oleg Kononenko.

Mission coverage will continue on NASA Television channels throughout Starliner’s flight and resume on NASA+ prior to docking.

Follow mission updates here.

The Huntsville Operations Support Center (HOSC) at NASA’s Marshall Space Flight Center provides engineering and mission operations support for the space station, the Commercial Crew Program, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within HOSC operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day. The Commercial Crew Program support team at Marshall provides crucial programmatic, engineering, and safety and mission assurance expertise for launch vehicles, spacecraft propulsion, and integrated vehicle performance.

A flag-raising ceremony was held May 2 outside the HOSC for Marshall’s support of the mission. The ceremony was a joint effort between the Payload and Mission Operations Division and Commercial Crew Program team.

› Back to Top

Center Director Joseph Pelfrey Outlines Marshall’s Future at 29th Tennessee Valley Corridor Summit

By Rick Smith

Joseph Pelfrey, director of NASA’s Marshall Space Flight Center, was a key presenter at the 29th annual Tennessee Valley Corridor National Summit, hosted by Vanderbilt University in Nashville on May 29 and 30.

The event drew some 300 attendees, including government representatives, members of the public, and industry and academic stakeholders from across the corridor’s five-state region, which includes Alabama, Kentucky, North Carolina, Tennessee, and Virginia.

tvc-pelfrey.jpg?w=2048
NASA Marshall Space Flight Center Director Joseph Pelfrey, left, addresses an audience of academic and industry stakeholders at the 29th annual Tennessee Valley Corridor National Summit in Nashville on May 30.
NASA/Chris Blair

Pelfrey addressed summit attendees May 30 as part of a session on “Exploring and Discovering Through Science, Research, and Space.” He noted that Marshall will embrace a transformative shift, including a transition toward small- and medium-sized programs enabled by strategic partnerships, helping NASA prepare for a future in which astronauts live and work on the Moon and prepare for crewed missions to Mars.

That paradigm shift will rely heavily on “the talent, innovation, and infrastructure available in the Tennessee Valley, (enabling) us to accelerate progress in space exploration, scientific research, and technology development,” Pelfrey added. 

He also emphasized that there is much more to come for Marshall, with the center continuing to serve as a trusted technical solutions provider for NASA and its partners. Pelfrey highlighted how harnessing the center’s deep technical expertise for future missions will help drive innovation, reduce costs, and accelerate shared goals for advanced space exploration.

Pelfrey offered a detailed look at NASA’s successful Artemis I launch in 2022 and the upcoming Artemis II mission, which will send the first woman and first person of color to deep space to conduct a lunar fly-by – the final checkout before Artemis III lands Americans on the lunar surface for the first time since 1972. Pelfrey also discussed Marshall’s role in managing NASA’s SLS (Space Launch System) rocket, the backbone of the agency’s Artemis-era endeavors, and identified new and upcoming programs and efforts geared to expand the center’s role in deep-space science and exploration.

He noted that much of that work has had a direct effect on the state of Tennessee and on industry and academia across the corridor.

Trey Cate, right, SLS strategic communications manager at Marshall, talks with TVC National Summit attendees about the Space Launch System and NASA’s Artemis Program during a break between panel sessions at the May 29-30 event, hosted by Vanderbilt University in Nashville.
Trey Cate, right, SLS strategic communications manager at Marshall, talks with TVC National Summit attendees about the Space Launch System and NASA’s Artemis Program during a break between panel sessions at the May 29-30 event, hosted by Vanderbilt University in Nashville.
NASA/Chris Blair

In fiscal year 2021 alone, NASA’s economic impact supported more than 1,600 jobs and generated more than $340 million in Tennessee alone, including $119 million in labor income. More broadly, since 2015, NASA has enacted 97 Cooperative Agreements with partners across the five-state corridor. Eighty-two of those were with universities, including six minority-serving institutions. Of the 15 industry agreements, 11 created partnerships with small businesses.

“This is truly an exciting time to live and work in the Tennessee Valley,” Pelfrey said, “and to be part of the space community.”

Other summit speakers included Senators Marsha Blackburn and Bill Hagerty of Tennessee, Rep. Chuck Fleischmann of Tennessee’s 3rd district, and Rep. Mark Green of Tennessee’s 7th district; Corey Hinderstein, deputy administrator of the National Nuclear Security Administration; Dr. Steven Streiffer, director of Oak Ridge National Laboratory; and Dr. Robert Lindquist, vice president for research and economic development at the University of Alabama in Huntsville.

Panels and seminars included discussion of American security, global economic leadership, new energy solutions, workforce development, and the emergence of AI technology. More than 20 businesses and academic institutions – including representatives from SLS, the Human Landing Systems Program Office, the Space Nuclear Propulsion Project Office, and other Marshall organizations – engaged with summit participants and promoted current and future NASA endeavors at a trade-show expo in the Vanderbilt Student Life Center.

The Tennessee Valley Corridor was founded in 1995 to foster collaboration between government, academia, and industry, to champion regional economic leadership, and to promote partnerships in national security, science, space, transportation, environment, energy, education, and workforce development. Its 2023 national summit was held in Huntsville.

Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications.

› Back to Top

Davey Jones Named Marshall’s Center Strategy Lead

Davey Jones has been named center strategy lead at NASA’s Marshall Space Flight Center, following the reassignment of Jeramie Broadway, effective June 2.

As center strategy lead for the Office of the Center Director, Jones will lead and implement the director’s strategic vision, leveraging and integrating Marshall’s strategic business units, in coordination and collaboration with all center organizations, and to ensure alignment with the agency’s strategic priorities.

Davey Jones
Davey Jones has been named center strategy lead at NASA’s Marshall Space Flight Center.
NASA/Danielle Burleson

He moves into his new role after being the manager of the Program Planning & Control Office within the HLS (Human Landing Systems) Program at Marshall since 2020. In that capacity, Jones’ primary role was managing the program’s budget, schedule, risk, and other programmatic functions. He has worked in multiple roles throughout his career, focused on the formulation of key programs and projects for Marshall, including development of technology upgrades for life support systems on the International Space Station, formulation of the SLS (Space Launch System) Block 1B vehicle and exploration upper stage, and leading various human exploration architecture studies for the Moon and Mars.

From 2017 to 2020, he was the Environmental Control and Life Support System Integration and Development manager for the International Space Station Projects Office in the Human Exploration Development and Operations Office. Jones was senior technical assistant to Marshall’s associate director, technical, from 2016-2017. Prior to that, he was SLS stages alternate lead systems engineer from 2014-2016. A U.S. Navy veteran, he began his NASA career in 2008 in the Advanced Concepts Office.

Jones’ honors include a NASA Early Career Achievement Medal, Marshall Engineering Director’s Award, and a Human Exploration Framework Team Group Achievement Award.

A native of Lakeland, Florida, he earned a bachelor’s degree in mechanical engineering from the University of Alabama in Huntsville.

› Back to Top

Lucy Images Reveal Asteroid Dinkinesh to be Surprisingly Complex

Images from the November 2023 flyby of asteroid Dinkinesh by NASA’s Lucy spacecraft show a trough on Dinkinesh where a large piece – about a quarter of the asteroid – suddenly shifted, a ridge, and a separate contact binary satellite (now known as Selam). Scientists say this complicated structure shows that Dinkinesh and Selam have significant internal strength and a complex, dynamic history.

Images of asteroid Dinkinesh and its satellite Selam from NASA's Lucy spacecraft.
Panels a, b, and c each show stereographic image pairs of the asteroid Dinkinesh taken by the NASA Lucy Spacecraft’s L’LORRI Instrument in the minutes around closest approach on Nov. 1, 2023. The yellow and rose dots indicate the trough and ridge features, respectively. These images have been sharpened and processed to enhance contrast. Panel d shows a side view of Dinkinesh and its satellite Selam taken a few minutes after closest approach.
NASA/GSFC/SwRI/Johns Hopkins APL/NOIRLab

“We want to understand the strengths of small bodies in our solar system because that’s critical for understanding how planets like Earth got here,” said Hal Levison, Lucy principal investigator at the Boulder, Colorado, branch of the Southwest Research Institute in San Antonio, Texas. “Basically, the planets formed when zillions of smaller objects orbiting the Sun, like asteroids, ran into each other. How objects behave when they hit each other, whether they break apart or stick together, has a lot to do with their strength and internal structure.” Levison is lead author of a paper on these observations published May 29 in Nature.

Researchers think that Dinkinesh is revealing its internal structure by how it has responded to stress. Over millions of years rotating in the sunlight, the tiny forces coming from the thermal radiation emitted from the asteroid’s warm surface generated a small torque that caused Dinkinesh to gradually rotate faster, building up centrifugal stresses until part of the asteroid shifted into a more elongated shape. This event likely caused debris to enter into a close orbit, which became the raw material that produced the ridge and satellite.

If Dinkinesh were much weaker, more like a fluid pile of sand, its particles would have gradually moved toward the equator and flown off into orbit as it spun faster. However, the images suggest that it was able to hold together longer, more like a rock, with more strength than a fluid, eventually giving way under stress and fragmenting into large pieces. (Although the amount of strength needed to fragment a small asteroid like Dinkinesh is miniscule compared to most rocks on Earth.)

“The trough suggests an abrupt failure, more an earthquake with a gradual buildup of stress and then a sudden release, instead of a slow process like a sand dune forming,” said Keith Noll of NASA’s Goddard Space Flight Center, project scientist for Lucy and a co-author of the paper.

On Nov. 1, 2023, NASA’s Lucy spacecraft flew by the main-belt asteroid Dinkinesh. Now, the mission has released pictures from Lucy’s Long Range Reconnaissance Imager taken over a roughly three-hour period, providing the best views of the asteroid to date. During the flyby, Lucy discovered that Dinkinesh has a small moon, which the mission named “Selam,” a greeting in the Amharic language meaning “peace.” Lucy is the first mission designed to visit the Jupiter Trojans, two swarms of asteroids trapped in Jupiter’s orbit that may be “fossils” from the era of planet formation. (NASA’s Goddard Space Flight Center)

“These features tell us that Dinkinesh has some strength, and they let us do a little historical reconstruction to see how this asteroid evolved,” Levison said. “It broke, things moved apart and formed a disk of material during that failure, some of which rained back onto the surface to make the ridge.”

The researchers think some of the material in the disk formed the moon Selam, which is actually two objects touching each other, a configuration called a contact binary. Details of how this unusual moon formed remain mysterious.

Dinkinesh and its satellite are the first two of 11 asteroids that Lucy’s team plans to explore over its 12-year journey. After skimming the inner edge of the main asteroid belt, Lucy is now heading back toward Earth for a gravity assist in December 2024. That close flyby will propel the spacecraft back through the main asteroid belt, where it will observe asteroid Donaldjohanson in 2025, and then on to the first of the encounters with the Trojan asteroids that lead and trail Jupiter in its orbit of the Sun beginning in 2027.

Lucy’s principal investigator is based out of the Boulder, Colorado, branch of Southwest Research Institute, headquartered in San Antonio. NASA’s Goddard Space Flight Center provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built and operates the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. NASA’s Marshall Space Flight Center manages the Discovery Program for the Science Mission Directorate at NASA Headquarters.

› Back to Top

NASA’s Europa Clipper Unpacks in Florida

Crews rotated to vertical then lifted NASA’s Europa Clipper spacecraft from its protective shipping container after it arrived at the Payload Hazardous Servicing Facility at the agency’s Kennedy Space Center on May 28.

ksc-20240528-ph-kls02-0025orig.jpg?w=204
Technicians inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center prepare to rotate the agency’s largest planetary mission spacecraft, Europa Clipper, to a vertical position May 28 as part of prelaunch processing.
NASA/Kim Shiflett

The spacecraft, which will collect data to help scientists determine if Jupiter’s icy moon Europa could support life, arrived in a United States Air Force C-17 Globemaster III cargo plane at Kennedy’s Launch and Landing Facility on May 23. The hardware traveled more than 2,500 miles from NASA’s Jet Propulsion Lab in Southern California where it was assembled. The team transported Europa Clipper to the facility and will perform a number of activities to prepare it for launch, including attaching the high gain antenna, affixing solar arrays to power the spacecraft, and loading propellants that will help guide the spacecraft to its destination.

On board are nine science instruments to gather detailed measurements while Europa Clipper performs approximately 50 close flybys of the Jovian moon. Research suggests an ocean twice the volume of all the Earth’s oceans exists under Europa’s icy crust.

The Europa Clipper spacecraft will launch on a SpaceX Falcon Heavy rocket from NASA Kennedy’s Launch Complex 39A. The launch period opens Oct. 10.

Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Science Mission Directorate. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center executes program management of the Europa Clipper mission.

› Back to Top

Travel Through Data from Space in New 3D Instagram Experiences

A new project provides special 3D “experiences” on Instagram using data from NASA’s Chandra X-ray Observatory and other telescopes through augmented reality (AR), allowing users to travel virtually through objects in space. These new experiences of astronomical objects – including the debris fields of exploded stars – are being released to help celebrate the 25th anniversary of operations from Chandra, NASA’s flagship X-ray telescope.  

These four images showcase the 2D captured views of the cosmic objects included in the new augmented reality 3D release. Presenting multiwavelength images of the Vela Pulsar, Tycho's Supernova Remnant, Helix Nebula, and Cat's Eye Nebula that include Chandra X-ray data as well as optical data in each, and for the Helix, additional infrared and ultraviolet data.
These four images showcase the 2D captured views of the cosmic objects included in the new augmented reality 3D release. Presenting multiwavelength images of the Vela Pulsar, Tycho’s Supernova Remnant, Helix Nebula, and Cat’s Eye Nebula that include Chandra X-ray data as well as optical data in each, and for the Helix, additional infrared and ultraviolet data.
Vela Pulsar: X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI; Image processing: NASA/CXC/SAO/J. Schmidt, K. Arcand; Tycho’s Supernova Remnant: X-ray: NASA/CXC/SAO; Optical: DSS; Image Processing: NASA/CXC/SAO/N. Wolk; Helix Nebula: X-ray: NASA/CXC/SAO; UV: NASA/JPL-Caltech/SSC; Optical: NASA/ STScI/M. Meixner, ESA/NRAO/T.A. Rector; Infrared:NASA/JPL-Caltech/K. Su; Image Processing: NASA/CXC/SAO/N. Wolk and K. Arcand; Cat’s Eye Nebula: X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/J. Major, L. Frattare, K. Arcand)

In recent years, Instagram experiences (previously referred to as filters) of NASA mission control, the International Space Station, and the Perseverance Rover on Mars have allowed participants to virtually explore what NASA does. This new set of Chandra Instagram filters joins this space-themed collection.

“We are excited to bring data from the universe down to earth in this way,” said Kimberly Arcand, visualization and emerging technology scientist at the Chandra X-ray Center. “By enabling people to access cosmic data on their phones and through AR, it brings Chandra’s amazing discoveries literally right to your fingertips.”

The new Instagram experiences are created from 3D models based on data collected by Chandra and other telescopes along with mathematical models. Traditionally, it has been very difficult to gather 3D data of objects in our galaxy due to their two-dimensional projection on the sky. New instruments and techniques, however, have helped allowed astronomers in recent years to construct more data-driven models of what these distant objects look like in three dimensions.

These advancements in astronomy have paralleled the explosion of opportunities in virtual, extended, and augmented reality. Such technologies provide virtual digital experiences, which now extend beyond Earth and into the cosmos. This new set of Chandra Instagram experiences was made possible by a collaboration including NASA, the Smithsonian Institution, and students and researchers at Brown University.

These Instagram experiences also include data sonifications of the celestial objects. Sonification is the process of translating data into sounds and notes so users can hear representations of the data, an accessibility project the Chandra team has led for the past four years.

“These Chandra Instagram experiences are another way to share these cosmic data with the public,” Arcand said. “We are hoping this helps reach new audiences, especially those who like to get their information through social media.”

The objects in the new Chandra Instagram experience collection include the Tycho supernova remnant, the Vela Pulsar, the Helix Nebula, the Cat’s Eye Nebula, and the Chandra spacecraft. The 3D models of the first three objects were done in conjunction with Sal Orlando, an astrophysicist at Italy’s National Institute for Astrophysics (INAF) in Palmero. The Cat’s Eye Nebula was created with data from Ryan Clairmont, physics researcher and undergraduate at Stanford University. Arcand worked with Brown’s Tom Sgouros and his team, research assistant Alexander Dupuis and undergraduate Healey Koch, on the Chandra Instagram filters.

The experiences include text that explains what users are looking at. The effects are free and available on Instagram on mobile devices for at least six months, and some will remain viewable in perpetuity on the Smithsonian’s Voyager 3D website.

“There is a lot of rich and beautiful data associated with these models that Healey and I looked to bring in, which we did by creating the textures on the models as well as programming visual effects for displaying them in AR,” Dupuis said.

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts. The Chandra X-ray Center is headquartered at the Smithsonian Astrophysical Observatory, which is part of the Center for Astrophysics | Harvard & Smithsonian.

Read more from NASA’s Chandra X-ray Observatory.

› Back to Top

Agency to Measure Moonquakes with Help from InSight Mars Mission

The most sensitive instrument ever built to measure quakes and meteor strikes on other worlds is getting closer to its journey to the mysterious far side of the Moon. It’s one of two seismometers adapted for the lunar surface from instruments originally designed for NASA’s InSight Mars lander, which recorded more than 1,300 marsquakes before the mission’s conclusion in 2022.

JPL engineers and technicians prepare NASA’s Farside Seismic Suite for testing
JPL engineers and technicians prepare NASA’s Farside Seismic Suite for testing in simulated lunar gravity, which is about one-sixth of Earth’s. The payload will gather the agency’s first seismic data from the Moon in nearly 50 years and take the first-ever seismic measurements from the far side.
NASA/JPL-Caltech

Part of a payload called Farside Seismic Suite (FSS) that was recently assembled at NASA’s Jet Propulsion Laboratory, the two seismometers are expected to arrive in 2026 at Schrödinger basin, a wide impact crater about 300 miles from the Moon’s South Pole. The self-sufficient, solar-powered suite has its own computer and communications equipment, plus the ability to protect itself from the extreme heat of lunar daytime and the frigid conditions of night.

After being delivered to the surface by a lunar lander under NASA’s CLPS (Commercial Lunar Payload Services) initiative, the suite will return the agency’s first seismic data from the Moon since the last Apollo program seismometers were in operation nearly 50 years ago. Not only that, but it will also provide the first-ever seismic measurements from the Moon’s far side.

Up to 30 times more sensitive than its Apollo predecessors, the suite will record the Moon’s seismic “background” vibration, which is driven by micrometeorites the size of small pebbles that pelt the surface. This will help NASA better understand the current impact environment as the agency prepares to send Artemis astronauts to explore the lunar surface.

Planetary scientists are eager to see what FSS tells them about the Moon’s internal activity and structure. What they learn will offer insights into how the Moon – as well as rocky planets like Mars and Earth – formed and evolved.

It will also answer a lingering question about moonquakes: Why did the Apollo instruments on the lunar near side detect little far-side seismic activity? One possible explanation is that something in the Moon’s deep structure essentially absorbs far-side quakes, making them harder for Apollo’s seismometers to have sensed. Another is that there are fewer quakes on the far side, which on the surface looks very different from the side that faces Earth.

“FSS will offer answers to questions we’ve been asking about the Moon for decades,” said Mark Panning, the FSS principal investigator at JPL and project scientist for InSight. “We cannot wait to start getting this data back.”

Farside Seismic Suite’s two complementary instruments were adapted from InSight designs to perform in lunar gravity – less than half that of Mars, which, in turn, is about a third of Earth’s. They’re packaged together with a battery, the computer, and electronics inside a cube structure that’s surrounded by insulation and an outer protective cube. Perched atop the lander, the suite will gather data continuously for at least 4½ months, operating through the long, cold lunar nights.

e1-pia22871-insight-seis-cropped.jpg?w=1
The Seismic Experiment for Interior Structure instrument (SEIS) aboard NASA’s Mars InSight is within the copper-colored hexagonal enclosure in this photo taken by a camera on the lander’s robotic arm on Dec. 4, 2018. The SEIS technology is being used on Farside Seismic Suite, bound for the Moon.
NASA/JPL-Caltech

The Very Broadband seismometer, or VBB, is the most sensitive seismometer ever built for use in space exploration: It can detect ground motions smaller than the size of a single hydrogen atom. A fat cylinder about 5 inches in diameter, it measures up-and-down movement using a pendulum held in place by a spring. It was originally constructed as an emergency replacement instrument (a “flight spare”) for InSight by the French space agency, CNES (Centre National d’Études Spatiales).

Philippe Lognonné of Institut de Physique du Globe de Paris, the principal investigator for InSight’s seismometer, is an FSS co-investigator and VBB instrument lead. “We learned so much about Mars from this instrument, and now we are thrilled with the opportunity to turn that experience toward the mysteries of the Moon,” he said.

The suite’s smaller seismometer, called the Short Period sensor, or SP, was built by Kinemetrics in Pasadena, California, in collaboration with the University of Oxford and Imperial College, London. The puck-shaped device measures motion in three directions using sensors etched into a trio of square silicon chips each about 1 inch wide.

The FSS payload came together at JPL over the last year. In recent weeks, it survived rigorous environmental testing in vacuum and extreme temperatures that simulate space, along with severe shaking that mimics the rocket’s motion during launch.

“The JPL team has been excited from the beginning that we’re going to the Moon with our French colleagues,” said JPL’s Ed Miller, FSS project manager and, like Panning and Lognonné, a veteran of the InSight mission. “We went to Mars together, and now we’ll be able to look up at the Moon and know we built something up there. It’ll make us so proud.”

A division of Caltech in Pasadena, California, JPL manages, designed, assembled, and tested Farside Seismic Suite. The French space agency, CNES (Centre National d’Études Spatiales), and IPGP (Institut de Physique du Globe de Paris) provided the suite’s Very Broadband seismometer with support from Université Paris Cité and the CNRS (Centre National de la Recherche Scientifique). Imperial College, London and the University of Oxford collaborated to provide the Short Period sensor, managed by Kinemetrics in Pasadena. The University of Michigan provided the flight computer, power electronics, and associated software.

A selection of NASA’s PRISM (Payloads and Research Investigations on the Surface of the Moon), FSS is funded by the Exploration Science Strategy and Integration Office within the agency’s Science Mission Directorate. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center provides program management. FSS will land on the Moon as part of an upcoming lunar delivery under NASA’s CLPS (Commercial Lunar Payload Services) initiative.

› Back to Top

NASA Astronauts Practice Next Giant Leap for Artemis

The physics remain the same, but the rockets, spacecraft, landers, and spacesuits are new as NASA and its industry partners prepare for Artemis astronauts to walk on the Moon for the first time since 1972.

NASA astronaut Doug “Wheels” Wheelock and Axiom Space astronaut Peggy Whitson put on spacesuits, developed by Axiom Space, to interact with and evaluate full-scale developmental hardware of SpaceX’s Starship HLS (Human Landing System) that will be used for landing humans on the Moon under Artemis. The test, conducted April 30, marked the first time astronauts in pressurized spacesuits interacted with a test version of Starship HLS hardware.

NASA astronaut Doug “Wheels” Wheelock and Axiom Space astronaut Peggy Whitson prepare for a test of full-scale mockups of spacesuits developed by Axiom Space and SpaceX’s Starship human landing system developed for NASA’s Artemis missions to the Moon.
NASA astronaut Doug “Wheels” Wheelock and Axiom Space astronaut Peggy Whitson prepare for a test of full-scale mockups of spacesuits developed by Axiom Space and SpaceX’s Starship human landing system developed for NASA’s Artemis missions to the Moon.
SpaceX

“With Artemis, NASA is going to the Moon in a whole new way, with international partners and industry partners like Axiom Space and SpaceX. These partners are contributing their expertise and providing integral parts of the deep space architecture that they develop with NASA’s insight and oversight,” said Amit Kshatriya, NASA’s Moon to Mars program manager. “Integrated tests like this one, with key programs and partners working together, are crucial to ensure systems operate smoothly and are safe and effective for astronauts before they take the next steps on the Moon.”

The day-long test, conducted at SpaceX headquarters in Hawthorne, California, provided NASA and its partners with valuable feedback on the layout, physical design, mechanical assemblies, and clearances inside the Starship HLS, as well as the flexibility and agility of the suits, known as the AxEMU (Axiom Extravehicular Mobility Unit).

To begin the test, Wheelock and Whitson put on the spacesuits in the full-scale airlock that sits on Starship’s airlock deck. Suits were then pressurized using a system immediately outside the HLS airlock that provided air, electrical power, cooling, and communications to the astronauts. Each AxEMU also included a full-scale model of the Portable Life Support System, or “backpack,” on the back of the suits. For Artemis moonwalks, each crew member will put on a spacesuit with minimal assistance, so the team was eager to evaluate how easily the suits can be put on, taken off, and stowed in the airlock.

During the test, NASA and SpaceX engineers were also able to evaluate placement of mobility aids, such as handrails, for traversing the hatch. Another set of mobility aids, straps hanging from the ceiling in the airlock, assisted the astronauts when entering and removing the AxEMU suits. The astronauts also practiced interacting with a control panel in the airlock, ensuring controls could be reached and activated while the astronauts were wearing gloves.

Astronauts were fully suited while conducting mission-like maneuvers in the full-scale build of the Starship human landing system’s airlock which will be located inside Starship under the crew cabin.
Astronauts were fully suited while conducting mission-like maneuvers in the full-scale build of the Starship human landing system’s airlock which will be located inside Starship under the crew cabin.
SpaceX

“Overall, I was pleased with the astronauts’ operation of the control panel and with their ability to perform the difficult tasks they will have to do before stepping onto the Moon,” said Logan Kennedy, lead for surface activities in NASA’s HLS Program. “The test also confirmed that the amount of space available in the airlock, on the deck, and in the elevator, are sufficient for the work our astronauts plan to do.”

The suited astronauts also walked the from Starship’s airlock deck to the elevator built for testing. During Artemis missions, the elevator will take NASA astronauts and their equipment from the deck to the lunar surface for a moonwalk and then back again. Whitson and Wheelock practiced opening a gate to enter the elevator while evaluating the dexterity of the AxEMU suit gloves, and practiced lowering the ramp that astronauts will use to take the next steps on the Moon.

The steps the astronauts took in the spacesuits through full-scale builds of the Starship hatch, airlock, airlock deck, and elevator may have been small, but they marked an important step toward preparing for a new generation of moonwalks as part of Artemis.

For the Artemis III mission, SpaceX will provide the Starship HLS that will dock with Orion in lunar orbit and take two astronauts to and from the surface of the Moon. Axiom Space is providing a new generation of spacesuits for moonwalks that are designed to fit a wider range of astronauts.

With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.

Learn more about Artemis.

› Back to Top

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Dr. Misty Davies receives the prestigious AIAA Fellowship in May 2024 for her contributions to aerospace safety and autonomous systems, recognized at a ceremony in Washington, DC.NASA In May 2024, Dr. Misty Davies joined the American Institute of Aeronautics and Astronautics (AIAA) Class of 2024 Fellows at a ceremony in Washington, DC.  The AIAA website states that, “AIAA confers Fellow upon individuals in recognition of their notable and valuable contributions to the arts, sciences or technology of aeronautics and astronautics.”  The first AIAA Fellows were elected in 1934; since then only 2064 people have been selected for the honor.  Dr. Davies has focused her career at NASA Ames Research Center on developing tools and techniques that enable the safety assurance of increasingly autonomous systems.  She currently serves as the Associate Chief for Aeronautics Systems in the Intelligent Systems Division at NASA Ames and is the Aerospace Operations and Safety Program (AOSP) Technical Advisor for Assurance and Safety. More information on AIAA Fellows is at https://www.aiaa.org/news/news/2024/02/08/aiaa-announces-class-of-2024-honorary-fellows-and-fellows
      Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 52 mins ago 10 min read SARP East 2024 Atmospheric Science Group
      Article 52 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 52 mins ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      8 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Tom Bell, Woods Hole Oceanographic Institution
      Dr. Kelsey Bisson, NASA Headquarters Science Mission Directorate
      Graduate Mentor:
      Kelby Kramer, Massachusetts Institute of Technology

      Kelby Kramer, Graduate Mentor
      Kelby Kramer, graduate mentor for the 2024 SARP Ocean Remote Sensing group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
      Lucas DiSilvestro
      Shallow Water Benthic Cover Type Classification using Hyperspectral Imagery in Kaneohe Bay, Oahu, Hawaii
      Lucas DiSilvestro
      Quantifying the changing structure and extent of benthic coral communities is essential for informing restoration efforts and identifying stressed regions of coral. Accurate classification of shallow-water benthic coral communities requires high spectral and spatial resolution, currently not available on spaceborne sensors, to observe the seafloor through an optically complex seawater column. Here we create a shallow water benthic cover type map of Kaneohe Bay, Oahu, Hawaii using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) without requiring in-situ data as inputs. We first run the AVIRIS data through a semi-analytical inversion model to derive color dissolved organic matter, chlorophyll concentration, bottom albedo, suspended sediment, and depth parameters for each pixel, which are then matched to a Hydrolight simulated water column. Pure reflectance for coral, algae, and sand are then projected through each water column to create spectral endmembers for each pixel. Multiple Endmember Spectral Mixture Analysis (MESMA) provides fractional cover of each benthic class on a per-pixel basis. We demonstrate the efficacy of using simulated water columns to create surface reflectance spectral endmembers as Hydrolight-derived in-situ endmember spectra strongly match AVIRIS surface reflectance for corresponding locations (average R = 0.96). This study highlights the capabilities of using medium-fine resolution hyperspectral imagery to identify fractional cover type of localized coral communities and lays the groundwork for future spaceborne hyperspectral monitoring of global coral communities.

      Atticus Cummings
      Quantifying Uncertainty In Kelp Canopy Remote Sensing Using the Harmonized Landsat Sentinel-2 Dataset
      Atticus Cummings
      California’s giant kelp forests serve as a major foundation for the region’s rich marine biodiversity and provide recreational and economic value to the State of California. With the rising frequency of marine heatwaves and extreme weather onset by climate change, it has become increasingly important to study these vital ecosystems. Kelp forests are highly dynamic, changing across several timescales; seasonally due to nutrient concentrations, waves, and predator populations, weekly with typical growth and decay, and hourly with the tides and currents. Previous remote sensing of kelp canopies has relied on Landsat imagery taken with a eight-day interval, limiting the ability to quantify more rapid changes. This project aims to address uncertainty in kelp canopy detection using the Harmonized Landsat and Sentinel-2 (HLS) dataset’s zero to five-day revisit period. A random forest classifier was used to identify pixels that contain kelp, on which Multiple Endmember Spectral Mixture Analysis (MESMA) was then run to quantify intrapixel kelp density. Processed multispectral satellite images taken within 3 days of one another were paired for comparison. The relationship between fluctuations in kelp canopy density with tides and currents was assessed using in situ data from an acoustic doppler current profiler (ADCP) at the Santa Barbara Long Term Ecological Research site (LTER) and a NOAA tidal buoy. Preliminary results show that current and tidal trends cannot be accurately correlated with canopy detection due to other sources of error. We found that under cloud-free conditions, canopy detection between paired images varied on average by 42%. Standardized image processing suggests that this uncertainty is not created within the image processing step, but likely arises due to exterior factors such as sensor signal noise, atmospheric conditions, and sea state. Ultimately, these errors could lead to misinterpretation of remotely sensed kelp ecosystems, highlighting the need for further research to identify and account for uncertainties in remote sensing of kelp canopies.

      Jasmine Sirvent
      Kelp Us!: A Methods Analysis for Predicting Kelp Pigment Concentrations from Hyperspectral Reflectance
      Jasmine Sirvent
      Ocean color remote sensing enables researchers to assess the quantity and physiology of life in the ocean, which is imperative to understanding ecosystem health and formulating accurate predictions. However, without proper methods to analyze hyperspectral data, correlations between spectral reflectance and physiological traits cannot be accurately derived. In this study, I explored different methods—single variable regression, partial least squares regressions (PLSR), and derivatives—in analyzing in situ Macrocystis pyrifera (giant kelp) off the coast of Santa Barbara, California in order to predict pigment concentrations from AVIRIS hyperspectral reflectance. With derivatives as a spectral diagnostic tool, there is evidence suggesting high versus low pigment concentrations could be diagnosed; however, the fluctuations were within 10 nm of resolution, thus AVIRIS would be unable to reliably detect them. Exploring a different method, I plotted in situ pigment measurements — chlorophyll a, fucoxanthin, and the ratio of fucoxanthin to chlorophyll a—against hyperspectral reflectance that was resampled to AVIRIS bands. PLSR proved to be a more successful model because of its hyperdimensional analysis capabilities in accounting for multiple wavelength bands, reaching R2 values of 0.67. Using this information, I constructed a model that predicts kelp pigments from simulated AVIRIS reflectance using a spatial time series of laboratory spectral measurements and photosynthetic pigment concentrations. These results have implications, not only for kelp, but many other photosynthetic organisms detectable by hyperspectral airborne or satellite sensors. With these findings, airborne optical data could possibly predict a plethora of other biogeochemical traits. Potentially, this research would permit scientists to acquire data analogous to in situ measurements about floating matters that cannot financially and pragmatically be accessed by anything other than a remote sensor.

      Isabelle Cobb
      Correlations Between SSHa and Chl-a Concentrations in the Northern South China Sea
      Isabelle Cobb
      Sea surface height anomalies (SSHa)–variations in sea surface height from climatological averages–occur on seasonal timescales due to coastal upwelling and El Niño-Southern Oscillation (ENSO) cycles. These anomalies are heightened when upwelling plumes bring cold, nutrient-rich water to the surface, and are particularly strong along continental shelves in the Northern South China Sea (NSCS). This linkage between SSHa and nutrient availability has interesting implications for changing chlorophyll-a (chl-a) concentrations, a prominent indicator of phytoplankton biomass that is essential to the health of marine ecosystems. Here, we evaluate the long-term (15 years) relationship between SSHa and chl-a, in both satellite remote sensing data and in situ measurements. Level 3 SSHa data from Jason 1/2/3 satellites and chl-a data from MODIS Aqua were acquired and binned to monthly resolution. We found a significant inverse correlation between SSHa and chl-a during upwelling months in both the remote sensing (Spearman’s R=-0.57) and in situ data, with higher resolution in situ data from ORAS4 (an assimilation of buoy observations from 2003-2017) showing stronger correlations (Spearman’s R=-0.75). In addition, the data reveal that the magnitude of SSH increases with time during instances of high correlation, possibly indicating a trend of increased SSH associated with reduced seasonal chl-a concentrations. Thus, this relationship may inform future work predicting nutrient availability and threats to marine ecosystems as climate change continues to affect coastal sea surface heights.

      Alyssa Tou
      Exploring Coastal Sea Surface Temperature Anomalies and their effect on Coastal Fog through analyzing Plant Phenology
      Alyssa Tou
      Marine heat waves (MHW) have been increasing in frequency, duration and intensity, giving them substantial potential to influence ecosystems. Do these MHWs sufficiently enhance coastal precipitation such that plant growth is impacted? Recently, the Northeast Pacific experienced a long, intense MHW in 2014/2015, and another short, less intense MHW in 2019/2020. Here we investigate how the intensity and duration of MHWs influence the intensity and seasonal cycle of three different land cover types (‘grass’, ‘trees’, and a combination of both ‘combined’’) to analyze plant phenology trends in Big Sur, California. We hypothesize that longer intense MHWs decrease the ocean’s evaporative capacity, decreasing fog, thus lowering plant productivity, as measured by Normalized Difference Vegetation Index (NDVI). Sea surface temperature (SST) and NDVI data were collected from the NOAA Coral Reef Watch, and NASA MODIS/Terra Vegetation Indices 16-Day L3 Global 250m products respectively. Preliminary results show no correlation (R2=0.02) between SSTa and combined NDVI values and no correlation (R2=0.01) between SST and NDVI. This suggests that years with anomalously high SST do not significantly impact plant phenology. During the intense and long 2014/2015 MHW, peak NDVI values for ‘grass’ and ‘combined’ pixels were 2.0 and 1.7 standard deviations above the climatological average, while the shorter 2019/2020 MHW saw higher peaks of 3.2 and 2.4 standard deviations. However, the ‘grass’, ‘tree’ and ‘combined’ NDVI anomalies were statistically insignificant during both MHWs, showing that although NDVI appeared to increase during the shorter and less intense MHW, these values may be attributed to other factors. The data qualitatively suggest that MHW’s don’t impact the peak NDVI date, but more data at higher temporal resolution are necessary. Further research will involve analyzing fog indices and exploring confounding variables impacting NDVI, such as plant physiology, anthropogenic disturbance, and wildfires. In addition, it’s important to understand to what extent changes in NDVI are attributed to the driving factors of MHWs or the MHWs themselves. Ultimately, mechanistically understanding the impacts MHW intensity and duration have on terrestrial ecosystems will better inform coastal community resilience.


      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      10 min read SARP East 2024 Atmospheric Science Group
      Article 21 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 21 mins ago 11 min read SARP East 2024 Terrestrial Fluxes Group
      Article 22 mins ago View the full article
    • By NASA
      10 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Guanyu Huang, Stony Brook University
      Graduate Mentor:
      Ryan Schmedding, McGill University

      Ryan Schmedding, Graduate Mentor
      Ryan Schmedding, graduate mentor for the 2024 SARP Atmospheric Science group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
      Danielle Jones
      Remote sensing of poor air quality in mountains: A case study in Kathmandu, Nepal
      Danielle Jones
      Urban activity produces particulate matter in the atmosphere known as aerosol particles. These aerosols can negatively affect human health and cause changes to the climate system. Measures for aerosols include surface level PM2.5 concentration and aerosol optical depth (AOD). Kathmandu, Nepal is an urban area that rests in a valley on the edge of the Himalayas and is home to over three million people. Despite the prevailing easterly winds, local aerosols are mostly concentrated in the valley from the residential burning of coal followed by industry. Exposure to PM2.5 has caused an estimated ≥8.6% of deaths annually in Nepal. We paired NASA satellite AOD and elevation data, model  meteorological data, and local AirNow PM2.5 and air quality index (AQI) data to determine causes of variation in pollutant measurement during 2023, with increased emphasis on the post-monsoon season (Oct. 1 – Dec. 31). We see the seasonality of meteorological data related to PM2.5 and AQI. During periods of low temperature, low wind speed, and high pressure, PM2.5 and AQI data slightly diverge. This may indicate that temperature inversions increase surface level concentrations of aerosols but have little effect on the total air column. The individual measurements of surface pressure, surface temperature, and wind speed had no observable correlation to AOD (which was less variable than PM2.5 and AQI over the entire year). Elevation was found to have no observable effect on AOD during the period of study. Future research should focus on the relative contributions of different pollutants to the AQI to test if little atmospheric mixing causes the formation of low-altitude secondary pollutants in addition to PM2.5 leading to the observed divergence in AQI and PM2.5.

      Madison Holland
      Analyzing the Transport and Impact of June 2023 Canadian Wildfire Smoke on Surface PM2.5 Levels in Allentown, Pennsylvania
      Madison Holland
      The 2023 wildfire season in Canada was unparalleled in its severity. Over 17 million hectares burned, the largest area ever burned in a single season. The smoke from these wildfires spread thousands of kilometers, causing a large population to be exposed to air pollution. Wildfires can release a variety of air pollutants, including fine particulate matter (PM2.5). PM2.5 directly affects human health – exposure to wildfire-related PM2.5 has been associated with respiratory issues such as the exacerbation of asthma and chronic obstructive pulmonary disease. In June 2023, smoke from the Canadian wildfires drifted southward into the United States. The northeastern United States reported unhealthy levels of air quality due to the transportation of the smoke. In particular, Pennsylvania reported that Canadian wildfires caused portions of the state to have “Hazardous” air quality. Our research focused on how Allentown, PA experienced hazardous levels of air quality from this event. To analyze the concentrations of PM2.5 at the surface level, NASA’s Hazardous Air Quality Ensemble System (HAQES) and the EPA’s Air Quality System (AQS) ground-based site data were utilized. By comparing HAQES’s forecast of hazardous air quality events with recorded daily average PM2.5 with the EPA’s AQS, we were able to compare how well the ensemble system was at predicting total PM2.5 during unhealthy air quality days. NOAA’s Hybrid Single-Particle Lagrangian Integrated Trajectory model, pyrsig, and the Canadian National Fire Database were used. These datasets revealed the trajectory of aerosols from the wildfires to Allentown, Pennsylvania, identified the densest regions of the smoke plumes, and provided a map of wildfire locations in southeastern Canada. By integrating these datasets, we traced how wildfire smoke transported aerosols from the source at the ground level.

      Michele Iraci
      Trends and Transport of Tropospheric Ozone From New York City to Connecticut in the Summer of 2023
      Michele Iraci
      Tropospheric Ozone, or O₃, is a criteria pollutant contributing to most of Connecticut and New York City’s poor air quality days. It has adverse effects on human health, particularly for high-risk individuals. Ozone is produced by nitrogen oxides and volatile organic compounds from fuel combustion reacting with sunlight. The Ozone Transport Region (OTR) is a collection of states in the Northeast and Mid-Atlantic United States that experience cross-state pollution of O₃. Connecticut has multiple days a year where O₃ values exceed the National Ambient Air Quality Standards requiring the implementation of additional monitoring and standards because it falls in the OTR. Partially due to upstream transport from New York City, Connecticut experiences increases in O₃ concentrations in the summer months. Connecticut has seen declines in poor air quality days from O₃ every year due to the regulations on ozone and its precursors. We use ground-based Lidar, Air Quality System data, and a back-trajectory model to examine a case of ozone enhancement in Connecticut caused by air pollutants from New York between June and August 2023. In this time period, Connecticut’s ozone enhancement was caused by air pollutants from New York City. As a result, New York City and Connecticut saw similar O₃ spikes and decline trends. High-temperature days increase O₃ in both places, and wind out of the southwest may transport O₃ to Connecticut. Production and transport of O₃ from New York City help contribute to Connecticut’s poor air quality days, resulting in the need for interstate agreements on pollution management.

      Stefan Sundin
      Correlations Between the Planetary Boundary Layer Height and the Lifting Condensation Level
      Stefan Sundin
      The Planetary Boundary Layer (PBL) characterizes the lowest layer in the atmosphere that is coupled with diurnal heating at the surface. The PBL grows during the day as solar heating causes pockets of air near the surface to rise and mix with cooler air above. Depending on the type of terrain and surface albedo that receives solar heating, the depth of the PBL can vary to a great extent. This makes PBL height (PBLH) a difficult variable to quantify spatially and temporally. While several methods have been used to obtain the PBLH such as wind profilers and lidar techniques, there is still a level of uncertainty associated with PBLH. One method of predicting seasonal PBLH fluctuation and potentially lessening uncertainty that will be discussed in this study is recognizing a correlation in PBLH with the lifting condensation level (LCL). Like the PBL, the LCL is used as a convective parameter when analyzing upper air data, and classifies the height in the atmosphere at which a parcel becomes saturated when lifted by a forcing mechanism, such as a frontal boundary, localized convergence, or orographic lifting. A reason to believe that PBLH and LCL are interconnected is their dependency on both the amount of surface heating and moisture that is present in the environment. These thermodynamic properties are of interest in heavily populated metropolitan areas within the Great Plains, as they are more susceptible to severe weather outbreaks and associated economic losses. Correlations between PBLH and LCL over the Minneapolis-St. Paul metropolitan statistical area during the summer months of 2019-2023 will be discussed.

      Angelica Kusen
      Coupling of Chlorophyll-a Concentrations and Aerosol Optical Depth in the Subantarctic Southern Ocean and South China Sea (2019-2021)
      Angelica Kusen
      Air-sea interactions form a complex feedback mechanism, whereby aerosols impact physical and biogeochemical processes in marine environments, which, in turn, alter aerosol properties. One key indicator of these interactions is chlorophyll-a (Chl-a), a pigment common to all phytoplankton and a widely used proxy for primary productivity in marine ecosystems. Phytoplankton require soluble nutrients and trace metals for growth, which typically come from oceanic processes such as upwelling. These nutrients can also be supplied via wet and dry deposition, where atmospheric aerosols are removed from the atmosphere and deposited into the ocean. To explore this interaction, we analyze the spatial and temporal variations of satellite-derived chl-a and AOD, their correlations, and their relationship with wind patterns in the Subantarctic Southern Ocean and the South China Sea from 2019 to 2021, two regions with contrasting environmental conditions.
      In the Subantarctic Southern Ocean, a positive correlation (r²= 0.26) between AOD and Chl-a was found, likely due to dust storms following Austrian wildfires. Winds deposit dust aerosols rich in nutrients, such as iron, to the iron-limited ocean, enhancing phytoplankton photosynthesis and increasing chl-a. In contrast, the South China Sea showed no notable correlation (r² = -0.02) between AOD and chl-a. Decreased emissions due to COVID-19 and stricter pollution controls likely reduced the total AOD load and shifted the composition of aerosols from anthropogenic to more natural sources.
      These findings highlight the complex interrelationship between oceanic biological activity and the chemical composition of the atmosphere, emphasizing that atmospheric delivery of essential nutrients, such as iron and phosphorus, promotes phytoplankton growth. Finally, NASA’s recently launched PACE mission will contribute observations of phytoplankton community composition at unprecedented scale, possibly enabling attribution of AOD levels to particular groups of phytoplankton.

      Chris Hautman
      Estimating CO₂ Emission from Rocket Plumes Using in Situ Data from Low Earth Atmosphere
      Chris Hautman
      Rocket emissions in the lower atmosphere are becoming an increasing environmental concern as space exploration and commercial satellite launches have increased exponentially in recent years. Rocket plumes are one of the few known sources of anthropogenic emissions directly into the upper atmosphere. Emissions in the lower atmosphere may also be of interest due to their impacts on human health and the environment, in particular, ground level pollutants transported over wildlife protected zones, such as the Everglades, or population centers near launch sites. While rockets are a known source of atmospheric pollution, the study of rocket exhaust is an ongoing task. Rocket exhaust can have a variety of compositions depending on the type of engine, the propellants used, including fuels, oxidizers, and monopropellants, the stoichiometry of the combustion itself also plays a role. In addition, there has been increasing research into compounds being vaporized in atmospheric reentry. These emissions, while relatively minimal compared to other methods of travel, pose an increasing threat to atmospheric stability and environmental health with the increase in human space activity. This study attempts to create a method for estimating the total amount of carbon dioxide released by the first stage of a rocket launch relative to the mass flow of RP-1, a highly refined kerosene (C₁₂H₂₆)), and liquid oxygen (LOX) propellants. Particularly, this study will focus on relating in situ CO₂ emission data from a Delta II rocket launch from Vandenberg Air Force Base on April 15, 1999, to CO₂ emissions from popular modern rockets, such as the Falcon 9 (SpaceX) and Soyuz variants (Russia). The findings indicate that the CO₂ density of any RP-1/LOX rocket is 6.9E-7 times the mass flow of the sum of all engines on the first stage. The total mass of CO₂ emitted can be further estimated by modeling the volume of the plume as cylindrical. Therefore, the total mass can be calculated as a function of mass flow and first stage main engine cutoff. Future CO₂ emissions on an annual basis are calculated based on these estimations and anticipated increases in launch frequency.


      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 21 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 21 mins ago 11 min read SARP East 2024 Terrestrial Fluxes Group
      Article 22 mins ago View the full article
    • By NASA
      10 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Dom Ciruzzi, College of William & Mary
      Graduate Mentor:
      Marley Majetic, Pennsylvania State University

      Marley Majetic, Graduate Mentor
      Marley Majetic, graduate mentor for the 2024 SARP Hydroecology group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
      Jordan DiPrima
      How are different land cover types affected by land subsidence on the U.S. Atlantic Coast?
      Jordan DiPrima
      Land subsidence is a frequently overlooked geologic hazard that is caused by natural processes and, more recently, anthropogenic stressors. The goal of this study is to observe subsidence trends and hotspots among land cover types on Virginia’s Eastern Shore and Long Island, New York. This study utilizes interferometric synthetic aperture radar, or InSAR, satellite data from Sentinel-1 to map vertical land motion from 2017 to 2023. Land cover data were sourced from Landsat 8 satellite imagery. Subsidence was mapped within the following land cover types on the Eastern Shore: urban, wetland, cropland, temperate or sub-polar grassland, temperate or sub-polar shrubland, mixed forest, and temperate or subpolar needleleaf forest. These land cover types have mean vertical velocities ranging from -0.2 mm/yr to -5.2 mm/yr. Results suggest that land subsidence is most severe in cropland areas on the Eastern Shore, with a mean vertical velocity of -5.2 mm/yr. In contrast, wetlands display the most subsidence on Long Island with a mean vertical velocity of -2.1 mm/yr. Long Island lacked distinct trends among land cover types and instead showed evidence of subsidence hotspots. These hotspots exist in the following land cover types: temperate or sub-polar grassland, barren lands, wetland, cropland, and temperate or sub-polar broadleaf deciduous forest. Overall, Eastern Shore croplands and Long Island wetlands were determined to be the most susceptible land cover types. These findings highlight regions at risk of sea level rise, flooding, and coastal erosion as a result of subsidence. With further research, we can map subsiding landscapes on a global scale to improve resource allocation and mitigation techniques.

      Isabelle Peterson
      Total Thermokarst Lake Changes on the Seward Peninsula, Alaska: 2016 to 2024
      Isabelle Peterson
      Thermokarst landscapes have and will continue to change as the arctic landscape warms due to climate change. Permafrost underlies much of these arctic landscapes, and as it melts, thermokarst landscapes are left behind. The Seward Peninsula in Alaska has an abundance of these landscapes, and thermokarst lakes are present in the northernmost portion. Several lakes have come and gone, but with increasing climate instability and warming of the area, there is a possibility of more permafrost melting, creating more of these lakes. To capture these changes, Harmonized Landsat Sentinel-2 (HLS) imagery were used to create annual lake maps of the northern portion of the Seward Peninsula from 2016 to 2024. Much of the methodology was informed from Jones et al. (2011); however, their study used eCognition, while the present study used ArcGIS Pro. This caused some differences in results likely due to the differences in software, satellite imagery, and the proposed study area. Lake number changes were observed annually. From this annual change, several 10 to 40 ha lakes disappeared and reappeared within the study period, along with smaller lakes filling in where larger lakes once were. Thermokarst lake drainage is a process described by Jones and Arp (2015) which has devastating geomorphological impacts on the surrounding area, creating large drainage troughs which diminish surrounding permafrost in a quick time frame. To capture these events and overall changes, satellite imagery is essential. This is especially true in remote regions which are hard to reach by foot and require flight missions to be scheduled over the area for aerial photography. However, LVIS and other higher resolution aerial instruments would provide higher accuracy when identifying smaller lakes, as satellite imagery does not accurately capture lakes below 1 ha in the study area. This assertion is made due to conflicting results compared to Jones et al (2011). While the methodologies of this study have been executed manually, Qin, Zhang, and Lu (2023) have proposed the idea of using Sentinel-2 imagery to map thermokarst lakes through automatic methods. While automatization has not yet been perfected, the potential is there and can be used to analyze thermokarst areas effectively. With more satellite imagery, annual, monthly, and potentially daily changes can be captured in favorable months to monitor changing landscapes in arctic regions. Thermokarst lakes have been changing, and monitoring them can help in the process of understanding the changing climate in arctic areas, especially through the lens melting permafrost.

      Emmanelle Cuasay
      Finding Refuge in Climate Crisis: Analyzing the Differences between Refugia and Non-Refugia in the Northern Philippines Using Remote Sensing
      Emmanelle Cuasay
      Refugia are areas that are characterized by stable environmental conditions that can act as a refuge for species as Earth’s climate warms. In this study, fourteen Harmonized Landsat Sentinel-2 images from February 2014 – March 2024 of the northern Philippines region were used. The region of interest is the terrestrial biome by Lake Taal. Normalized Difference Vegetation Index (NDVI) maps were created from all fourteen images to determine the NDVI 25th highest quartiles of the long-term average NDVI images and of a dry and wet year NDVI image. These values were then used to create refugia and non-refugia maps using ArcGIS Pro. Land cover data from Sentinel-2 and a digital elevation model (DEM), using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), were plotted in ArcGIS Pro to determine the slope and aspect of the area. Global Ecosystems Dynamics Investigation (GEDI) data were used to look at forest height of the study area, and the distribution of forest height, slope, aspect, and elevation were plotted to determine their probability densities in refugia and non-refugia areas. Results of this study show increased biomass in refugia areas. This suggests that conservation practices are crucial to aid in the preservation of biodiversity and biomass within these refugia areas.

      Jayce Crayne
      Site-Based Observations of a Saharan Dust Storm’s Impacts on Evapotranspiration in North-Central Florida
      Jayce Crayne
      Saharan dust storms serve an important role in the western Atlantic’s climate in their contribution to Earth’s radiation budget, modulating sea surface temperatures (SSTs), fertilizing ecosystems, and suppressing cloud and precipitation patterns (Yuan et al., 2020). However, Saharan dust storms are expected to become less frequent in this region as SSTs continue to rise (Yuan et al., 2020). Predicting the climate response to this change requires a keen understanding of how the presence of these storms affect evapotranspiration (ET) and its indicators. This study utilizes site-based observational data from an AmeriFlux tower near Gainesville, FL recorded during a large dust storm in late June 2020. The storm’s progression was documented using satellite imagery from Aqua and Terra and aerosol optical depth (AOD) measurements from an Aerosol Robotic Network (AERONET) station co-located with the AmeriFlux tower. Indicators of ET such as surface air temperature, vapor pressure deficit, photosynthetic photon flux density, and net radiation were analyzed. Findings were compared to modeled ET and latent energy flux reanalysis data provided by the Global Land Data Assimilation System (GLDAS). Both model simulations and on-site observations support that ET decreased during the days dust concentrations were heaviest and for a short time thereafter. Cloud cover data adopted from meteorological aerodrome reports (METARs) provided by an automated surface observing system (ASOS) located in Gainesville showed that clouds were not a major contributor in decreasing ET during the days of heaviest dust. The results of this study show a considerable decrease in ET as a result of dust aerosols. Further research is necessary to determine whether changes in ET due to Saharan dust storms are significant enough to alter climates in the western Atlantic and, if so, what the climate response will be if the frequency of storms decreases.

      Brandon Wilson
      Predicting 2025 and 2028 dNBR and dNDIV for Csarf Smith River Complex / Evaluating the Effects of 2019 California Wildfire Fund
      Brandon Wilson
      Biodiverse regions across California remain vulnerable to harmful wildfires year round. Quantifying and measuring these regions’ wildfire resilience is necessary for understanding where/how to allocate environmental resources. Several ecological wildfire studies have been conducted utilizing artificial intelligence and remote sensing to analyze and predict biodiversity damage across wildfire prone regions, including Northern Algeria and Arkansas, USA. The current case study aims to analyze biodiversity damage from the 2023 Csarf Smith River Complex Fire in Six Rivers National Forest, California and predict the difference in Normalized Burn Ratio (dNBR) and difference in Normalized Difference Vegetation Index (dNDVI) for 2025 and 2028 using remote-sensing-based random forest (RF) regression. Furthermore, to observe, holistically, a practical method California has implemented to address state-wide wildfire damage, the 2019 California Wildfire Fund (AB 1054 and AB 111) was evaluated using the synthetic control method (SCM). For this case study, remote sensing data from the United States Geological Survey (USGS) and NASA (Landsat 9 Satellite C2 L2, TerraClimate and the Land Data Assimilation System) were utilized for processing relevant spectral indexes for the RF. Data from NOAA, Energy Information Agency, International Monetary Fund and Bureau of Economic Analysis were utilized as synthetic control datasets to evaluate the effects of the 2019 California Wildfire Fund. Elevated topography in this study area is susceptible to high severity burn effects, while less elevated topography burns less. This result affected dNBR and dNDVI predictions as elevated areas seemingly did not have strong resilience to rampant burns. This demonstrates a direct correlation to potential lower transpiration rates for elevated areas, warranting further analysis. Results of low variance, post-treatment, between the treated unit and the synthetic control unit, poses concern for the positive effect of the 2019 Wildfire Fund.

      Carrie Hashimoto
      Describing changes in evapotranspiration following the 2020 Creek Fire in the southern Sierra Nevada
      Carrie Hashimoto
      Climatic warming and high tree density have caused larger and more severe wildfires to occur in western United States forests over time. Wildfires affect both the hydrology and ecology of forests via alterations to the water balance (e.g., evapotranspiration, streamflow, infiltration, and more) and could shift vegetation communities and subsequent ecosystem structure and function. This project explores ecological characteristics of a landscape that predict the extent to which the Creek Fire in the southern Sierra Nevada has affected evapotranspiration. Strides in understanding of consequential evapotranspiration changes can create pathways to address emerging forest health challenges posed by similar western fires. For analysis, various remote sensing and modeled data were collected from OpenET, the North American Land Data Assimilation System, TerraClimate, Harmonized LandSat Sentinel-2 data, and the Shuttle Radar Topography Mission. Multiple linear regression and generalized additive models were constructed. Relative change in evapotranspiration served as the response variable. Model covariates included average temperature, total precipitation in the preceding months, average soil moisture, elevation, slope, aspect, northness, latitude, pre-fire normalized difference vegetation index (NDVI), and post-fire change in normalized burn ratio (dNBR). Best subset selection with cross validation demonstrated minimization of cross-validation error with a 7-covariate model. This reduced model yields lower complexity and more interpretability while sustaining an adjusted R2 of 0.626, compared to the full model’s adjusted R2 of 0.663. A reduced generalized additive model (GAM) with interaction terms drawn from the linear model variable selection demonstrated an adjusted R2 of 0.695, indicating a better fit that comes at the cost of reduced interpretability and higher computational requirements than the linear models. The goal of this work is to disentangle environmental indicators of post-fire evapotranspiration change, such that predictive modeling of future wildfire impacts on evapotranspiration can be achieved.


      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 21 mins ago 10 min read SARP East 2024 Atmospheric Science Group
      Article 21 mins ago 11 min read SARP East 2024 Terrestrial Fluxes Group
      Article 22 mins ago View the full article
    • By NASA
      11 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Lisa Haber, Virginia Commonwealth University
      Dr. Brandon Alveshere, Virginia Commonwealth University
      Dr. Chris Gough, Virginia Commonwealth University
      Graduate Mentor:
      Mindy Priddy, Virginia Commonwealth University

      Mindy Priddy, Graduate Mentor
      Mindy Priddy, graduate mentor for the 2024 SARP Terrestrial Fluxes group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.

      Angelina De La Torre
      Using NDVI as a Proxy for GPP to Predict Carbon Dioxide Fluxes
      Angelina De La Torre
      Climate change, driven primarily by greenhouse gases, poses a threat to the future of our planet. Among these gases is carbon dioxide (CO₂), which has a much longer atmospheric residence time compared to other greenhouse gases. One potential factor in reducing atmospheric CO₂ enrichment is plant productivity. Gross Primary Productivity (GPP) estimates the amount of CO₂ fixed during photosynthesis. The Normalized Difference Vegetation Index (NDVI) provides insight into the health of an ecosystem by measuring the density and greenness of vegetation. Therefore, it can be inferred that there is a relationship between NDVI and GPP, as greener plants are likely more productive. In this study, we used NDVI as a proxy for GPP and analyzed the effect NDVI had on CO₂ fluxes during California’s wet season between January and March 2023 in a restored tidal freshwater wetland. GPP and CO₂ flux data were obtained from the Dutch Slough AmeriFlux tower in Oakley, California. Landsat data were used to calculate the average NDVI. The influence of NDVI on GPP was assessed using linear regression. A second linear regression was then performed using NDVI and CO₂ flux, of which GPP is one component. We anticipate that wetlands with greater vegetation density will have lower CO₂ emissions.

      Because Landsat data scans in 16-day intervals, daily variation in NDVI could not be observed. This translates to a frequency discrepancy between the Landsat and AmeriFlux data, as AmeriFlux towers measure in half-hour intervals. Additionally, the wet season represented was limited by data availability, as the data before 2023 were unavailable. Despite data limitations in this study, the outlined process could be repeated in various wetland and climate classifications for further analysis of a larger sample size. This study could assist in developing strategies to increase CO₂ sequestration in an attempt to slow the effects of climate change.

      Samarth Jayadev
      Using Machine Learning to Assess Relationships between NDVI and Net Carbon Exchange During the COVID-19 Pandemic
      Samarth Jayadev
      Understanding the movement of carbon between Earth’s land surface and atmosphere is essential for ecosystem monitoring, creating climate change mitigation strategies, and assessing the carbon budget on national to global scales. Measures of greenness serve as indicators of processes such as photosynthesis that control carbon exchange and are vital in modeling of carbon fluxes. NASA’s Orbiting Carbon Observatory (OCO-2) provides high quality measurements of column-averaged CO₂ concentrations that can be used to derive net carbon exchange (NCE), a measure of CO₂ flux between terrestrial ecosystems and the atmosphere.
      From OCO-2, NCE data collected at the land nadir, land glint satellite position combined with in situ sampling can provide accurate measurements on a 1°x1° scale suitable for carbon flux characterization across the contiguous United States (CONUS). Normalized difference vegetation index (NDVI), which ranges from -1 to +1, measures the greenness of vegetation, serving as an indicator of plant density and health. This can help to understand ecosystem to carbon-cycle interactions and be leveraged for determining patterns with NCE. We examined the relationship between NDVI and NCE across CONUS during 2020 using Gradient Boosting Decision Trees (GBDT) which specialize in classifying and predicting non-linear relationships. This algorithm takes multiple weak learners (decision trees) and combines their predictions in an iterative ensemble method to improve prediction accuracy. Feature and permutation importance tests found that January and August (trough and peak NDVI, respectively) were the highest weighted predictor variables related to NCE. The dataset was split in a 90% training 10% test ratio across latitude/longitude grid cells to assess and verify model performance. Using the mean squared error loss function and hyperparameters with optimal estimators, tree depth, sample split, and learning rate the algorithm was able to converge the test predictions to match the deviance of the training data. The gradient boosting model can be applied to different months and years of NDVI/NCE to further explore these relationships or a multitude of research questions. Further studies should consider integrating land use and land cover change variables such as bare land and urbanization to improve predictions of NCE.

      Makai Ogoshi
      Deep-learning Derived Spaceborne Canopy Structural Metrics Predict Forest Carbon Fluxes
      Makai Ogoshi
      Terrestrial and airborne lidar data products describing canopy structure are potent predictors of forest carbon fluxes, but whether satellite data products produce similarly robust indicators of canopy structure is not known. The assessment of contemporary spaceborne lidar and other remote sensing data products as predictors of carbon fluxes is crucial to next generation instrument and data product design and large-spatial scale modeling. We investigated relationships between deciduous broadleaf forest canopy structure, derived from deep-learning models created with lidar data from GEDI and optical imagery from Sentinel-2, and forest carbon exchange. These included comparisons to in-situ continuous net ecosystem exchange (NEE), gross primary production (GPP), and net primary production (NPP). We find that the mean  canopy height from the gridded spaceborne product has a strong correlation with forest NPP, similar to prior analysis with ground-based lidar (portable canopy lidar; PCL). For comparison to NPP, heights taken from the gridded spaceborne product were compared by overlapping the product with nine terrestrial forest sites from the National Ecological Observatory Network (NEON). We used standard deviation of canopy height as a measure of canopy structural complexity. Complexity derived from the gridded spaceborne product does not show the same strong correlation with NPP as found when using PCL. Mean annual GPP and NEE across five years were compared to the gridded spaceborne product at six Fluxnet2015-tower sites with continuous, gap-filled carbon flux data. When compared to in-situ flux tower data, neither mean canopy height nor structural complexity strongly correlate to annual NEE or GPP. Primarily, the finding that derived spaceborne products exhibit a strong correlation between forest canopy height and NPP will advance global-scale application of forest-carbon flux predictions. Secondarily, a variety of limitations highlight shortcomings in the current terrestrial flux data network. A small number of available study sites, both spatially and temporally, and lack of resolution in vertical complexity of canopy structure both contribute to uncertainty in assessing the relationships to NEE and GPP.

      Sebastian Reed
      Porewater Methane Concentrations Vary Significantly Across A Freshwater Tidal Wetland
      Sebastian Reed
      Methane is a potent greenhouse gas that is over 80 times more powerful than CO₂ at trapping heat and accounts for an estimated 30% of global temperature rise associated with climate change. The largest natural source of methane worldwide is wetlands. Despite the role of methane in driving climate change, the magnitude of global annual wetland methane flux remains highly uncertain. This study analyzes the effects of greenness (assessed using Normalized Difference Vegetation Index; NDVI), plant species composition, rooting depth, atmospheric methane concentration, and plant longevity on porewater methane concentration at the Kimages Rice Rivers Center tidal freshwater wetland. Samples for atmospheric and porewater concentrations were conducted in situ in June 2024. For each sampling location (n = 23) we collected whole air samples (WAS) 2m above the marsh surface and porewater samples 5cm below the marsh surface. We visually assessed species composition at each sample location, with 12 species of wetland plants present overall. We used the TRY plant database to find the rooting depth, leaf nitrogen content, and lifespan of each species. Drone multispectral data from 2023 was used to estimate NDVI values. These variables were compared to the pore water methane concentration via stepwise linear regression. Leaf N content, NDVI, plant species, and WAS sampling did not show statistically significant correlation to porewater methane concentration. Rooting depth showed a slight positive correlation with porewater methane (alpha = 0.1, p = 0.08, R^2 = 0.1). Samples with only perennial plants (as opposed to annual plants) had a higher mean value of porewater methane (p = 0.1). Analyzing porewater methane provides insight as to what wetland components affect methanogenesis and methane release, which aids in assessing which plant functional traits are most responsible for driving or mitigating climate change. Results from this study and future research in this area has the potential to more accurately assess how methane cycles through wetlands to the atmosphere.

      Nohemi Rodarte
      Understanding the vertical profile of CO₂ concentration: How carbon dioxide levels change with altitude
      Nohemi Rodarte
      Carbon dioxide (CO₂) is one of the main greenhouse gasses that contribute to global warming.While the relationship between CO₂ concentrations and land cover types, such as forests and urban areas, is well documented, there is limited knowledge of how CO₂ concentrations vary with altitude at fine spatial scales. Guided by our hypothesis that CO₂ levels vary with altitude and increase with elevation, we used airborne data collected from the B200 aircraft, which flew at different altitudes (400 to 1200 feet) above the urban area of Hopewell, Virginia, between 9:40 AM and 10:40 AM. We analyzed the CO₂ concentrations recorded by the flight to obtain the median and range for each 100 feet of altitude. Our results reveal that carbon dioxide concentrations varied significantly across the range of altitudes investigated. Within the area studied, CO₂ concentrations were found to range between 410 and 470 ppm. The distribution of these concentrations along the altitude gradient shows a bimodal pattern, with notable peaks at altitudes of 700 to 800 feet and 1100 to 1200 feet. Although CO₂ levels were present at all measured altitudes, there was a noticeable drop in the mean concentration at 800 feet,which then stabilized until reaching 1,000 feet before rising again. This pattern indicates that the concentrations of this greenhouse gas are not uniformly distributed with altitude, but rather vary significantly, showing higher concentrations at certain elevations and lower concentrations at others. The CO₂ distribution fluctuates with altitude, showing higher or lower levels at specific heights rather than a smooth gradient, indicating that altitude impacts CO₂ concentrations. While we did not identify the drivers of this change, future studies could evaluate how factors such as surface emissions, atmospheric mixing, and local conditions may contribute to vertical CO₂ profiles, since the altitudes we considered in this research are within the troposphere.

      Camille Shaw
      Linking NDVI with CO₂ and CH₄ Fluxes: Insights into Vegetation and Urban Source-Sink Dynamics in the Great Dismal Swamp
      Camille Shaw
      In recent years, carbon dioxide, methane, and other greenhouse gases have gained attention because of their contribution to the rise in Earth’s global mean temperature. Methane and carbon dioxide have various sources and sinks, but an expanding array of sources have created a need to assess ongoing change in carbon balance. This study aims to quantify the relationship between Normalized Difference Vegetation Index, or NDVI, and methane and carbon dioxide fluxes. We measured carbon dioxide and methane concentrations within the boundary layer using the PICARRO instrument, focusing on the Great Dismal Swamp, a forested wetland, and surrounding areas in the Eastern Mid-Atlantic Region. Data collection occurred at various times of day and along different flight paths in 2016, 2017, and 2024, with each year representing data from a single season, either spring or fall, for temporal analysis. We calculated methane and carbon dioxide fluxes along the flight paths using airborne eddy covariance, a method for capturing accurate flux measurements while accounting for the mixing of gases in the boundary layer caused by heat. Additionally, we calculated NDVI for this area using NASA’s Landsat 8 and 9 satellite imagery. Analysis of the afternoon flight data revealed a negative linear correlation between NDVI and carbon dioxide flux. Urban areas, characterized by low NDVI, exhibit a positive carbon dioxide flux as a consequence of emissions from vehicles, while forested areas, with high NDVI, show a negative carbon dioxide flux because of photosynthesis. In contrast, methane flux shows minimal correlation with NDVI. The lack of correlation arises because forested wetlands, with high NDVI, emit substantial amounts of methane, while urban areas, despite having low NDVI, still produce significant methane emissions from landfills and industrial activities. Future research could further investigate how seasonal and diurnal variations influence the correlations between NDVI and greenhouse gases by collecting comprehensive data across all seasons within a given year and at various times of the day.

      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 21 mins ago 10 min read SARP East 2024 Atmospheric Science Group
      Article 21 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 21 mins ago View the full article
  • Check out these Videos

×
×
  • Create New...