Jump to content

LIFTOFF! NASA Astronauts Pilot First Starliner Crewed Test to Station


Recommended Posts

  • Publishers
cft-liftoff.jpg?w=1665
A United Launch Alliance Atlas V rocket with Boeing’s Starliner spacecraft aboard launches from Space Launch Complex 41 at Cape Canaveral Space Force Station, Wednesday, June 5, 2024, in Florida. NASA’s Boeing Crew Flight Test is the first launch with astronauts of the Boeing spacecraft and United Launch Alliance Atlas V rocket to the International Space Station as part of the agency’s Commercial Crew Program.
Credits: NASA/Joel Kowsky

NASA astronauts Butch Wilmore and Suni Williams are safely in orbit on the first crewed flight test aboard Boeing’s Starliner spacecraft bound for the International Space Station.

As part of NASA’s Boeing Crew Flight Test, the astronauts lifted off at 10:52 a.m. EDT Wednesday on a ULA (United Launch Alliance) Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on an end-to-end test of the Starliner system.

“Two bold NASA astronauts are well on their way on this historic first test flight of a brand-new spacecraft,” said NASA Administrator Bill Nelson. “Boeing’s Starliner marks a new chapter of American exploration. Human spaceflight is a daring task – but that’s why it’s worth doing. It’s an exciting time for NASA, our commercial partners, and the future of exploration. Go Starliner, Go Butch and Suni!”

As part of NASA’s Commercial Crew Program, the flight test will help validate the transportation system, launch pad, rocket, spacecraft, in-orbit operations capabilities, and return to Earth with astronauts aboard as the agency prepares to certify Starliner for rotational missions to the space station. Starliner previously flew two uncrewed orbital flights, including a test to and from the space station, along with a pad abort demonstration.

“With Starliner’s launch, separation from the rocket, and arrival on orbit, Boeing’s Crew Flight Test is right on track,” said Mark Nappi, vice president and program manager of Boeing’s Commercial Crew Program. “Everyone is focused on giving Suni and Butch a safe, comfortable, ride and performing a successful test mission from start to finish.”

During Starliner’s flight, Boeing will monitor a series of automatic spacecraft maneuvers from its mission control center in Houston. NASA teams will monitor space station operations throughout the flight from the Mission Control Center at the agency’s Johnson Space Center in Houston.

“Flying crew on Starliner represents over a decade of work by the Commercial Crew Program and our partners at Boeing and ULA,” said Steve Stich, manager, Commercial Crew Program, at NASA’s Johnson Space Center in Houston. “For many of us, this is a career-defining moment bringing on a new crew transportation capability for our agency and our nation. We are going to take it one step at a time, putting Starliner through its paces, and remaining vigilant until Butch and Suni safely touch down back on Earth at the conclusion of this test flight.”

Starliner will autonomously dock to the forward-facing port of the station’s Harmony module at approximately 12:15 p.m. Thursday, June 6, and remain at the orbital laboratory for about a week.

Wilmore and Williams will help verify the spacecraft is performing as intended by testing the environmental control system, the displays and control system, and by maneuvering the thrusters, among other tests during flight.

After a safe arrival at the space station, Wilmore and Williams will join the Expedition 71 crew of NASA astronauts Michael Barratt, Matt Dominick, Tracy C. Dyson, and Jeanette Epps, and Roscosmos cosmonauts Nikolai Chub, Alexander Grebenkin, and Oleg Kononenko.

NASA’s arrival and in-flight event coverage is as follows (all times Eastern and subject to change based on real-time operations):

Mission coverage will continue on NASA Television channels throughout Starliner’s flight and resume on NASA+ prior to docking.

Thursday, June 6
9:30 a.m. – Arrival coverage begins on NASA+, the NASA app, and YouTube, and continues on NASA Television and the agency’s website.

12:15 p.m. – Targeted docking

2 p.m. – Hatch opening

2:20 p.m. – Welcome remarks

3:30 p.m. – Post-docking news conference at NASA Johnson with the following participants:

  • NASA Associate Administrator Jim Free
  • Steve Stich, manager, NASA’s Commercial Crew Program
  • Jeff Arend, manager for systems engineering and integration, NASA’s International Space Station Office
  • Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing

Coverage of the post-docking news conference will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

5:50 p.m. – NASA Administrator Bill Nelson, Deputy Administrator Pam Melroy, Associate Administrator Jim Free, Associate Administrator for Space Operations Ken Bowersox, and Johnson Space Center Director Vanessa Wyche will speak with Wilmore and Williams about their launch aboard the Starliner spacecraft.

Coverage of the Earth to space call will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

Saturday, June 8

8:50 a.m. – NASA astronauts Wilmore and Williams will provide a tour of Starliner.

Coverage of the in-orbit event will stream live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

Monday, June 10

11 a.m. – Williams will speak to students from Sunita L. Williams Elementary School in Needham, Massachusetts, in an event aboard the space station.

Coverage of the Earth to space call will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

Tuesday, June 11

3:15 p.m. – Wilmore will speak to students from Tennessee Tech University in an event aboard the space station.

Coverage of the Earth to space call will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

Meet NASA’s Crew

Wilmore is the commander for the mission. A veteran of two spaceflights, Wilmore has 178 days in space under his belt. In 2009, he served as a pilot aboard space shuttle Atlantis for the STS-129 mission. Additionally, Wilmore served as a flight engineer for Expedition 41 until November 2014, when he assumed command of the space station after arrival of the Expedition 42 crew. He returned to Earth the following March. Prior to his selection by NASA in 2000, the father of two obtained both his bachelor’s degree and master’s degree in Electrical Engineering from Tennessee Technological University, Cookeville, before graduating with another master’s degree in Aviation Systems from the University of Tennessee, Knoxville. He is also a graduate of the United States Naval Test Pilot School, Patuxent River, Maryland, and has completed four operational deployments during his tenure as a fleet naval officer and aviator.

Williams is the spacecraft pilot for the flight test. Williams has spent 322 days in space across two missions: Expedition 14/15 in 2006 through 2007, and Expedition 32/33 in 2012. The Massachusetts native also conducted seven spacewalks, totaling 50 hours and 40 minutes. Before her career began with NASA in 1998, Williams graduated with her bachelor’s degree in Physical Science from the U.S. Naval Academy, Annapolis, Maryland, before obtaining her master’s degree in Engineering Management from the Florida Institute of Technology, Melbourne. In total, she has logged more than 3,000 flight hours in over 30 different aircraft.

NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is changing the arc of human spaceflight history by opening access to low Earth orbit and the space station to more people, science, and commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon under Artemis and, eventually, Mars.

Learn more about NASA’s Commercial Crew program at:

https://www.nasa.gov/commercialcrew

-end-

Josh Finch / Jimi Russell / Claire O’Shea
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov / claire.a.o’shea@nasa.gov

Steven Siceloff / Danielle Sempsrott / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov

Leah Cheshier
Johnson Space Center, Houston
281-483-5111
leah.d.cheshier@nasa.gov

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      View of the Nova-C landing area near Malapert A in the South Pole region of the Moon. North is to the right. Taken by LROC (Lunar Reconnaissance Orbiter Camera) NAC (Narrow Angle Camera).NASA/GSFC/Arizona State University NASA has released two white papers associated with the agency’s Moon to Mars architecture efforts. The papers, one on lunar mobility drivers and needs, and one on lunar surface cargo, detail NASA’s latest thinking on specific areas of its lunar exploration strategy.
      While NASA has established a yearly cadence of releasing new documents associated with its Moon to Mars architecture, the agency occasionally releases mid-cycle findings to share essential information in areas of interest for its stakeholders.
      “Lunar Mobility Drivers and Needs” discusses the need to move cargo and assets on the lunar surface, from landing sites to points of use, and some of the factors that will significantly impact mobility systems.
      “Lunar Surface Cargo” analyses some of the current projected needs — and identifies current capability gaps — for the transportation of cargo to the lunar surface.
      The Moon to Mars architecture approach incorporates feedback from U.S. industry, academia, international partners, and the NASA workforce. The agency typically releases a series of technical documents at the end of its annual analysis cycle, including an update of the Architecture Definition Document and white papers that elaborate on frequently raised topics.
      Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
      You can find all of NASA’s Moon to Mars architecture documents at:
      https://www.nasa.gov/moontomarsarchitecture
      Share
      Details
      Last Updated Jun 28, 2024 Related Terms
      Humans in Space Explore More
      2 min read Unity in Orbit: Astronauts Soar with Pride Aboard Station 
      Article 3 days ago 5 min read Six Adapters for Crewed Artemis Flights Tested, Built at NASA Marshall
      Article 3 days ago 5 min read Lakita Lowe: Leading Space Commercialization Innovations and Fostering STEM Engagement 
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:03:00 On 20 June 2024 the first Ariane 6 rocket to launch into space went through its last full ‘wet dress rehearsal’ at Europe’s Spaceport in French Guiana – it provided an exciting sneak peek of what’s to come, stopping just a few seconds before engine ignition and of course, liftoff.
      One of the first steps was to roll back the colossal 90-m tall Ariane 6 mobile gantry building 120 m away from the launch pad – the first moment the complete rocket stood free.
      The first parts of Ariane 6 began arriving in French Guiana from continental Europe in February 2024 via the Canopée ‘spaceship’. In March, the main stage and upper stage were assembled, followed by the transfer of the two powerful P120C boosters in April.
      In May, Ariane 6’s first passengers also arrived in Kourou – a varied selection of experiments, satellites, payload deployers and reentry demonstrations that represent thousands across Europe, from students to industry and experienced space actors NASA and ArianeGroup.
      The payloads were integrated onto the ‘ballast’ at the end of May, and just a few days ago the ballast was fitted onto the top of the rocket and the fairing closed around it – the last time Ariane 6’s cargo would see light.
      From Earth observation to technology demonstrations testing wildlife tracking, 3D printing in open space, open-source software and hardware and science missions looking for the most energetic explosions in the universe, the passengers on Ariane 6’s first flight are a testament to the rocket’s adaptability, complexity, and its role for the future – launching any mission, anywhere.
      View the full article
    • By NASA
      NASA logo Leadership from NASA’s International Space Station and Commercial Crew Programs, as well as Boeing, will participate in a media teleconference at 2 p.m. EDT Friday, June 28.
      NASA and Boeing continue to evaluate Starliner’s propulsion system performance before returning from the International Space Station as part of the agency’s Crew Flight Test. The agency also will discuss recent station operations.
      Audio of the call will stream live on the agency’s website:
      https://www.nasa.gov/nasatv
      Participants include:
      Ken Bowersox, associate administrator, NASA’s Space Operations Mission Directorate Steve Stich, manager, NASA’s Commercial Crew Program Bill Spetch, operations integration manager, NASA’s International Space Station Program Emily Nelson, chief flight director, NASA’s Johnson Space Center Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing Media interested in participating must contact the newsroom at NASA’s Johnson Space Center in Houston no later than one hour prior to the start of the call at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is online.
      As part of NASA’s Commercial Crew Program, NASA astronauts Butch Wilmore and Suni Williams lifted off at 10:52 a.m., June 5, on a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on an end-to-end test of the Starliner system. The crew docked to the forward-facing port of the station’s Harmony module at 1:34 p.m., June 6.
      In its 24th year of continuously crewed operations, the space station is a unique scientific platform where crew members conduct experiments across multiple disciplines of research, including Earth and space science, biology, human physiology, physical sciences, and technology demonstrations not possible on Earth. Crews living aboard station are the hands of thousands of researchers on the ground, having conducted more than 3,300 experiments in microgravity. Station is the cornerstone of space commerce, from commercial crew and cargo partnerships to commercial research and national lab research, and lessons learned aboard the International Space Station are helping to pass the torch to future commercial stations.
      For more information about the International Space Station, visit:
      https://www.nasa.gov/station
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov 
      Danielle Sempsrott / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Leah Cheshier / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov
      View the full article
    • By NASA
      Katie Burlingame is an ETHOS (Environmental and Thermal Operating Systems) flight controller and instructor in the Flight Operations Directorate supporting the International Space Station. Burlingame trains astronauts and flight controllers on the International Space Station’s environmental control systems, internal thermal control systems, and emergency response. Burlingame shares about their path to NASA, what Pride Month means to them, and more. Read on to learn more!

      Where are you from?
      My dad was in the Coast Guard, so I lived in a few different places growing up, mostly along the East Coast and Southeast. I lived near Orlando, Florida in high school, so that’s usually what I’ll go with for a short answer.

      Tell us about your role at NASA.
      I execute and plan operations in the Mission Control Center. I train flight controllers and astronauts, specifically for the International Space Station’s environmental control systems, internal thermal control systems, and emergency response.
      Katie Burlingame demonstrates how to use new emergency response hardware during Starliner-1 crew training. How would you describe your job to family or friends who may not be familiar with NASA?
      For anyone who has seen Apollo 13, I usually say I’m one of the people who figures out what to do in response to “Houston, we have a problem.” Environmental control systems are basically what makes sure there is clean air to breathe and water to drink. Internal thermal control systems are the water lines running throughout the space station that keeps all the computers and other hardware cool.
      As far as training goes, the biggest part is training on emergency response, so what to do if there is a fire on the space station or if you start losing air overboard due to a hole in the structure. We have life-size replicas of the space station and simulators that can replicate all its data. This allows us to create opportunities for crew and new flight controllers to practice responding in the situations they could experience aboard the station – sometimes I even get to use a smoke machine!

      How long have you been working for NASA?
      I have been with the agency for 11 years.

      What advice would you give to young individuals aspiring to work in the space industry or at NASA?
      Follow the things that you find most interesting. We need people with all kinds of skills in the space industry, so don’t feel like you have to stick to the most traditional path.

      What was your path to NASA?
      In college, I worked in a lab that built small satellites, which led me to opportunities to participate in the reduced gravity aircraft program and internships at NASA’s Johnson Space Center in Houston. I got a master’s degree in biomedical engineering and was originally planning to work on medical devices after college. While at my first job, the industry I was in was experiencing a wave of layoffs, so when I heard about an opportunity back at Johnson, I decided to apply and have been here ever since.
      Katie Burlingame discusses ammonia measurement hardware with Roscosmos cosmonaut Anna Kikina during NASA’s SpaceX Crew-5 emergency training in the SVMF (Space Vehicle Mockup Facility). Is there someone in the space, aerospace, or science industry that has motivated or inspired you to work for the space program? Or someone you discovered while working for NASA who inspires you?
      I’m inspired by the teammates I get to work with every day. Seeing the different skills that people bring to the table, how they handle difficult situations, and come up with creative solutions impresses me and motivates me to keep growing and learning.

      What does diversity, equity, and inclusion mean to you? How does it guide you in your work at NASA?
      To me, diversity has a lot of aspects because it encompasses all of the things that contribute to someone’s unique experience and perspective. Spaceflight is hard, and solving tough problems requires creative and integrated solutions, which requires teams with a diversity of thought, skills, perspectives, and experiences.

      It means ensuring that NASA is comprised of a workforce that reflects the full spectrum of the country we represent, and then making sure that everyone has the resources they need to thrive and are part of a community that welcomes and respects their full selves. I try to keep this as a guiding priority throughout my work, in day-to-day things like the language and assumptions I make when talking with people and in looking for and advocating for larger systemic ways to make improvements. Having a diverse, equitable, and inclusive workplace is the just and fair thing to do, but it also helps us do the best work to accomplish NASA’s missions.
      Katie Burlingame with other ETHOS (Environmental and Thermal Operating Systems) instructors outside the International Space Station mockups in the SVMF. What is your favorite NASA memory?
      I had the opportunity to work on several aspects of the first U.S. crewed vehicle missions. Working with NASA, commercial partners, and the international partner teams to figure out how to best execute training and emergency response was an interesting technical problem and it is great to see all of the things we worked on being used regularly now.
      What do you love sharing about station? What’s important to get across to general audiences to help them understand the benefits to life on Earth?
      There have been people continuously on the International Space Station for more than 23 years! That’s amazing as a technical achievement, but also an example of successful and sustained international partnership.

      What does Pride Month mean to you?
      Pride Month is a celebration of the LGBTQIA+ community and the progress that has been made. It’s also a call to action for allies and community members to protect and support LGBTQIA+ community members and their rights, especially the most marginalized.
      What does it mean to embrace LGBTQIA+ pride?
      To me, embracing pride is embracing the understanding that we are each worthy of honor and respect as we are and creating an environment where others can do the same.
      Katie Burlingame out for a bike ride west of Houston. Who are some of your LGBTQIA+ role models?
      My role models are all of the advocates for LGBTQIA+ rights, past and present, and everyone who shows up in small and big ways as themselves.
      What are your hobbies/things you enjoy outside of work?
      I like going to see plays and musicals and exploring Houston’s restaurants, coffee shops, and bookstores. When the Houston heat isn’t too bad, I like exploring parks, riding my bike, and doing triathlons (very slowly).

      Day launch or night launch?
      Night launch!

      Favorite space movie?
      I don’t have a strong favorite space movie, but my current favorite space books are “Project Hail Mary” by Andy Weir and “The Long Way to a Small, Angry Planet” by Becky Chambers.

      NASA “worm” or “meatball” logo?
      Meatball.
      Every day, we’re conducting exciting research aboard our orbiting laboratory that will help us explore further into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It’s a curated hub of space station research digital media from Johnson and other centers and space agencies.

      Sign up for our weekly email newsletter to get the updates delivered directly to you.

      Follow updates on social media at @ISS_Research on Twitter, and on the space station accounts on Facebook and Instagram.
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA test pilot Wayne Ringelberg sits in the air taxi virtual reality flight simulator during a test at NASA’s Armstrong Flight Research Center in Edwards, California, in March 2024.NASA/Steve Freeman A new custom virtual reality flight simulator built by NASA researchers will allow them to explore how passengers experience air taxi rides and collect data that will help designers create new aircraft with passenger comfort in mind.
      Wayne Ringelberg, a test pilot at NASA’s Armstrong Flight Research Center in Edwards, California, recently completed a series of test rides in the new simulator to help the team make adjustments before other users are involved for the first research study later this year.
      “This project is leveraging our research and test pilot aircrew with vertical lift experience to validate the safety and accuracy of the lab in preparation for test subject evaluations,” said Ringelberg. “The experiments in the ride quality lab will inform the advanced air mobility community about the acceptability of the motions these aircraft could make, so the general public is more likely to adopt the new technology.”
      Ringelberg was secured into the seat on top of the simulator’s platform, wearing a virtual reality headset and headphones. His simulated air taxi ride started with a takeoff from a conceptual vertiport on top of a parking garage in downtown San Francisco, California, constructed by NASA engineers in the virtual world.
      As the programed ride took him through downtown San Francisco and landed at another vertiport on top of a skyscraper, Ringelberg evaluated the realism and consistency of the simulation’s visual, motion, and audio cues. He then provided feedback to the research team.
      NASA researchers Curt Hanson (background) and Saravanakumaar Ramia (foreground) control the air taxi virtual reality flight simulator from computers during a test at NASA’s Armstrong Flight Research Center in Edwards, California, in March 2024.NASA/Steve Freeman With pilot checkouts complete, NASA researchers will conduct a series of human subject research studies over the next four years. The goal is to gather information that will help the industry better understand what makes flying in an air taxi comfortable and enjoyable for customers.
      This simulator is the centerpiece of NASA Armstrong’s virtual reality passenger ride quality laboratory. The laboratory combines virtual reality visuals, physical motion cues, and spatialized rotor sounds to create an immersive air taxi passenger experience.
      The work is managed by the Revolutionary Vertical Lift Technology project under NASA’s Advanced Air Vehicles Program in support of NASA’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones. 
      Share
      Details
      Last Updated Jun 27, 2024 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Mobility Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Ames Research Center Drones & You Flight Innovation Glenn Research Center Langley Research Center Revolutionary Vertical Lift Technology Explore More
      5 min read Langley Celebrates Pride Month: Derek Bramble
      Article 2 hours ago 4 min read NASA Parachute Sensor Testing Could Make EPIC Mars Landings
      Article 3 hours ago 1 min read Liftoff! Redesigned NASA Ames Visitor Center Engages Kids, Families
      Article 3 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Aeronautics
      Advanced Air Mobility Mission
      NASA’s Advanced Air Mobility (AAM) research will transform our communities by bringing the movement of people and goods off the ground, on…
      Armstrong Programs & Projects
      View the full article
  • Check out these Videos

×
×
  • Create New...