Members Can Post Anonymously On This Site
Sols 4205-4206: Curiosity Would Like One of Each, Please!
-
Similar Topics
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
Sols 4498-4499: Flexing Our Arm Once Again
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 30, 2025 — Sol 4496, or Martian day 4,496 of the Mars Science Laboratory mission — at 20:12:48 UTC. NASA/JPL-Caltech Written by Conor Hayes, Graduate Student at York University
Earth planning date: Monday, March 31, 2025
Planning today began with two pieces of great news. First, our 50-meter drive (about 164 feet) from the weekend plan completed successfully, bringing us oh-so-close to finally driving out of the small canyon that we’ve been traversing through and toward the “boxwork” structures to our southwest. Second, we passed our “Slip Risk Assessment Process” (SRAP), confirming that all six of Curiosity’s wheels are parked firmly on solid ground. Avid readers of this blog will be familiar with last week’s SRAP challenges, which prevented us from using the rover’s arm for the entire week. With a green light on SRAP, we were finally able to put our suite of contact science instruments back to work today.
The arm gets to work early on the first sol of this plan, with an APXS integration on “Los Osos,” a bedrock target in our workspace, after it has been cleared of the ubiquitous Martian dust by DRT. The rest of our arm activities consist of a series of MAHLI observations later in the afternoon, both of Los Osos and “Black Star Canyon.”
Of course, just because we managed to get contact science in this plan doesn’t mean we’re letting our remote sensing instruments take a break. In fact, we have more than two hours of remote sensing, split between the two sols and the two science teams (Geology and Mineralogy [GEO] and Atmosphere and Environment [ENV]). GEO will be using Mastcam to survey both the highs and the lows of the terrain, with mosaics of “Devil’s Gate” (some stratigraphy in a nearby ledge) and some small troughs close to the rover. We’ll also be getting even more Mastcam images of “Gould Mesa,” an imaging target in many previous plans, as we continue to drive past it. ChemCam gets involved with a LIBS observation of “Fishbowls,” which will also be imaged by Mastcam, a post-drive AEGIS, and two RMI mosaics of Gould Mesa and “Torote Bowl,” which was also imaged over the weekend.
ENV’s activities are fairly typical for this time of year as Curiosity monitors the development of the Aphelion Cloud Belt (ACB) with several Navcam cloud movies, as well as seasonal changes in the amount of dust in and above Gale with Navcam line-of-sight observations and Mastcam taus. We’ll also be taking a Navcam dust devil movie to see if we can catch any cold-weather wind-driven dust movement. ENV also filled this plan with their usual set of REMS, RAD, and DAN observations.
The drive planned today is significantly shorter than the one over the weekend, at just about 10 meters (about 33 feet). This is because we’re driving up a small ridge, which limits our ability to see what’s on the other side. Although our rover knows how to keep itself safe, we still prefer not to drive through terrain that we can’t see in advance, if it can be avoided. Once we’ve got a better eye on what lies in front of us, we will hopefully be able to continue our speedy trek toward the boxwork structures.
Share
Details
Last Updated Apr 03, 2025 Related Terms
Blogs Explore More
2 min read Sols 4495-4497: Yawn, Perched, and Rollin’
Article
3 days ago
3 min read Visiting Mars on the Way to the Outer Solar System
Article
6 days ago
2 min read Sols 4493-4494: Just Looking Around
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A Martian dust devil can be seen consuming its smaller friend in this short video made of images taken at the rim of Jezero Crater by NASA’s Perseverance Mars rover on Jan. 25, 2025. NASA/JPL-Caltech/SSI The six-wheeled explorer recently captured several Red Planet mini-twisters spinning on the rim of Jezero Crater.
A Martian dust devil can be seen consuming a smaller one in this short video made of images taken by a navigation camera aboard NASA’s Perseverance Mars rover. These swirling, sometimes towering columns of air and dust are common on Mars. The smaller dust devil’s demise was captured during an imaging experiment conducted by Perseverance’s science team to better understand the forces at play in the Martian atmosphere.
When the rover snapped these images from about 0.6 miles (1 kilometer) away, the larger dust devil was approximately 210 feet (65 meters) wide, while the smaller, trailing dust devil was roughly 16 feet (5 meters) wide. Two other dust devils can also be seen in the background at left and center. Perseverance recorded the scene Jan. 25 as it explored the western rim of Mars’ Jezero Crater at a location called “Witch Hazel Hill.”
“Convective vortices — aka dust devils — can be rather fiendish,” said Mark Lemmon, a Perseverance scientist at the Space Science Institute in Boulder, Colorado. “These mini-twisters wander the surface of Mars, picking up dust as they go and lowering the visibility in their immediate area. If two dust devils happen upon each other, they can either obliterate one another or merge, with the stronger one consuming the weaker.”
While exploring the rim of Jezero Crater on Mars, NASA’s Perseverance rover captured new images of multiple dust devils in January 2025. These captivating phenomena have been documented for decades by the agency’s Red Planet robotic explorers. NASA/JPL-Caltech/LANL/CNES/CNRS/INTA-CSIC/Space Science Institute/ISAE-Supaero/University of Arizona Science of Whirlwinds
Dust devils are formed by rising and rotating columns of warm air. Air near the planet’s surface becomes heated by contact with the warmer ground and rises through the denser, cooler air above. As other air moves along the surface to take the place of the rising warmer air, it begins to rotate. When the incoming air rises into the column, it picks up speed like a spinning ice skater bringing their arms closer to their body. The air rushing in also picks up dust, and a dust devil is born.
“Dust devils play a significant role in Martian weather patterns,” said Katie Stack Morgan, project scientist for the Perseverance rover at NASA’s Jet Propulsion Laboratory in Southern California. “Dust devil study is important because these phenomena indicate atmospheric conditions, such as prevailing wind directions and speed, and are responsible for about half the dust in the Martian atmosphere.”
NASA’s Viking 1 orbiter captured this Martian dust devil casting a shadow on Aug. 1, 1978. During the 15-second interval between the two images, the dust devil moved toward the northeast (toward the upper right) at a rate of about 59 feet (18 meters) per second. NASA/JPL-Caltech/MSSS Since landing in 2021, Perseverance has imaged whirlwinds on many occasions, including one on Sept. 27, 2021, where a swarm of dust devils danced across the floor of Jezero Crater and the rover used its SuperCam microphone to record the first sounds of a Martian dust devil.
NASA’s Viking orbiters, in the 1970s, were the first spacecraft to photograph Martian dust devils. Two decades later, the agency’s Pathfinder mission was the first to image one from the surface and even detected a dust devil passing over the lander. Twin rovers Spirit and Opportunity managed to capture their fair share of dusty whirlwinds. Curiosity, which is exploring a location called Mount Sharp in Gale Crater on the opposite side of the Red Planet as Perseverance, sees them as well.
Capturing a dust devil image or video with a spacecraft takes some luck. Scientists can’t predict when they’ll appear, so Perseverance routinely monitors in all directions for them. When scientists see them occur more frequently at a specific time of day or approach from a certain direction, they use that information to focus their monitoring to try to catch additional whirlwinds.
“If you feel bad for the little devil in our latest video, it may give you some solace to know the larger perpetrator most likely met its own end a few minutes later,” said Lemmon. “Dust devils on Mars only last about 10 minutes.”
More About Perseverance
A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover is characterizing the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.
NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program (MEP) portfolio and the agency’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
For more about Perseverance:
https://science.nasa.gov/mission/mars-2020-perseverance
News Media Contacts
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-047
Share
Details
Last Updated Apr 03, 2025 Related Terms
Perseverance (Rover) Curiosity (Rover) Jet Propulsion Laboratory Mars Mars 2020 Mars Exploration Rovers (MER) Mars Pathfinder Viking Explore More
3 min read University High Triumphs at JPL-Hosted Ocean Sciences Bowl
Article 3 days ago 6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars
Article 1 week ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
Lee esta historia en español aquí. Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found…
Article 1 week ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Sols 4495-4497: Yawn, Perched, and Rollin’
NASA’s Mars rover Curiosity acquired this image of the upcoming “boxwork” structures to its west, using its Chemistry & Camera (ChemCam) Remote Micro-Imager (RMI). The ChemCam instrument studies the chemical composition of rocks and soil, using a laser to vaporize materials, then analyze their elemental composition using an on-board spectrograph. The ChemCam RMI is a high-resolution camera atop the rover’s mast. Curiosity captured this image on March 27, 2025 — Sol 4493, or Martian day 4,493 of the Mars Science Laboratory mission — at 15:35:21 UTC. NASA/JPL-Caltech/LANL Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
Earth planning date: Friday, March 28, 2025
Womp, womp. Another SRAP (Slip Risk Assessment Process) issue due to wheels being perched on these massive layered sulfate rocks. With our winter power constraints as tight as they are, though, keeping the arm stowed freed up more time to check some lines off our rover’s weekend list. To do: SAM activity to exercise Oven 2 (check!), Navcam 360-degree “phase function” sky movie to monitor scattering of Martian clouds (check!), APXS atmospheric measurements of argon (check!), ChemCam passive sky measurements of oxygen (check!), and a drive of about 50 meters (about 164 feet) to the southwest (check!). Curiosity gets busy on the weekends so us PULs can do some lounging.
On the Mastcam team, we’ve been pretty busy in the layered sulfate unit. The rocks are rippled, layered, fractured, and surrounded by sandy troughs. Where did it all come from? What current and past processes are at play in this area? This weekend we’re collecting 70 images to help figure that out. ChemCam is helping by collecting chemistry measurements of the lowest block in this Navcam image, with two targets close by aptly named “Solana Beach” and “Del Mar.” To help conserve power, we’ve been trying to parallelize our activities as much as possible. Recently this means Mastcam has been taking images while ChemCam undergoes “TEC Cooling” to get as cold as possible before using their laser.
We’re all hoping the arm can come back from vacation next week.
Share
Details
Last Updated Apr 01, 2025 Related Terms
Blogs Explore More
3 min read Visiting Mars on the Way to the Outer Solar System
Article
3 days ago
2 min read Sols 4493-4494: Just Looking Around
Article
4 days ago
2 min read Sols 4491-4492: Classic Field Geology Pose
Article
5 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Explore This Section Exoplanets Home Exoplanets Overview Exoplanets Facts Types of Exoplanets Stars What is the Universe Search for Life The Big Questions Are We Alone? Can We Find Life? The Habitable Zone Why We Search Target Star Catalog Discoveries Discoveries Dashboard How We Find and Characterize Missions People Exoplanet Catalog Immersive The Exoplaneteers Exoplanet Travel Bureau 5 Ways to Find a Planet Strange New Worlds Universe of Monsters Galaxy of Horrors News Stories Blog Resources Get Involved Glossary Eyes on Exoplanets Exoplanet Watch More Multimedia ExEP This artist’s concept pictures the planets orbiting Barnard’s Star, as seen from close to the surface of one of them. Image credit: International Gemini Observatory/NOIRLab/NSF/AURA/P. Marenfeld The Discovery
Four rocky planets much smaller than Earth orbit Barnard’s Star, the next closest to ours after the three-star Alpha Centauri system. Barnard’s is the nearest single star.
Key Facts
Barnard’s Star, six light-years away, is notorious among astronomers for a history of false planet detections. But with the help of high-precision technology, the latest discovery — a family of four — appears to be solidly confirmed. The tiny size of the planets is also remarkable: Capturing evidence of small worlds at great distance is a tall order, even using state-of-the-art instruments and observational techniques.
Details
Watching for wobbles in the light from a star is one of the leading methods for detecting exoplanets — planets orbiting other stars. This “radial velocity” technique tracks subtle shifts in the spectrum of starlight caused by the gravity of a planet pulling its star back and forth as the planet orbits. But tiny planets pose a major challenge: the smaller the planet, the smaller the pull. These four are each between about a fifth and a third as massive as Earth. Stars also are known to jitter and quake, creating background “noise” that potentially could swamp the comparatively quiet signals from smaller, orbiting worlds.
Astronomers measure the back-and-forth shifting of starlight in meters per second; in this case the radial velocity signals from all four planets amount to faint whispers — from 0.2 to 0.5 meters per second (a person walks at about 1 meter per second). But the noise from stellar activity is nearly 10 times larger at roughly 2 meters per second.
How to separate planet signals from stellar noise? The astronomers made detailed mathematical models of Barnard’s Star’s quakes and jitters, allowing them to recognize and remove those signals from the data collected from the star.
The new paper confirming the four tiny worlds — labeled b, c, d, and e — relies on data from MAROON-X, an “extreme precision” radial velocity instrument attached to the Gemini Telescope on the Maunakea mountaintop in Hawaii. It confirms the detection of the “b” planet, made with previous data from ESPRESSO, a radial velocity instrument attached to the Very Large Telescope in Chile. And the new work reveals three new sibling planets in the same system.
Fun Facts
These planets orbit their red-dwarf star much too closely to be habitable. The closest planet’s “year” lasts a little more than two days; for the farthest planet, it’s is just shy of seven days. That likely makes them too hot to support life. Yet their detection bodes well in the search for life beyond Earth. Scientists say small, rocky planets like ours are probably the best places to look for evidence of life as we know it. But so far they’ve been the most difficult to detect and characterize. High-precision radial velocity measurements, combined with more sharply focused techniques for extracting data, could open new windows into habitable, potentially life-bearing worlds.
Barnard’s star was discovered in 1916 by Edward Emerson Barnard, a pioneering astrophotographer.
The Discoverers
An international team of scientists led by Ritvik Basant of the University of Chicago published their paper on the discovery, “Four Sub-Earth Planets Orbiting Barnard’s Star from MAROON-X and ESPRESSO,” in the science journal, “The Astrophysical Journal Letters,” in March 2025. The planets were entered into the NASA Exoplanet Archive on March 13, 2025.
Share
Details
Last Updated Apr 01, 2025 Related Terms
Exoplanets Radial Velocity Terrestrial Exoplanets Keep Exploring Discover More Topics From NASA
Universe
Exoplanets
Search for Life
Exoplanet Catalog
This exoplanet encyclopedia — continuously updated, with more than 5,600 entries — combines interactive 3D models and detailed data on…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Sols 4493-4494: Just Looking Around
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 25, 2025 — sol 4491, or Martian day 4,491 of the Mars Science Laboratory mission — at 17:16:50 UTC. NASA/JPL-Caltech Written by Alex Innanen, atmospheric scientist at York University
Earth planning date: Wednesday, March 26, 2025
It’s my second shift of the week as the Environmental theme lead and keeper of the plan (a bit of a mouthful we shorten to ESTLK) and today started out feeling eerily similar to Monday. Once again, Curiosity is posing like a geologist, which means that once again we can’t unstow the arm and will be skipping contact science. The silver lining is that this means we have extra time to have a good look around.
The plan also looks similar to Monday’s — targeted remote sensing on the first sol before driving away, and then untargeted remote sensing on the next. On sol 4493 we start our remote sensing, almost as remote as we can get, with a suprahorizon movie looking for clouds in the south. A dust-devil survey rounds out the sol’s environmental observations, and then the geology theme group can get down to the serious business of looking at rocks. For Mastcam this means observing a group of bedrock targets all called “Observatory Trail” (one of which you can see in the middle of the image above), pointing out some interesting veins in “Point Loma,” and casting their gaze out toward “Black Butte” (which I could not think of a fun pun for…). ChemCam has a LIBS observation of “Cholla,” as well as two long-distance observations of the Texoli Butte and the boxwork structures. Our second sol is a little more restrained, as untargeted sols tend to be. But Curiosity will still have plenty of energy after a good rest. We’re taking advantage of that with an extra-long dust-devil movie. Even though we’re in our cloudy season, we still sometimes see dust lifting, and having that extra time to look out for it increases our chances of catching a wind gust or a dust devil in action. Alongside that we also have a Mastcam tau observation to keep an eye on the amount of dust in the atmosphere, and wrap up with a ChemCam AEGIS activity to autonomously choose a LIBS target.
Share
Details
Last Updated Mar 28, 2025 Related Terms
Blogs Explore More
2 min read Sols 4491-4492: Classic Field Geology Pose
Article
2 days ago
3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)
Article
4 days ago
3 min read Sols 4486-4487: Ankle-Breaking Kind of Terrain!
Article
7 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.