Jump to content

Recommended Posts

Posted
Galileo Ground Segment

Over 200 dedicated professionals from ESA, EUSPA and European industry across four Galileo centres and seven external entities have seamlessly upgraded Galileo’s massive ground segment. In a remarkable feat of coordination and precision involving the deployment of 400 items, and after five months of rehearsals, Galileo’s ground segment, the largest in Europe, has transitioned seamlessly to System Build 2.0.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Wallops Flight Facility commemorated the start of construction of its new Wallops Island causeway bridge during a groundbreaking ceremony at 10 a.m., Monday, April 14, 2025, on the island.  
      NASA’s Wallops Flight Facility commemorated the start of construction of its new Wallops Island causeway bridge during a groundbreaking ceremony at 10 a.m., Monday, April 14, 2025, on the island. NASA’s Wallops Flight Facility Facility Director David Pierce, NASA’s Goddard Space Flight Center Associate Center Director Ray Rubilotta, and Virgnia Sen. Bill DeSteph attended the ceremony.NASA/Danielle Johnson The ceremony was held at the base of the old Wallops Island causeway bridge. Virgina state Sen. Bill DeSteph attended the groundbreaking, along with staffers from the offices of Sen. Mark Warner, Sen. Tim Kaine, Congresswomen Jen Kiggans, Sen. Chris Van Hollen, and Sen. Angela Alsobrooks. NASA Wallops Facility Director David Pierce and NASA’s Goddard Space Flight Center Associate Center Director Ray Rubilotta attended on behalf of the agency. 
      “Much has changed over the decades, but one thing that has remained the same is our reliance on the causeway bridge as the only means for vehicular access to and from the island,” said Pierce. “Our bridge supports a growing portfolio of commercial launch and government partners. The work we do advances science, technology, and national security missions. This vital work for our nation is enabled by our bridge.” 
      In 2023, NASA Wallops was awarded $103 million in federal funds to fully construct and replace the current 65-year-old causeway bridge that serves as the only vehicular access from NASA Wallops Mainland facilities to its Wallops Island facilities and launch range. After years of exposure to coastal weather and repeated repairs to extend its viability, the existing causeway bridge is reaching the end of its service life.  
      The new causeway bridge, slated for completion in early 2028, will feature a flatter structure, capable of accommodating the increase in heavier loads transported to and from the island in support of an increased cadence of launch operations by NASA, its tenants, and commercial partners. This vital investment in NASA’s infrastructure supports the launch range’s continued growth, strengthening its role as a key asset in Virginia and the nation.   
      An architectural rendering showing the new Wallops Island causeway bridge next to the old causeway bridge.Courtesy of Kokosing NASA is partnering with the Federal Highway Administration to lead the delivery of the design-build project. The project has been awarded to Kokosing Construction Company. 
      For more information on NASA’s Wallops Flight Facility, visit www.nasa.gov/wallops. 
      Share
      Details
      Last Updated Apr 14, 2025 Related Terms
      Wallops Flight Facility
      View the full article
    • By European Space Agency
      Read the latest edition of ESA Impact

      View the full article
    • By NASA
      Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found the largest organic compounds on the Red Planet to date. The finding, published Monday in the Proceedings of the National Academy of Sciences, suggests prebiotic chemistry may have advanced further on Mars than previously observed.
      Scientists probed an existing rock sample inside Curiosity’s Sample Analysis at Mars (SAM) mini-lab and found the molecules decane, undecane, and dodecane. These compounds, which are made up of 10, 11, and 12 carbons, respectively, are thought to be the fragments of fatty acids that were preserved in the sample. Fatty acids are among the organic molecules that on Earth are chemical building blocks of life.
      Living things produce fatty acids to help form cell membranes and perform various other functions. But fatty acids also can be made without life, through chemical reactions triggered by various geological processes, including the interaction of water with minerals in hydrothermal vents.
      While there’s no way to confirm the source of the molecules identified, finding them at all is exciting for Curiosity’s science team for a couple of reasons.
      Curiosity scientists had previously discovered small, simple organic molecules on Mars, but finding these larger compounds provides the first evidence that organic chemistry advanced toward the kind of complexity required for an origin of life on Mars.
      This graphic shows the long-chain organic molecules decane, undecane, and dodecane. These are the largest organic molecules discovered on Mars to date. They were detected in a drilled rock sample called “Cumberland” that was analyzed by the Sample Analysis at Mars lab inside the belly of NASA’s Curiosity rover. The rover, whose selfie is on the right side of the image, has been exploring Gale Crater since 2012. An image of the Cumberland drill hole is faintly visible in the background of the molecule chains. NASA/Dan Gallagher The new study also increases the chances that large organic molecules that can be made only in the presence of life, known as “biosignatures,” could be preserved on Mars, allaying concerns that such compounds get destroyed after tens of millions of years of exposure to intense radiation and oxidation.
      This finding bodes well for plans to bring samples from Mars to Earth to analyze them with the most sophisticated instruments available here, the scientists say.
      “Our study proves that, even today, by analyzing Mars samples we could detect chemical signatures of past life, if it ever existed on Mars,” said Caroline Freissinet, the lead study author and research scientist at the French National Centre for Scientific Research in the Laboratory for Atmospheres and Space Observations in Guyancourt, France
      In 2015, Freissinet co-led a team that, in a first, conclusively identified Martian organic molecules in the same sample that was used for the current study. Nicknamed “Cumberland,” the sample has been analyzed many times with SAM using different techniques.

      NASA’s Curiosity rover drilled into this rock target, “Cumberland,” during the 279th Martian day, or sol, of the rover’s work on Mars (May 19, 2013) and collected a powdered sample of material from the rock’s interior. Curiosity used the Mars Hand Lens Imager camera on the rover’s arm to capture this view of the hole in Cumberland on the same sol as the hole was drilled. The diameter of the hole is about 0.6 inches. The depth of the hole is about 2.6 inches. NASA/JPL-Caltech/MSSS Curiosity drilled the Cumberland sample in May 2013 from an area in Mars’ Gale Crater called “Yellowknife Bay.” Scientists were so intrigued by Yellowknife Bay, which looked like an ancient lakebed, they sent the rover there before heading in the opposite direction to its primary destination of Mount Sharp, which rises from the floor of the crater.
      The detour was worth it: Cumberland turns out to be jam-packed with tantalizing chemical clues to Gale Crater’s 3.7-billion-year past. Scientists have previously found the sample to be rich in clay minerals, which form in water. It has abundant sulfur, which can help preserve organic molecules. Cumberland also has lots of nitrates, which on Earth are essential to the health of plants and animals, and methane made with a type of carbon that on Earth is associated with biological processes.
      Perhaps most important, scientists determined that Yellowknife Bay was indeed the site of an ancient lake, providing an environment that could concentrate organic molecules and preserve them in fine-grained sedimentary rock called mudstone.
      “There is evidence that liquid water existed in Gale Crater for millions of years and probably much longer, which means there was enough time for life-forming chemistry to happen in these crater-lake environments on Mars,” said Daniel Glavin, senior scientist for sample return at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and a study co-author.
      The recent organic compounds discovery was a side effect of an unrelated experiment to probe Cumberland for signs of amino acids, which are the building blocks of proteins. After heating the sample twice in SAM’s oven and then measuring the mass of the molecules released, the team saw no evidence of amino acids. But they noticed that the sample released small amounts of decane, undecane, and dodecane.
      Because these compounds could have broken off from larger molecules during heating, scientists worked backward to figure out what structures they may have come from. They hypothesized these molecules were remnants of the fatty acids undecanoic acid, dodecanoic acid, and tridecanoic acid, respectively.
      The scientists tested their prediction in the lab, mixing undecanoic acid into a Mars-like clay and conducting a SAM-like experiment. After being heated, the undecanoic acid released decane, as predicted. The researchers then referenced experiments already published by other scientists to show that the undecane could have broken off from dodecanoic acid and dodecane from tridecanoic acid.
      The authors found an additional intriguing detail in their study related to the number of carbon atoms that make up the presumed fatty acids in the sample. The backbone of each fatty acid is a long, straight chain of 11 to 13 carbons, depending on the molecule. Notably, non-biological processes typically make shorter fatty acids, with less than 12 carbons.
      It’s possible that the Cumberland sample has longer-chain fatty acids, the scientists say, but SAM is not optimized to detect longer chains.
      Scientists say that, ultimately, there’s a limit to how much they can infer from molecule-hunting instruments that can be sent to Mars. “We are ready to take the next big step and bring Mars samples home to our labs to settle the debate about life on Mars,” said Glavin.
      This research was funded by NASA’s Mars Exploration Program. Curiosity’s Mars Science Laboratory mission is led by NASA’s Jet Propulsion Laboratory in Southern California; JPL is managed by Caltech for NASA. SAM (Sample Analysis at Mars) was built and tested at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. CNES (the French Space Agency) funded and provided the gas chromatograph subsystem on SAM. Charles Malespin is SAM’s principal investigator.
      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist’s concept shows astronauts working on the Moon alongside different technology systems. The Data & Reasoning Fabric technology could help these systems operate in harmony, supporting the astronauts and ground control on Earth.Credit: NASA Imagine your car is in conversation with other traffic and road signals as you travel. Those conversations help your car anticipate actions you can’t see: the sudden slowing of a truck as it begins to turn ahead of you, or an obscured traffic signal turning red. Meanwhile, this system has plotted a course that will drive you toward a station to recharge or refuel, while a conversation with a weather service prepares your windshield wipers and brakes for the rain ahead.
      This trip requires a lot of communication among systems from companies, government agencies, and organizations. How might these different entities – each with their own proprietary technology – share data safely in real time to make your trip safe, efficient, and enjoyable?
      Technologists at NASA’s Ames Research Center in California’s Silicon Valley created a framework called Data & Reasoning Fabric (DRF), a set of software infrastructure, tools, protocols, governance, and policies that allow safe, secure data sharing and logical prediction-making across different operators and machines. Originally developed with a focus on providing autonomous aviation drones with decision-making capabilities, DRF is now being explored for other applications.
      This means that one day, DRF-informed technology could allow your car to receive traffic data safely and securely from nearby stoplights and share data with other vehicles on the road. In this scenario, DRF is the choreographer of a complex dance of moving objects, ensuring each moves seamlessly in relation to one another towards a shared goal. The system is designed to create an integrated environment, combining data from systems that would otherwise be unable to interact with each other.
      “DRF is built to be used behind the scenes,” said David Alfano, chief of the Intelligent Systems Division at Ames. “Companies are developing autonomous technology, but their systems aren’t designed to work with technology from competitors. The DRF technology bridges that gap, organizing these systems to work together in harmony.”
      Traffic enhancements are just one use case for this innovative system. The technology could enhance how we use autonomy to support human needs on Earth, in the air, and even on the Moon.
      Supporting Complex Logistics
      To illustrate the technology’s impact, the DRF team worked with the city of Phoenix on an aviation solution to improve transportation of critical medical supplies from urban areas out to rural communities with limited access to these resources. An autonomous system identified where supplies were needed and directed a drone to pick up and transport supplies quickly and safely.
      “All the pieces need to come together, which takes a lot of effort. The DRF technology provides a framework where suppliers, medical centers, and drone operators can work together efficiently,” said Moustafa Abdelbaky, senior computer scientist at Ames. “The goal isn’t to remove human involvement, but help humans achieve more.”
      The DRF technology is part of a larger effort at Ames to develop concepts that enable autonomous operations while integrating them into the public and commercial sector to create safer, efficient environments.
      “At NASA, we’re always learning something. There’s a silver lining when one project ends, you can identify a new lesson learned, a new application, or a new economic opportunity to continue and scale that work,” said Supreet Kaur, lead systems engineer at Ames. “And because we leverage all of the knowledge we’ve gained through these experiments, we are able to make future research more robust.”
      Choreographed Autonomy
      Industries like modern mining involve a variety of autonomous and advanced vehicles and machinery, but these systems face the challenge of communicating sufficiently to operate in the same area. The DRF technology’s “choreography” might help them work together, improving efficiency. Researchers met with a commercial mining company to learn what issues they struggle with when using autonomous equipment to identify where DRF might provide future solutions.
      “If an autonomous drill is developed by one company, but the haul trucks are developed by another, those two machines are dancing to two different sets of music. Right now, they need to be kept apart manually for safety,” said Johnathan Stock, chief scientist for innovation at the Ames Intelligent Systems Division. “The DRF technology can harmonize their autonomous work so these mining companies can use autonomy across the board to create a safer, more effective enterprise.”
      Further testing of DRF on equipment like those used in mines could be done at the NASA Ames Roverscape, a surface that includes obstacles such as slopes and rocks, where DRF’s choreography could be put to the test.
      Stock also envisions DRF improving operations on the Moon. Autonomous vehicles could transport materials, drill, and excavate, while launch vehicles come and go. These operations will likely include systems from different companies or industries and could be choreographed by DRF.
      As autonomous systems and technologies increase across markets, on Earth, in orbit, and on the Moon, DRF researchers are ready to step on the dance floor to make sure everything runs smoothly.
      “When everyone’s dancing to the same tune, things run seamlessly, and more is possible.”
      Share
      Details
      Last Updated Mar 20, 2025 Related Terms
      General Explore More
      3 min read Bringing the Heat: Abigail Howard Leads Thermal Systems for Artemis Rovers, Tools
      Article 2 days ago 5 min read Risk of Venous Thromboembolism During Spaceflight
      Article 6 days ago 4 min read NASA Cameras on Blue Ghost Capture First-of-its-Kind Moon Landing Footage
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Aeronautics Research Mission Directorate
      Intelligent Systems Division
      Space Technology Mission Directorate
      View the full article
    • By European Space Agency
      ESA Impact: Top 2025 space photos so far

      View the full article
  • Check out these Videos

×
×
  • Create New...