Members Can Post Anonymously On This Site
NASA to Change How It Points Hubble Space Telescope
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
From left, Ramon Pedoto, Nathan Walkenhorst, and Tyrell Jemison review information at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The three team members developed new automation tools at Marshall for flight controllers working with the International Space Station (Credit: NASA/Tyrell Jemison Two new automation tools developed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are geared toward improving operations for flight controllers working with the International Space Station from the Huntsville Operations Support Center.
The tools, called AutoDump and Permanently Missing Intervals Checker, will free the flight control team to focus on situational awareness, anomaly response, and real-time coordination.
The space station experiences routine loss-of-signal periods based on communication coverage as the space station orbits the Earth. When signal is lost, an onboard buffer records data that could not be downlinked during that period. Following acquisition of signal, flight controllers previously had to send a command to downlink, or “dump,” the stored data.
The AutoDump tool streamlines a repetitive data downlinking command from flight controllers by detecting a routine loss-of-signal, and then autonomously sending the command to downlink data stored in the onboard buffer when the signal is acquired again. Once the data has been downlinked, the tool will automatically make an entry in the console log to confirm the downlink took place.
“Reliably and quickly sending these dump commands is important to ensure that space station payload developers can operate from the most current data,” said Michael Zekoff, manager of Space Systems Operations at Marshall.
As a direct result of this tool, we have eliminated the need to manually perform routine data dump commands by as much as 40% for normal operations.
Michael Zekoff
Space Systems Operations Manager
AutoDump was successfully deployed on Feb. 4 in support of the orbiting laboratory.
The other tool, known as the Permanently Missing Intervals Checker, is another automated process coming online that will improve team efficiency.
Permanently missing intervals are gaps in the data stream where data can be lost due to a variety of reasons, including network fluctuations. The missing intervals are generally short but are documented so the scientific community and other users have confirmation that the missing data is unable to be recovered.
“The process of checking for and documenting permanently missing intervals is challenging and incredibly time-consuming to make sure we capture all the payload impacts,” said Nathan Walkenhorst, a NASA contractor with Bailey Collaborative Solutions who serves as a flight controller specialist.
The checker will allow NASA to quickly gather and assess payload impacts, reduce disruptions to operations, and allow researchers to get better returns on their science investigations. It is expected to be deployed later this year.
In addition to Walkenhorst, Zekoff also credited Ramon Pedoto, a software architect, and Tyrell Jemison, a NASA contractor and data management coordinator with Teledyne Brown Engineering Inc, for their work in developing the automation tools. The development of the tools also requires coordination between flight control and software teams at Marshall, followed by extensive testing in both simulated and flight environments, including spacecraft operations, communications coverage, onboard anomalies, and other unexpected conditions.
“The team solicited broad review to ensure that the tool would integrate correctly with other station systems,” Zekoff said. “Automated tools are evaluated carefully to prevent unintended commanding or other consequences. Analysis of the tools included thorough characterization of the impacts, risk mitigation strategies, and approval by stakeholders across the International Space Station program.”
The Huntsville Operations Support Center provides payload, engineering, and mission operations support to the space station, the Commercial Crew Program, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within the Huntsville Operations Support Center operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.
For more information on the International Space Station, visit:
www.nasa.gov/international-space-station/
Share
Details
Last Updated Apr 11, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
Marshall Space Flight Center Explore More
3 min read NASA’s IMAP Arrives at NASA Marshall For Testing in XRCF
Article 4 hours ago 7 min read NASA’s First Flight With Crew Important Step on Long-term Return to the Moon, Missions to Mars
Article 3 days ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
Article 1 week ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By Space Force
Remarks by CSO Gen. Chance Saltzman at the 40th Space Symposium, April 9, in Colorado Springs, Colo.
View the full article
-
By NASA
3 Min Read NASA’s IMAP Arrives at NASA Marshall For Testing in XRCF
On March 18, NASA’s IMAP (Interstellar Mapping and Acceleration Probe) arrived at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for thermal vacuum testing at the X-ray and Cryogenic Facility, which simulates the harsh conditions of space.
The IMAP mission is a modern-day celestial cartographer that will map the solar system by studying the heliosphere, a giant bubble created by the Sun’s solar wind that surrounds our solar system and protects it from harmful interstellar radiation.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
NASA’s IMAP mission being loaded into the thermal vacuum chamber of NASA Marshall Space Flight Center’s X-Ray and Cryogenic Facility (XRCF) in Huntsville, Alabama. IMAP arrived at Marshall March 18 and was loaded into the chamber March 19.Credit: NASA/Johns Hopkins APL/Princeton/Ed Whitman Testing performed in the X-ray and Cryogenic Facility will help to assess the spacecraft before its journey toward the Sun. The IMAP mission will orbit the Sun at a location called Lagrange Point 1 (L1), which is about one million miles from Earth towards the Sun. From this location, IMAP can measure the local solar wind and scan the distant heliosphere without background from planets and their magnetic fields. The mission will use its suite of ten instruments to map the boundary of the heliosphere, analyze the composition of interstellar particles that make it through, and investigate how particles change as they move through the solar system.
Furthermore, IMAP will maintain a continuous broadcast of near real-time space weather data from five instruments aboard IMAP that will be used to test new space weather prediction models and improve our understanding of effects impacting our human exploration of space.
Team members from Marshall Space Flight Center in Huntsville, Alabama, install IMAP into the XRCF’s chamber dome before the start of the thermal vacuum test. NASA/Johns Hopkins APL/Princeton/Ed Whitman While inside the Marshall facility, the spacecraft will undergo dramatic temperature changes to simulate the environment during launch, on the journey toward the Sun, and at its final orbiting point. The testing facility has multiple capabilities including a large thermal vacuum chamber which simulates the harsh conditions of space such as extreme temperatures and the near-total absence of an atmosphere. Simulating these conditions before launch allow scientists and engineers to identify successes and potential failures in the design of the spacecraft.
Team members from Marshall Space Flight Center in Huntsville, Alabama work to close the chamber door of the XRCF for IMAP testing. The chamber is 20 feet in diameter and 60 feet long making it one of the largest across NASA. NASA/Johns Hopkins APL/Princeton/Ed Whitman “The X-ray and Cryogenic Facility was an ideal testing location for IMAP given the chamber’s size, availability, and ability to meet or exceed the required test parameters including strict contamination control, shroud temperature, and vacuum level,” said Jeff Kegley, chief of Marshall’s Science Test Branch.
The facility’s main chamber is 20 feet in diameter and 60 feet long, making it the 5th largest thermal vacuum chamber at NASA. It’s the only chamber that is adjoined to an ISO 6 cleanroom — a controlled environment that limits the number and size of airborne particles to minimize contamination.
The IMAP mission will launch on a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida, no earlier than September.
NASA’s IMAP mission was loaded into NASA Marshall’s XRCF thermal vacuum chamber where the spacecraft will undergo testing such as dramatic temperature changes to simulate the harsh environment of space. NASA/Johns Hopkins APL/Princeton/Ed Whitman Learn More about IMAP Media Contact:
Lane Figueroa
Marshall Space Flight Center
Huntsville, Alabama
256.544.0034
lane.e.figueroa@nasa.gov
Share
Details
Last Updated Apr 11, 2025 Related Terms
Marshall Space Flight Center Goddard Space Flight Center Heliophysics Marshall Heliophysics & Planetary Science Marshall Science Research & Projects Marshall X-Ray & Cryogenic Facility The Sun The Sun & Solar Physics Explore More
2 min read Hubble Captures a Star’s Swan Song
The swirling, paint-like clouds in the darkness of space in this stunning image seem surreal,…
Article 4 hours ago 6 min read NASA Webb’s Autopsy of Planet Swallowed by Star Yields Surprise
Observations from NASA’s James Webb Space Telescope have provided a surprising twist in the narrative…
Article 1 day ago 3 min read Hubble Helps Determine Uranus’ Rotation Rate with Unprecedented Precision
An international team of astronomers using the NASA/ESA Hubble Space Telescope has made new measurements…
Article 2 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
Hubble Captures a Star’s Swan Song
This NASA/ESA Hubble Space Telescope image features the planetary nebula Kohoutek 4-55. ESA/Hubble & NASA, K. Noll The swirling, paint-like clouds in the darkness of space in this stunning image seem surreal, like a portal to another world opening up before us. In fact, the subject of this NASA/ESA Hubble Space Telescope image is very real. We are seeing vast clouds of ionized atoms and molecules, thrown into space by a dying star. This is a planetary nebula named Kohoutek 4-55, a member of the Milky Way galaxy situated just 4,600 light-years away in the constellation Cygnus (the Swan).
Planetary nebulae are the spectacular final display at the end of a giant star’s life. Once a red giant star has exhausted its available fuel and shed its last layers of gas, its compact core will contract further, enabling a final burst of nuclear fusion. The exposed core reaches extremely hot temperatures, radiating ultraviolet light that energizes the enormous clouds of gas cast off by the star. The ultraviolet light ionizes atoms in the gas, making the clouds glow brightly. In this image, red and orange indicate nitrogen, green is hydrogen, and blue shows oxygen. Kohoutek 4-55 has an uncommon, multi-layered form: a faint layer of gas surrounds a bright inner ring, all wrapped in a broad halo of ionized nitrogen. The spectacle is bittersweet, as the brief phase of fusion in the core will end after only tens of thousands of years, leaving a white dwarf that will never illuminate the clouds around it again.
This image itself was also the final work of one of Hubble’s instruments: the Wide Field and Planetary Camera 2 (WFPC2). Installed in 1993 to replace the original Wide Field and Planetary Camera, WFPC2 was responsible for some of Hubble’s most enduring images and fascinating discoveries. Hubble’s Wide Field Camera 3 replaced WFPC2 in 2009, during Hubble’s final servicing mission. A mere ten days before astronauts removed Hubble’s WFPC2 from the telescope, the instrument collected the data used in this image: a fitting send-off after 16 years of discoveries. Image processors used the latest and most advanced processing techniques to bring the data to life one more time, producing this breathtaking new view of Kohoutek 4-55.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Share
Details
Last Updated Apr 10, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Astrophysics Astrophysics Division Emission Nebulae Goddard Space Flight Center Nebulae Planetary Nebulae Stars The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
The Death Throes of Stars
From colliding neutron stars to exploding supernovae, Hubble reveals new details of some of the mysteries surrounding the deaths of…
Exploring the Birth of Stars
Seeing ultraviolet, visible, and near-infrared light helps Hubble uncover the mysteries of star formation.
Hubble’s Nebulae
View the full article
-
By European Space Agency
Video: 00:09:17 Meet Aleš Svoboda— A skilled pilot with over 1500 flight hours, Aleš holds a PhD in aircraft and rocket technology and has commanded Quick Reaction Alerts. From flying high to training underwater, he’s always ready to take on new challenges—now including astronaut reserve training with ESA.
In this miniseries, we take you on a journey through the ESA Astronaut Reserve, diving into the first part of their Astronaut Reserve Training (ART) at the European Astronaut Centre (EAC) near Cologne, Germany. Our “ARTists” are immersing themselves in everything from ESA and the International Space Station programme to the European space industry and institutions. They’re gaining hands-on experience in technical skills like spacecraft systems and robotics, alongside human behaviour, scientific lessons, scuba diving, and survival training.
ESA’s Astronaut Reserve Training programme is all about building Europe’s next generation of space explorers—preparing them for the opportunities of future missions in Earth orbit and beyond.
This interview was recorded in November 2024.
You can listen to this episode on all major podcast platforms.
Keep exploring with ESA Explores!
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.