Jump to content

55 Years Ago: Star Trek Final Episode Airs, Relationship with NASA Endures


NASA

Recommended Posts

  • Publishers

The voyages of the Starship Enterprise came to a sudden and premature end on June 3, 1969, with the airing of the final episode of the Star Trek original television series. Ironically, the show’s cancellation came just six weeks before humanity embarked on its first voyage to land on another celestial body. Although the show ran for only three seasons, it generated a devoted fan base disappointed by the cancellation despite their write-in campaign to keep it on the air. But as things turned out, over the decades Star Trek evolved into a global phenomenon, first with the original episodes replayed in syndication, followed by a series of full-length motion pictures, and eventually a multitude of spin-off series. With its primary focus on space exploration, along with themes of diversity, inclusion, and innovation, the Star Trek fictional universe formed a natural association with NASA’s real life activities.

A scene from “The Man Trap,” the premiere episode of Star Trek The cast of the original Star Trek series from a promotional ad for the 1968-9 season A scene from “Turnabout Intruder,” the final episode of the original series
Left:  A scene from “The Man Trap,” the premiere episode of Star Trek. Middle: The cast of the original Star Trek series from a promotional ad for the 1968-9 season. Right: A scene from “Turnabout Intruder,” the final episode of the original series. Image credits: courtesy NBC-TV.

Star Trek creator Gene Roddenberry first had the idea for a science fiction television series in 1964. He presented his idea, a show set in the 23rd century aboard a starship with a crew dedicated to exploring the galaxy, to Desilu Productions, an independent television production company headed by Lucille Ball. They produced a pilot titled “The Cage,” selling it to the National Broadcasting Corporation (NBC) network that then bought a second pilot titled “Where No Man Has Gone Before.” NBC introduced the show to its fall 1966 lineup, with the first episode “The Man Trap” airing on Sep. 8. To put that date in perspective, NASA launched Gemini XI four days later, one of the missions that helped the agency achieve the Moon landing nearly three years later. Meanwhile, Star Trek’s Starship Enterprise continued its fictional five-year mission through the galaxy to “seek out new life and new civilizations.” The makeup of the Enterprise’s crew made the show particularly attractive to late 1960s television audiences. The major characters included an African American woman communications officer, an Asian American helmsman, and a half-human half-Vulcan science officer, later joined by a Russian-born ensign. While the show enjoyed good ratings during its first two seasons, cuts to its production budget resulted in lower quality episodes during its third season leading to lower ratings and, despite a concerted letter-writing campaign from its dedicated fans, eventual cancellation.

NASA Administrator James C. Fletcher, left, with the creator and cast members of Star Trek at the September 1976 rollout of space shuttle Enterprise The cast members give the Vulcan salute
Left: NASA Administrator James C. Fletcher, left, with the creator and cast members of Star Trek at the September 1976 rollout of space shuttle Enterprise. Right: The cast members give the Vulcan salute.

Despite the show’s cancellation, Star Trek lived on and prospered in syndication and attracted an ever-growing fan base, turning into a worldwide sensation. Often dubbed “trekkies,” these fans held the first of many Star Trek conventions in 1972. When in 1976 NASA announced that it would name its first space shuttle orbiter Constitution, in honor of its unveiling on the anniversary of the U. S. Constitution’s ratification, trekkies engaged in a dedicated letter writing campaign to have the orbiter named Enterprise, after the starship in the television series. This time the fans’ letter writing campaign succeeded. President Gerald R. Ford agreed with the trekkies and directed NASA to rechristen the first space shuttle. When on Sept. 17, 1976, it rolled out of its manufacturing plant in Palmdale, California, appropriately accompanied by a band playing the show’s theme song, it bore the name Enterprise. Many of the original cast members of the show as well as its creator Rodenberry participated in the rollout ceremony, hosted by NASA Administrator James C. Fletcher. Thus began a lengthy relationship between the space agency and the Star Trek brand.

Star Trek cast member Nichelle Nichols, left, in the shuttle simulator with astronaut Alan L. Bean at NASA’s Johnson Space Center (JSC) in Houston Nichols at the controls of the shuttle simulator Nichols, left, in JSC’s Mission Control Center during filming of the recruiting video
Left: Star Trek cast member Nichelle Nichols, left, in the shuttle simulator with astronaut Alan L. Bean at NASA’s Johnson Space Center (JSC) in Houston. Middle: Nichols at the controls of the shuttle simulator. Right: Nichols, left, in JSC’s Mission Control Center during filming of the recruiting video.

During the development of the space shuttle in the 1970s, the need arose to recruit a new group of astronauts to fly the vehicle, deploy the satellites, and perform the science experiments. When NASA released the call for the new astronaut selection on July 8, 1976, it specifically encouraged women and minorities to apply. To encourage those applicants, NASA chose Nichelle Nichols, who played communications officer Lt. Uhura on the Starship Enterprise, to record a recruiting video and speak to audiences nationwide. She came to NASA’s Johnson Space Center (JSC) in Houston in March 1977, and accompanied by Apollo 12 and Skylab 3 astronaut Alan L. Bean, toured the center and filmed scenes for the video in Mission Control and other facilities. NASA hoped that her stature and popularity would encourage women and minorities to apply, and indeed they did. In January 1978, when NASA announced the selection of 35 new astronauts from more than 8,000 applicants, for the first time the astronaut class included women and minorities. All distinguished themselves as NASA astronauts and paved the way for others in subsequent astronaut selections. Nichols returned to JSC in September 2010 with the Traveling Space Museum, an organization that partners with schools to promote space studies. She toured Mission Control and the International Space Station trainer accompanied by NASA astronaut B. Alvin Drew. She also flew aboard NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) airborne telescope aircraft managed by NASA’s Ames Research Center in Silicon Valley, California, in September 2015.

Nichols, center, aboard NASA’s Stratospheric Observatory for Infrared Astronomy aircraft Nichols, center, aboard NASA’s Stratospheric Observatory for Infrared Astronomy aircraft
Left: Nichelle Nichols, middle, with NASA astronaut B. Alvin Drew in the space station trainer at NASA’s Johnson Space Center in Houston. Right: Nichols, center, aboard NASA’s Stratospheric Observatory for Infrared Astronomy aircraft.

Meanwhile, the Star Trek brand renewed itself in 1979 as a full-length motion picture with the original TV series cast members reprising their roles. Over the years, several sequels followed this first film. And on the small screen, a reboot of sorts occurred in 1987 with the premiere of Star Trek: The Next Generation, a new series set in the 24th century aboard the Enterprise-D, a next generation starship with a new crew. That series lasted seven seasons, followed by a near-bewildering array of spin-off series, all built on the Star Trek brand, that continue to this day.

Actor James Doohan visits NASA’s Dryden (now Armstrong) Flight Research Center in California in 1967 with NASA pilot Bruce A. Peterson, in front of the M2-F2 lifting body aircraft At NASA’s Johnson Space Center in Houston, Doohan sits in the commander’s seat of the space shuttle simulator, as NASA astronaut Mario Runco looks on Doohan, second from left, during his retirement party with fellow Star Trek stars George Takei, left, and Nichelle Nichols, and Apollo 11 astronaut Neil A. Armstrong
Left: Actor James Doohan visits NASA’s Dryden (now Armstrong) Flight Research Center in California in 1967 with NASA pilot Bruce A. Peterson, in front of the M2-F2 lifting body aircraft. Middle: At NASA’s Johnson Space Center in Houston, Doohan sits in the commander’s seat of the space shuttle simulator, as NASA astronaut Mario Runco looks on. Right: Doohan, second from left, during his retirement party with fellow Star Trek stars George Takei, left, and Nichelle Nichols, and Apollo 11 astronaut Neil A. Armstrong. Credit: Image courtesy Anne Cusack/Los Angeles Times.

James Doohan, the actor who played Lt. Cmdr. Montgomery “Scotty” Scott, the Starship Enterprise’s chief engineer, had early associations with NASA. In April 1967, Doohan visited NASA’s Dryden (now Armstrong) Flight Research Center in California, spending time with NASA test pilot Bruce A. Peterson. A month later, Peterson barely survived a horrific crash of the experimental M2-F2 lifting body aircraft. He inspired the 1970s TV series The Six-Million Dollar Man, and the show’s opening credits include film of the crash. Doohan narrated a documentary film about the space shuttle released shortly before Columbia made its first flight in April 1981. In January 1991, Doohan visited JSC and with NASA astronaut Mario Runco (who sometimes went by the nickname “Spock”) toured the shuttle trainers, Mission Control, and tried his hand at operating the shuttle’s robotic arm in the Manipulator Development Facility. In a unique tribute, astronaut Neil A. Armstrong, the first person to step on the lunar surface, spoke at Doohan’s retirement in 2004, addressing him as “one old engineer to another.”

Takei and Robonaut both give the Vulcan greeting Takei and Robonaut both give the Vulcan greeting
Left: Director of NASA’s Johnson Space Center in Houston Michael L. Coats presents actor George Takei with a commemorative plaque. Right: Takei and Robonaut both give the Vulcan greeting.

George Takei, who played Enterprise helmsman Lt. Hikaru Sulu, and his husband Brad, visited JSC in May 2012. Invited by both Asian American and LGBTQ+ Employee Resource Groups, Takei spoke of leadership and inclusiveness, including overcoming challenges while in Japanese American internment camps during World War II and as a member of the LGBTQ+ community. He noted that Star Trek remained ahead of its time in creating a future when all members of society could equally participate in great undertakings, at a time when the country struggled through the Civil Rights movement and the conflict in Southeast Asia. The inclusiveness that is part of NASA’s culture greatly inspired him. JSC Director Michael L. Coats presented Takei with a plaque including a U.S. flag flown aboard space shuttle Atlantis’ STS-135 mission. He also visited Mission Control and spent some time with Robonaut.

Star Trek cast member Leonard Nimoy gives the Vulcan greeting in front of space shuttle Enterprise after its arrival in New York in 2012 Expedition 43 crew member European Space Agency astronaut Samantha Cristoforetti gives the Vulcan salute to honor the late actor Nimoy
Left: Star Trek cast member Leonard Nimoy gives the Vulcan greeting in front of space shuttle Enterprise after its arrival in New York in 2012. Right: Expedition 43 crew member European Space Agency astronaut Samantha Cristoforetti gives the Vulcan salute to honor the late actor Nimoy. 

Leonard Nimoy played the science officer aboard the Starship Enterprise, the half-human, half-Vulcan Mr. Spock. The actor watched in September 2012 when space shuttle Enterprise arrived at John F. Kennedy International Airport in New York, on the last leg of its journey to the Intrepid Sea, Air and Space Museum, where it currently resides. “This is a reunion for me,” observed Nimoy. “Thirty-five years ago, I met the Enterprise for the first time.” As noted earlier, the Star Trek cast attended the first space shuttle’s rollout in 1976. Following his death in 2015, European Space Agency astronaut Samantha Cristoforetti paid tribute to Nimoy aboard the International Space Station by wearing a Star Trek science officer uniform, giving the Vulcan greeting, and proclaiming, “Of all the souls I have encountered … his was the most human.”

Star Trek cast member William Shatner, left, receives the Distinguished Public Service Medal from NASA Deputy Associate Administrator for Communications Robert N. Jacobs in 2014 Shatner, upper left, moderates a virtual panel at the 2020 San Diego Comic-Con with NASA spacesuit engineer Lindsay T. Aitchison, upper right, NASA astronauts Nicole A. Mann, lower left, and Kjell N. Lindgren, and NASA technology expert LaNetra C. Tate Shatner experiences weightlessness during his suborbital trip to the edge of space aboard a New Shepard vehicle
Left: Star Trek cast member William Shatner, left, receives the Distinguished Public Service Medal from NASA Deputy Associate Administrator for Communications Robert N. Jacobs in 2014. Middle: Shatner, upper left, moderates a virtual panel at the 2020 San Diego Comic-Con with NASA spacesuit engineer Lindsay T. Aitchison, upper right, NASA astronauts Nicole A. Mann, lower left, and Kjell N. Lindgren, and NASA technology expert LaNetra C. Tate. Image credit: courtesy Comic-Con International. Right: Shatner experiences weightlessness during his suborbital trip to the edge of space aboard a New Shepard vehicle. Image credit: courtesy Blue Origin.

Captain James T. Kirk, played by actor William Shatner, a life-long advocate of science and space exploration, served at the helm of the Starship Enterprise. His relationship with NASA began during the original series, with references to the space agency incorporated into several story lines. In 2011, Shatner hosted and narrated a NASA documentary celebrating the 30th anniversary of the Space Shuttle program, and gave his time and voice to other NASA documentaries. NASA recognized Shatner’s contributions in 2014 with a Distinguished Public Service Medal, the highest award NASA bestows on non-government individuals. NASA Deputy Associate Administrator for Communications Robert “Bob” N. Jacobs presented the medal to Shatner. The award’s citation read, “For outstanding generosity and dedication to inspiring new generations of explorers around the world, and for unwavering support for NASA and its missions of discovery.” In 2019, Shatner narrated the NASA video We Are Going, about NASA’s plans to return astronauts to the Moon. He has spoken at numerous NASA-themed events and moderated panels about NASA’s future plans. On Oct. 13, 2021, at the age of 90, Shatner reached the edge of space during the NS-18 suborbital flight of Blue Origin’s New Shepard vehicle, experiencing three minutes of weightlessness.

Patch for the Window Observational Research Facility (WORF), including the Klingon writing just below the letters “WORF.” Astronaut Naoki Yamazaki of the Japan Aerospace Exploration Agency and the WORF rack after its installation aboard the space station during STS-131 The STS-54 crew dressed as Starfleet officers
Left: Patch for the Window Observational Research Facility (WORF), including the Klingon writing just below the letters “WORF.” Middle: Astronaut Naoki Yamazaki of the Japan Aerospace Exploration Agency and the WORF rack after its installation aboard the space station during STS-131. Right: The STS-54 crew dressed as Starfleet officers.

The Space Flight Awareness (SFA) poster for the Expedition 21 crew The SFA poster for the STS-134 crew
Left: The Space Flight Awareness (SFA) poster for the Expedition 21 crew. Right: The SFA poster for the STS-134 crew.

Elements of the Star Trek universe have made their way not only into popular culture but also into NASA culture. As noted above, Star Trek fans had a hand in naming the first space shuttle Enterprise. NASA’s Earth observation facility aboard the space station that makes use of its optical quality window bears the name the Window Observational Research Facility (WORF). The connection between that acronym and the name of a Klingon officer aboard the Enterprise in the Star Trek: The Next Generation TV series seemed like an opportunity not to be missed – the facility’s official patch bears its name in English and in Klingon. Several astronaut crews have embraced Star Trek themes for their unofficial photographs. The STS-54 crew dressed in the uniforms of Starship Enterprise officers from Star Trek II: The Wrath of Kahn, the second full-length feature motion picture of the series. Space shuttle and space station crews created Space Flight Awareness (SFA) posters for their missions, and more than one embraced Star Trek themes. The Expedition 21 crew dressed in uniforms from the original series, while the STS-134 crew chose as their motif the 2009 reboot motion picture Star Trek.

Picture of the Gemini VI launch in the background in the 1967 Star Trek episode “Court Martial.” NASA astronaut Mae C. Jemison, left, and actor LeVar Burton in a 1993 episode of Star Trek: The Next Generation NASA astronauts Terry W. Virts, left, and E. Michael Fincke, right, flank actor Scott Bakula on the set of Star Trek: Enterprise in 2005
Left: Picture of the Gemini VI launch in the background in the 1967 Star Trek episode “Court Martial.” Credit: Image courtesy of Collectspace.com. Middle: NASA astronaut Mae C. Jemison, left, and actor LeVar Burton in a 1993 episode of Star Trek: The Next Generation. Credit: Image courtesy CBS. Right: NASA astronauts Terry W. Virts, left, and E. Michael Fincke, right, flank actor Scott Bakula on the set of Star Trek: Enterprise in 2005. Credit: Image courtesy CBS.

As much as Star Trek has influenced NASA, in turn the agency has left its mark on the franchise, from episodes referencing actual and future spaceflight events to NASA astronauts making cameo appearances on the show. The first-season episode “Court Martial” that aired in February 1967 featured a photograph of the December 1965 Gemini VI launch adorning a wall aboard a star base. In the second-season episode “Return to Tomorrow,” airing in February 1968, Captain Kirk in a dialogue about risk-taking remarks, “Do you wish that the first Apollo mission hadn’t reached the Moon?” a prescient reference to the first Apollo mission to reach the Moon more than 10 months after the episode aired. Astronaut Mae C. Jemison, who credits Nichelle Nichols as her inspiration to become an astronaut, appeared in the 1993 episode “Second Chances” of Star Trek: The Next Generation, eight months after her actual spaceflight aboard space shuttle Endeavour. In May 2005, two other NASA astronauts, Terry W. Virts and E. Michael Fincke, appeared in “These are the Voyages…,” the final episode of the series Star Trek: Enterprise.

NASA astronaut Victor J. Glover, host of the 2016 documentary “NASA on the Edge of Forever: Science in Space.” Actress Nichelle Nichols appearing in the documentary “NASA on the Edge of Forever: Science in Space.”
Left: NASA astronaut Victor J. Glover, host of the 2016 documentary “NASA on the Edge of Forever: Science in Space.” Right: Actress Nichelle Nichols appearing in the documentary “NASA on the Edge of Forever: Science in Space.”

In the 2016 documentary “NASA on the Edge of Forever: Science in Space,” host NASA astronaut Victor J. Glover states, “Science and Star Trek go hand-in-hand.” The film explores how for 50 years, Star Trek influenced scientists, engineers, and even astronauts to reach beyond their potential. While the space station doesn’t speed through the galaxy like the Starship Enterprise, much of the research conducted aboard the orbiting facility can make the fiction of Star Trek come a little closer to reality. Several of the cast members from the original TV series share their viewpoints in the documentary, along with those of NASA managers and scientists. Over the years, NASA has created several videos highlighting the relationship between the agency and the Star Trek franchise. In 2016, NASA Administrator Charles F. Bolden led a video tribute to celebrate the 50th anniversary of the first Star Trek episode.

In a tribute to Star Trek creator Gene Roddenberry on the 100th anniversary of his birth, his son Rod, upper left, hosts a virtual panel discussion about diversity and inspiration
In a tribute to Star Trek creator Gene Roddenberry on the 100th anniversary of his birth, his son Rod, upper left, hosts a virtual panel discussion about diversity and inspiration.

In 2021, on the 100th anniversary of Gene Roddenberry’s birth, his son Rod hosted a virtual panel discussion, introduced by NASA Administrator C. William “Bill” Nelson, about diversity and inspiration, two ideals the Star Trek creator infused into the series. Panelists included Star Trek actor Takei, Tracy D. Drain, flight systems engineer for the Europa Clipper spacecraft at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, NASA astronaut Jonny Kim, Swati Mohan, guidance and operations lead for the Mars 2020 rover at JPL, and Hortense B. Diggs, Director of the Office of Communication and Public Engagement at NASA’s Kennedy Space Center in Florida.

The mutual attraction between NASA and Star Trek stems from, to paraphrase the opening voiceover from the TV series, that both seek to explore and discover new worlds, and to boldly go where no one has gone before. The diversity, inclusion, and inspiration involved in these endeavors ensure that they will live long and prosper.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
      The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
      Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
      “Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
      A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
      There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
      Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
      NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
      NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Explore More
      8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
      Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
      Article 1 day ago
      r
      View the full article
    • By Space Force
      Over the past two years, the first U.S. space service component has tripled in size, established a 24/7 space watch cell and executed three Tier 1 Combatant Command exercises.

      View the full article
    • By NASA
      NASA/JPL-Caltech This Oct. 4, 2017, illustration shows a hypothetical uneven ring of dust orbiting KIC 8462852, also known as Boyajian’s Star or Tabby’s Star. The star has experienced unusual dips in brightness over a matter of days, as well as much subtler but longer-term dimming trends. Scientists proposed several explanations for this unexpected behavior, ranging from Tabby’s Star swallowing a planet to alien “megastructures” harvesting the star’s energy. However, a study using NASA’s Spitzer and Swift missions as well as the Belgian AstroLAB IRIS observatory suggests that the cause of the dimming over long periods is likely an uneven dust cloud moving around the star.
      Learn more about this enigmatic star, named after Tabetha Boyajian, the Yale University postdoc who discovered it with the help of citizen scientists.
      Image credit: NASA/JPL-Caltech
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      A 3D simulation showing the evolution of turbulent flows in the upper layers of the Sun. The more saturated and bright reds represent the most vigorous upward or downward twisting motions. Clear areas represent areas where there is only relatively slow up-flows, with very little twisting.NASA/Irina Kitiashvili and Timothy A. Sandstrom NASA supercomputers are shedding light on what causes some of the Sun’s most complex behaviors. Using data from the suite of active Sun-watching spacecraft currently observing the star at the heart of our solar system, researchers can explore solar dynamics like never before. 
      The animation shows the strength of the turbulent motions of the Sun’s inner layers as materials twist into its atmosphere, resembling a roiling pot of boiling water or a flurry of schooling fish sending material bubbling up to the surface or diving it further down below. 
      “Our simulations use what we call a realistic approach, which means we include as much as we know to-date about solar plasma to reproduce different phenomena observed with NASA space missions,” said Irina Kitiashvili, a scientist at NASA’s Ames Research Center in California’s Silicon Valley who helped lead the study. 
      Using modern computational capabilities, the team was able, for the first time to reproduce the fine structures of the subsurface layer observed with NASA’s Solar Dynamics Observatory.
      “Right now, we don’t have the computational capabilities to create realistic global models of the entire Sun due to the complexity,” said Kitiashvili. “Therefore, we create models of smaller areas or layers, which can show us structures of the solar surface and atmosphere – like shock waves or tornado-like features measuring only a few miles in size; that’s much finer detail than any one spacecraft can resolve.”
      Scientists seek to better understand the Sun and what phenomena drive the patterns of its activity. The connection and interactions between the Sun and Earth drive the seasons, ocean currents, weather, climate, radiation belts, auroras and many other phenomena. Space weather predictions are critical for exploration of space, supporting the spacecraft and astronauts of NASA’s Artemis campaign. Surveying this space environment is a vital part of understanding and mitigating astronaut exposure to space radiation and keeping our spacecraft and instruments safe.
      This has been a big year for our special star, studded with events like the annular eclipse, a total eclipse, and the Sun reaching its solar maximum period. In December 2024, NASA’s Parker Solar Probe mission – which is helping researchers to understand space weather right at the source – will make its closest-ever approach to the Sun and beat its own record of being the closest human-made object to reach the Sun. 
      The Sun keeps surprising us. We are looking forward to seeing what kind of exciting events will be organized by the Sun."
      Irina Kitiashvili
      NASA Scientist
      “The Sun keeps surprising us,” said Kitiashvili. “We are looking forward to seeing what kind of exciting events will be organized by the Sun.”
      These simulations were run on the Pleaides supercomputer at the NASA Advanced Supercomputing facility at NASA Ames over several weeks of runtime, generating terabytes of data. 
      NASA is showcasing 29 of the agency’s computational achievements at SC24, the international supercomputing conference, Nov. 17-22, 2023, in Atlanta, Georgia. For more technical information, visit: ​
      https://www.nas.nasa.gov/sc24
      For news media: Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      Share
      Details
      Last Updated Nov 21, 2024 Related Terms
      General Ames Research Center Heliophysics Solar Dynamics Observatory (SDO) Sunspots The Sun Explore More
      2 min read Weld-ASSIST: Weldability Assessment for In-Space Conditions using a Digital Twin
      Article 5 hours ago 5 min read NASA’s Chandra, Hubble Tune Into ‘Flame-Throwing’ Guitar Nebula
      Article 23 hours ago 4 min read Protected: 2024 Blue Marble Awards
      Article 24 hours ago Keep Exploring Discover More Topics From NASA
      Parker Solar Probe
      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
      Solar Storms and Flares
      Solar storms and flares are eruptions from the Sun that can affect us here on Earth.
      Solar System
      Track the Solar Cycle with Sunspots
      Participate in sunspot-counting activities using NASA telescopes or your own.
      View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Finds… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   5 Min Read NASA’s Hubble Finds Sizzling Details About Young Star FU Orionis
      An artist’s concept of the early stages of the young star FU Orionis (FU Ori) outburst, surrounded by a disk of material. Credits:
      NASA-JPL, Caltech In 1936, astronomers saw a puzzling event in the constellation Orion: the young star FU Orionis (FU Ori) became a hundred times brighter in a matter of months. At its peak, FU Ori was intrinsically 100 times brighter than our Sun. Unlike an exploding star though, it has declined in luminosity only languidly since then.
      Now, a team of astronomers has wielded NASA’s Hubble Space Telescope‘s ultraviolet capabilities to learn more about the interaction between FU Ori’s stellar surface and the accretion disk that has been dumping gas onto the growing star for nearly 90 years. They find that the inner disk touching the star is extraordinarily hot — which challenges conventional wisdom.
      The observations were made with the telescope’s COS (Cosmic Origins Spectrograph) and STIS (Space Telescope Imaging Spectrograph) instruments. The data includes the first far-ultraviolet and new near-ultraviolet spectra of FU Ori.
      “We were hoping to validate the hottest part of the accretion disk model, to determine its maximum temperature, by measuring closer to the inner edge of the accretion disk than ever before,” said Lynne Hillenbrand of Caltech in Pasadena, California, and a co-author of the paper. “I think there was some hope that we would see something extra, like the interface between the star and its disk, but we were certainly not expecting it. The fact we saw so much extra — it was much brighter in the ultraviolet than we predicted — that was the big surprise.”
      A Better Understanding of Stellar Accretion
      Originally deemed to be a unique case among stars, FU Ori exemplifies a class of young, eruptive stars that undergo dramatic changes in brightness. These objects are a subset of classical T Tauri stars, which are newly forming stars that are building up by accreting material from their disk and the surrounding nebula. In classical T Tauri stars, the disk does not touch the star directly because it is restricted by the outward pressure of the star’s magnetic field.
      The accretion disks around FU Ori objects, however, are susceptible to instabilities due to their enormous mass relative to the central star, interactions with a binary companion, or infalling material. Such instability means the mass accretion rate can change dramatically. The increased pace disrupts the delicate balance between the stellar magnetic field and the inner edge of the disk, leading to material moving closer in and eventually touching the star’s surface.
      This is an artist’s concept of the early stages of the young star FU Orionis (FU Ori) outburst, surrounded by a disk of material. A team of astronomers has used the Hubble Space Telescope’s ultraviolet capabilities to learn more about the interaction between FU Ori’s stellar surface and the accretion disk that has been dumping gas onto the growing star for nearly 90 years. They found that the inner disk, touching the star, is much hotter than expected—16,000 kelvins—nearly three times our Sun’s surface temperature. That sizzling temperature is nearly twice as hot as previously believed. NASA-JPL, Caltech
      Download this image

      The enhanced infall rate and proximity of the accretion disk to the star make FU Ori objects much brighter than a typical T Tauri star. In fact, during an outburst, the star itself is outshined by the disk. Furthermore, the disk material is orbiting rapidly as it approaches the star, much faster than the rotation rate of the stellar surface. This means that there should be a region where the disk impacts the star and the material slows down and heats up significantly. 
      “The Hubble data indicates a much hotter impact region than models have previously predicted,” said Adolfo Carvalho of Caltech and lead author of the study. “In FU Ori, the temperature is 16,000 kelvins [nearly three times our Sun’s surface temperature]. That sizzling temperature is almost twice the amount prior models have calculated. It challenges and encourages us to think of how such a jump in temperature can be explained.”
      To address the significant difference in temperature between past models and the recent Hubble observations, the team offers a revised interpretation of the geometry within FU Ori’s inner region: The accretion disk’s material approaches the star and once it reaches the stellar surface, a hot shock is produced, which emits a lot of ultraviolet light.
      Planet Survival Around FU Ori
      Understanding the mechanisms of FU Ori’s rapid accretion process relates more broadly to ideas of planet formation and survival.
      “Our revised model based on the Hubble data is not strictly bad news for planet evolution, it’s sort of a mixed bag,” explained Carvalho. “If the planet is far out in the disk as it’s forming, outbursts from an FU Ori object should influence what kind of chemicals the planet will ultimately inherit. But if a forming planet is very close to the star, then it’s a slightly different story. Within a couple outbursts, any planets that are forming very close to the star can rapidly move inward and eventually merge with it. You could lose, or at least completely fry, rocky planets forming close to such a star.”
      Additional work with the Hubble UV observations is in progress. The team is carefully analyzing the various spectral emission lines from multiple elements present in the COS spectrum. This should provide further clues on FU Ori’s environment, such as the kinematics of inflowing and outflowing gas within the inner region.
      “A lot of these young stars are spectroscopically very rich at far ultraviolet wavelengths,” reflected Hillenbrand. “A combination of Hubble, its size and wavelength coverage, as well as FU Ori’s fortunate circumstances, let us see further down into the engine of this fascinating star-type than ever before.”
      These findings have been published in The Astrophysical Journal Letters.
      The observations were taken as part of General Observer program 17176.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Abigail Major, Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Nov 21, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Exploring the Birth of Stars



      Hubble’s Night Sky Challenge



      Hubble Focus: The Lives of Stars


      This e-book highlights the mission’s recent discoveries and observations related to the birth, evolution, and death of stars.

      View the full article
  • Check out these Videos

×
×
  • Create New...