Jump to content

Summary of the 2023 Precipitation Measurement Mission Science Team Meeting


Recommended Posts

  • Publishers
Posted
eo-meeting-summary-banner.png?w=1037

26 min read

Summary of the 2023 Precipitation Measurement Mission Science Team Meeting

Andrea Portier, NASA’s Goddard Space Flight Center/Science Systems and Applications, Inc., andrea.m.portier@nasa.gov

Introduction

The annual Precipitation Measurement Mission (PMM) Science Team Meeting (STM) took place September 18–22, 2023, in Minneapolis, MN. The PMM program supports scientific research and applications, algorithm development, and ground-based validation activities for the completed Tropical Rainfall Measuring Mission (TRMM) and current Global Precipitation Measurement (GPM) mission, including the GPM Core Observatory. Participants (including 137 in person and 22 virtual attendees) joined the meeting from a variety of affiliations including NASA, the Japan Aerospace Exploration Agency (JAXA), universities, and other partner agencies—see Photo.

The meeting included 46 plenary presentations spread across 7 thematically focused sessions and 77 poster presentations split between 2 sessions, with both oral and poster sessions covering mission and program status, partner reports, GPM algorithm development, and scientific results using GPM data.

The meeting also included a series of splinter sessions for precipitation working groups. The working groups included NASA–JAXA Joint Precipitation Science Team, the Committee on Earth Observation SatellitesPrecipitation Virtual Constellation, GPM Mentorship Program, and topically focused groups on Applications, Hydrology, Land Surface, Latent Heating, Multisatellite, GPM Intersatellite Calibration (XCAL), Ground Validation (GV), Particle Size Distribution (PSD), and Oceanic Areas. These working groups were a combination of invitation-only, in-person, and hybrid meetings. Owing to the distributed nature of these meetings, summaries of their proceedings are not included in this article.

This article highlights current updates on the GPM mission and summarizes scientific results conveyed during the 2023 PMM STM. The meeting agenda and full presentations can be accessed through the 2023 PMM Science Team Meeting Files. Note that this is a password protected page; readers interested in accessing these files will need to reach out via the GPM Contact Form on the website to receive the access code.

PPM Group Photo
Photo. Attendees of the 2023 PMM STM in front of the McNamara Alumni Center in Minneapolis, MN.
Photo credit: Chris Kidd/GSFC and University of Maryland, College Park (UMD)

Status Report and Updates on PMM: Perspectives from NASA and JAXA

The PMM missions are the fruit of long partnerships between NASA and JAXA. The PMM Science Team (ST) includes more than 20 international partners. The subsections that follow highlight the status of the PMM program and related activities that were conveyed by NASA and JAXA PMM Science Program Management Teams.

NASA

Will McCarty [NASA Headquarters (HQ)—GPM Program Scientist] presented the NASA HQ perspective regarding PMMs – present and future. He explained that current missions continue to drive the focus for precipitation science, and that future missions will continue to link the thermodynamic and dynamic factors of precipitation science by targeting additional temporal information. McCarty introduced several current and upcoming missions and programs, including satellite launches [e.g., NASA’s Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS), an Earth Venture Instrument (EVI), and the Investigation of Convective Updrafts (INCUS), an Earth Venture Mission], instruments [e.g., NASA’s Polarized Submillimeter Ice-cloud Imager (POLSIR), also an EVI, which will be deployed on two CubeSats], and field campaigns [e.g., NASA’s Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) and Convective Processes Experiment Cabo Verde (CPEX-CV) experiments]. He then briefly discussed the second (2017) Earth Science Decadal Survey and provided an overview of the future Earth System Observatory (ESO), which will have interconnected core missions (e.g., the Atmosphere Observing System (AOS)). He also discussed the Planetary Boundary Layer (PBL), which the Decadal Survey classifies incubation targeted observable. McCarty concluded by noting that the future PMM ST call may be integrated by combining mission science from multiple satellites.

George Huffman [NASA’s Goddard Space Flight Center (GSFC)—GPM Project Scientist and PMM ST Lead] provided an update on the projected lifetime for GPM. Based on fuel usage alone, GPM should continue to December 2027. However, the amount of solar activity has an impact on that calculation. The Sun is expected to be quite active over the next few years as we approach the Solar Maximum for Solar Cycle 25—which could shorten GPM’s lifetime by as much as four years. He noted that a controlled reentry of the GPM Core spacecraft is planned—and enough fuel has to be kept in reserve to allow this to happen. Huffman discussed a recently developed plan for boosting the orbit of the GPM core satellite—for more details on the plan, see the subsection, “GPM Core Observatory Boost,” later in this article. He added that NASA and JAXA have both approved the plan and deemed its implementation critical for overlap with AOS for instrument intercomparison. The boosting is currently scheduled for November 7–9, 2023.(Update: Since the meeting in September, the GPM orbit boost was executed successfully on the scheduled dates.) The impact of the boosting on radiometer algorithms (e.g., for the GPM Microwave Imager (GMI)) is expected to be less than the impact on the radar algorithms (e.g., for the GPM Dual-Frequency Precipitation Radar, (DPR)). The potential impact on the combined algorithms (i.e., algorithms used to combine data from GMI and DPR) is still being assessed.

Huffman also discussed the status of the GPM data products. He reported that all GPM core data products are using Version 7 (V07). He mentioned that V07 of the Integrated Multi-Satellite Retrievals for GPM (IMERG) Final is out, but IMERG Early and Late data products are pending other actions in the NASA Precipitation Processing System (PPS). (IMERG has 3 classifications of data products: Early (latency of 4 hours), late (latency of 12–14 hours), and final (latency of 3 months).) He noted that the GPM orbit boost requires modifications to V07 core algorithms, and this accentuates the importance of a timely release of V08 algorithms (anticipated early 2026).

Erich Stocker [GSFC—GPM Deputy Project Scientist for Data and Precipitation Processing System Project Manager] discussed the status of GPM data products. He mentioned that radar/combined/IMERG products have transitioned from V06 to V07—but all radiometer products, Level-1 to Level-3, went from V05 to V07 to ensure the version is consistent on all of the products. Stocker continued that the GPM core satellite boost in November 2023 will lead to an outage of radar products for about five months for research and 2–3 months for near real-time (NRT) data products. NRT radiometer products will continue through the boost with only 2–3 days of outage while the satellite reaches its new altitude. He concluded that the initial NRT V07 IMERG processing and V07 retroprocessing of Early and Late IMERG products will start in January 2024.

David Wolff [NASA’s Wallops Flight Facility (WFF)—GPM Deputy Project Scientist for Ground Validation and Ground Validation System Manager] provided an overview of the GPM Ground Validation program and current activities. He stated that the ground validation (GV) program has state-of-the-art ground and remote sensing instruments to acquire precipitation and microphysics data to validate GPM retrievals. He described the ground validation site at NASA’s Wallops Flight Facility (WFF), which includes several radars, disdrometers (an instrument that measures drop-size distribution), and a Precipitation Imaging Processor (PIP) package. Wolff discussed the gauge-only systems, Platforms for In situ Estimation of Rainfall Systems (PIERS), activities for Increasing Participation of Minority Serving Institutions in Earth Science Division Surface-Based Measurement Networks, and pySIMBA – the GPM GV Support Software, an Open-Source Python Package to integrate and Analyze Precipitation Datasets that is available from GitHub. Wolff also provided a brief overview of the successful GPM GV Workshop that was held at Wallops Flight Facility on March 23–25, 2023. He continued by providing GPM Ground Validation Network (VN) updates and discussing VN captures of three-dimensional (3D) polarimetric information within DPR and GMI.

Wolff also noted that the GV program includes field campaigns (e.g., IMPACTS and Marquette, a five-year mini campaign conducted in collaboration with the National Oceanic and Atmospheric Administration’s (NOAA) National Weather Service (NWS)­). He also discussed the new S-band radar network in Canada that offers access to high-quality radar data at relatively high latitudes over both land and sea. This data will be used as part of the VN for evaluation of GPM products. He concluded by discussing the Global Hydrometeorology Resource Center (GHRC) that archives past and current field campaign data and provides data quality control, metadata, campaign descriptions, and digital object identifier (DOI) assignments for each instrument/sensor.

Andrea Portier [GSFC—GPM Mission Applications Lead] and Dorian Janney [GSFC—GPM Outreach Coordinator] reflected on the 2022–2023 applications and outreach efforts and also discussed upcoming activities, including the – at the time of the meeting – upcoming tenth anniversary of the GPM Mission in February 2024. The applications team continues its focus on increasing awareness and use of GPM data and products across communities through user-engagement activities, including workshops (e.g., Applying Earth Observation Data for Research and Applications in Sustainable Development held at the 2022 Fall Meeting of the American Geophysical Union (AGU) in San Francisco, CA), trainings (e.g., 2023 GPM Mentorship Program), GPM application case studies, and GPM visualizations. A continuing and integral part of GPM outreach efforts is the numerous activities that reach hundreds of students and adults in a variety of formal and informal settings. This includes cooperative efforts with NASA’s Global Learning and Observations to Benefit the Environment (GLOBE) and hands-on activities at events (e.g., the Earth Day celebration at the Washington, DC’s Union Station). (To read more about the 2023 Earth Day celebration at Union Station, see A Pale Blue Dot in Washington: NASA’s Earth Day Celebration at Union Station, in the July–August 2023 issue of The Earth Observer [Volume 35, Issue 4, pp. 4–12].)

Many of these efforts will be highlighted and amplified during GPM’s tenth anniversary celebration. The GPM Applications and Outreach Team’s planning for the anniversary is underway. The intent is to highlight the vast capabilities of the GPM Mission and how GPM data can be used to address societal applications and improve the understanding of Earth’s water and energy cycles through a series of activities and resources starting in February 2024. These efforts include a reception at GSFC Visitor’s Center, a year-long monthly webinar series, feature articles, applications eBook, and a GPM video, among others. Details of these efforts will be posted through the GPM website.

JAXA

Takuji Kubota [JAXA—JAXA GPM Program Scientist] provided an update and a review of the PMM program status and mission objectives. He emphasized that this update included the perspectives of the Japanese PMM Science Program Management Team, including their roles in the development of DPR and its algorithms, GV, GPM data processing, and GPM data distribution systems. He also gave an update on current activities related to GPM data utilization and application across Japan and Asia. Kubota continued by describing the potential impacts on the DPR instrument because of the proposed orbit boost, noting that the instrument footprints and swath widths will increase proportionately with altitude change accompanied by a slight reduction in radar sensitivity. JAXA is preparing for these impacts with revised codes for L1 algorithms and planning for external calibrations before and after the orbit boost to examine calibrations of the DPR. Kubota also discussed the reprocessing of JAXA’s Global Satellite Mapping of Precipitation (GSMaP) data product (essentially the JAXA equivalent of IMERG) to enable a longer-term precipitation dataset, highlighting its completion in September 2023. GSMaP data is now available back to January 1998. Kubota discussed the future of Japanese precipitation measurements including: Earth Cloud, Aerosol and Radiation Explorer (EarthCARE), scheduled for launch in 2024; Global Observing SATellite for Greenhouse gases and Water cycle (OSAT-GW), planned for launch NET 2024; Advanced Microwave Scanning Radiometer (AMSR) series, which currently includes AMSR2 on the (GCOM-W) and will include AMSR3 on GOSAT-GW; and the previously discussed ESO AOS mission. He concluded with a discussion of JAXA’s plan for observing and celebrating GPM’s tenth anniversary.

Yukari Takayabu [University of Tokyo—JAXA GPM Project Scientist] highlighted results from recent science studies using DPR and GSMaP data products from the JAXA assembled GPM Program Science Team. She noted the use of DPR for extracting high-altitude precipitation information over Africa, capturing low-level precipitation statistics near the center of typhoons, narrowing the blind zone of the DPR to improve shallow precipitation detection in mountainous areas, validation studies of DPR, and retrieving frozen precipitation data using DPR. She concluded her presentation with highlights of GSMaP use for several applications, including the new GSMaP validation work in Japan to observe extreme rainfall, improvements to GSMaP through data-driven approaches, and data assimilation of GSMaP into the JAXA Realtime Weather Watch system.

Nobuhiro Takahashi [Nagoya University] presented an overview of significant updates to the DPM algorithm since the last PMM ST meeting, including changes in the latest V07 processing to accommodate the full-swath Ka-band operations – see Figure 1. He emphasized the impacts on the planning and development of V08 DPR algorithm with respect to the GPM orbit boost (described in George Huffman’s presentation). He noted that the major impacts to the performance of DPR include a degradation of measurement sensitivity and the “rain/no rain” classification. Takahashi concluded by saying that the release of V08 is expected in January 2026.

PMM Figure 1
Figure 1. Evaluation of DPR product improvements from V06 to V07. Dual frequency product has smaller bias than KuPR product. The correlation coefficient improved from V06 to V07.
Figure credit: Nobuhiro Takahashi/Nagoya University

Kosuke Yamamoto [Earth Observation Research Center (EORC) and JAXA] summarized application activities initiated by the JAXA GPM Program Science Team. He discussed the use of GSMaP precipitation data to support and enhance several application areas, e.g., the operational use of GSMaP for flood and severe weather forecasting as well as the use of GSMaP in operational systems, including the JAXA Agro-meteorology Information Provision System (JASMIN), ASEAN Food Security Information System (AFSIS), and the Japanese’ Coast Guard’s Maritime Domain Awareness (MDA) initiative. Yamamoto also discussed the 2022 Japan–Australia–India–U.S. (QUAD) Joint Leaders’ Meeting Tackling Extreme Precipitation Events Workshop, an online event that took place March 1–3, 2023, and associated workshop reports focusing on the utilization of satellite observations across Pacific Islands.

GPM Algorithm Updates

Presenters during this session provided information and updates on various aspects of the five major algorithms of GPM. Full documentation and detailed updates for each algorithm are available at the Precipitation Data Directory.

Dual Frequency Radar Algorithm

The DPR algorithm team provided updates on DPR-related work, including the further refinement of the path-integrated attenuation (PIA) estimates used in the surface reference technique (SRT). They examined the effects of using the new AutoSnow algorithm – which uses satellite snowfall observations to create snowfall maps – on PIA estimations and changes in the surface type classification. Overall, the changes were small on the estimated precipitation profiles. Other algorithm refinements include the addition of a dry and wet snow category and wind speed. The team is currently examining how to recover Ka-band attenuation from the Ku-band. They stressed that results from this analysis are preliminary, and more work is needed to assess the utility of this technique. Finally, the team is discussing the implications of the GPM orbit boost on the DPR algorithm.

GPM Combined Radar–Radiometer Algorithm

The GPM Combined Radar–Radiometer Algorithm (CORRA) team discussed the changes and improvements to the CORRA V07 algorithm over the previous version. They highlighted the new AutoSnow algorithm and its impacts within CORRA V07. The team also examined the impact of the precipitation particle size distribution (PSD) initial assumptions on the estimation of snowfall as well as a machine-learning based initialization approach that improves the agreement between CORRA and NOAA’s Multi-Radar/Multi-Sensor System (MRMS) snow estimates. In addition, the team continues to examine a radiometer-only module to estimate light precipitation over oceans. This module will be included in the next version (V08) of CORRA. The team is also looking at the consequences of the GPM orbit boost.

Goddard Profiling Algorithm for GMI

The Goddard Profiling Algorithm (GPROF) team continues to work on well-known issues. The V07 update includes improvements in the a priori database to help constrain outputs from GPM constellation radiometers as well as inclusion of the radiometers on TROPICS and NASA’s Temporal Experiment for Storms and Tropical Systems–Demonstration (TEMPEST-D). The two new neural network-based implementations of GPROF in V08 are anticipated in roughly a year. The team reported that they have no issues with the GPM orbit boost.

Integrated Multi-Satellite Retrievals for GPM Algorithm

The IMERG algorithm team reported on V07, which includes a wide range of algorithm changes from V06. V07 includes retrospective reprocessing of the entire TRMM–GPM record and thus supersedes all previous versions. The team also reported that the algorithm changes improve the performance of IMERG estimates both in terms of its precipitation detection and systematic and random bias. The presenters noted improvements over frozen, orographic, and coastal surfaces. The team is now working on priority items that need completing in order to implement V08.

Convective–Stratiform Heating Algorithm

The GSFC Convective–Stratiform Heating (CSH) algorithm team provided an overview on latent heating (LH) retrievals. The presentation highlighted some of the details in updating to V07, including more accurate cloud-resolving model (CRM) simulations (using 3D domain rather than two-dimensional) and new detailed radiation retrievals. V07 is also “terrain aware,” meaning that the algorithm includes added details of radiative heating profiles and eddy transport terms. For V08, the CSH team plans to have a new 3D CRM database with a grid size of 250 m (820 ft) and look-up tables (LUTs) for non-surface raining columns for the tropical/summertime part of the algorithm as well as LUTs for terrain. These V08 improvements are still in development as of this meeting.

Science Results and Data Quality

A large component of the meeting was dedicated to presentations by NASA PMM-funded Principal Investigator (PI) teams on the science research and applications being achieved using PMM data. PI oral presentations were divided into four thematically focused topical sessions: Precipitation Microphysics, Snow and Hail, Storm Analysis, and Data Uncertainty. The subsections that follow highlight scientific results from each of these sessions. The reader is referred to the full reports online for more details.

Precipitation Microphysics

Presenters during this session described various techniques and new methodologies to study microphysical properties of precipitation including shape and size of precipitation particles (e.g., drop size distribution (DSD)), phase identification (e.g., liquid, solid, and mixed phase/melting), scattering properties, and precipitation rate, using both radar and radiometer observations. These property measurements play a pivotal role in improving precipitation retrieval algorithms, allowing scientists and decision makers to better understand and forecast storms.

One presenter in this session discussed new methods for classifying different types of precipitation (e.g., rain, graupel, hail, and dry and wet snow) using DPR precipitation retrievals. The new technique will be implemented into the V08 DPR algorithm. The discussion also covered a technique to establish relationships between GMI brightness temperature and hydrometeor type (e.g., rain, snow, graupel, and hail), leveraging the GPM validation network to construct LUTs of hydrometeor type likelihood – see Figure 2. Another presenter introduced a model to understand how DSD changes near the surface can be used to estimate rainfall rate. The last presenter in this session discussed the development of a precipitation scattering property database—which includes scattering characteristics of about 10,000 different types of ice particles. The database includes scattering cross sections calculated in thousands of orientations for each type of particle. This database is accessible to the public, which helps support the development of physically based scattering calculations and improvement of precipitation retrieval algorithms for both radar and radiometers.

PMM Figure 2
Figure 2. A technique for retrieving hydrometeor information from GMI brightness temperature. In these RGB plots, snow and rain are combined into one category (green), while the individual probabilities are retained in the lookup tables.
Figure credit: Dan Cecil/NASA’s Marshall Space Flight Center (MSFC)

Snow and Hail

In this session, speakers discussed a broad move toward satellite retrievals for frozen hydrometeors, not just to identify bulk effects (e.g. snow or hail accumulation at the surface), but also to gather information on physical properties of frozen hydrometeors (e.g., where hailstones reside within clouds or what shapes snowflakes take). Understanding frozen hydrometeor properties can significantly improve precipitation and latent heat estimates that are essential for numerical weather forecasting and climate model development.

One speaker applied a method that used DPR and GMI observations to estimate frozen precipitation particle properties for an Olympic Mountain Experiment (OLYMPEX) field campaign case. The results he showed indicated a significant difference in the shapes of snowflakes between land and sea. Another speaker detailed the use of a simple machine learning framework trained on measurements of the use of snowfall and cloud type observations from the CloudSat Cloud Profiling Radar (CPR) to infer surface snowfall from GMI microwave measurements. Other presenters conveyed the results of a study examining different potential indicators of hail within the GPM database. These hail indicators were mapped, and the mean vertical profiles of radar reflectivity and storm structure were contrasted. The final pair of presentations focused on detecting hail in South America and Africa. In South America, hail-producing storms were shown to be strongly linked to local topography – in contrast to hotspots of hail in the U.S. Meanwhile, in Africa, new algorithms for identifying hail in GPM data suggest hail should be common – but this outcome is at odds with ground truth observations. This test case is being used to develop new methods for retrieving hail that include analyzing horizontal profile information within the data.

Storm Analysis

Presenters in this session discussed a variety of applications and assessments of PMM products for analyzing a variety of storms, particularly their cloud, precipitation, and kinematic structures and their structural evolution. The first speaker compared precipitation events simulated in IMERG to the same event with rain gauge observations. They found that while IMERG missed many winter precipitation events in mountainous regions –which rain gauges typically can measure – IMERG also captured summer virga events – which rain gauges typically miss. Another presenter compared IMERG to river catchment and integrated watershed observations and found that IMERG overestimated small precipitation events but underestimated large events. The next presenter showed a comparison IMERG simulations to the multi-instrument MRMS dataset during the lifecycle of precipitation events. The results shown suggest that IMERG errors in precipitation intensity could be improved by inputting other variables (e.g., ice water path or vertical velocity) into the precipitation retrievals. The discussions during this session also covered other plans to use PMM products to study convection in atmospheric river events, in combination with a modeling analysis using different convection schemes. The final pair of presenters spoke about understanding convective-scale drivers of the Inter Tropical Convergence Zone ascent and widening the use of a simple prognostic model that will use PMM data for filling terms in the model. One model weakness is the decay term for the convection cloud shield, which, if determined, could reduce error in climate models, particularly with radiative processes. The final speaker used TRMM Visible and Infrared Scanner (VIRS) data to develop and test a method for identifying and classifying cloud areas (i.e., core, midrange extent, and outer bound split window testing) and determine their relationships to other environmental variables, such as sea surface temperatures and column water vapor.

Data Uncertainty

Presenters during this session discussed new methodologies to address data uncertainties and bias in precipitation retrievals to improve precipitation estimates for science and applications research. Two of the presenters delved into the details of how the GPROF algorithm has inherent precipitation biases due to different hydrometeor characteristics captured by GMI passive microwave brightness temperature – which may be related to thermodynamic environments. Another PI presented updates for improving uncertainty estimates to enhance hydrological prediction. Specifically, he discussed multiscale precipitation uncertainties in precipitation products, including a new product that combines the Space-Time Rainfall Error and Autocorrelation Model (STREAM) with single-orbit rainfall estimates from the combined GPM data product, called STREAM-Sat. He explained how the uncertainties in these products can influence hydrologic prediction. The session concluded with a discussion of machine learning methods to estimate the probability distribution of uncertainties in passive microwave precipitation retrievals at different temporal and spatial scales.

Discussion of Future Missions, Observations, and Activities Relevant to GPM

This session featured presentations on several other existing and upcoming missions in various stages of development, as well presentations covering the future of precipitation instruments and observations, each with applications relevant to GPM. Each presentation included information on plans to advance and support precipitation science in the near term and the coming decade, as described below.

TROPICS

The TROPICS Pathfinder CubeSat mission provides microwave observations of tropical cyclones with less than a 60-minute revisit time to capture better storm dynamics and improve forecasting. The Pathfinder has demonstrated all mission elements and provided new tropical cyclone imagery (12,000+ orbits and counting). The Cal/Val team hopes to release the data to the public in Fall 2023. (UPDATE: Provisional TROPICS data was released in January 2024.) The TROPICS pathfinder satellite showed that the compact TROPICS design performs comparably to the state-of-the-art sounders. Lessons learned will help the TROPICS Team as they work to improve efforts and operate the TROPICS constellation, which now holds a total of five satellites.

AOS

As discussed in Will McCarty’s remarks, AOS is a key component of the Earth System Observatory that was recommended in the 2017 Decadal Survey. The mission will deliver transformative observations fundamental to understanding coupled aerosol– and cloud–precipitation processes that profoundly impact weather, climate, and air quality. Two AOS projects are in the mission concept and technology development phase (Phase-A): AOS-Storm (to launch late 2020s), with a Ku Doppler radar, microwave radiometers, and backscatter lidar in a 55° inclined orbit; and AOS-Sky (to launch early 2030s) with cloud-profiling Doppler radar, backscatter lidar, microwave radiometer, polarimeter, far infrared (IR) radiometer, and aerosol and moisture limb sounders in polar orbit. (This paragraph reflects what was discussed during the meeting, however, AOS is undergoing changes that will be reflected on the website at a later date.)

GPM Microwave Radiometer Constellation in the Next Decade

The future passive microwave radiometer constellation looks robust, with multiple sensors to be launched in the next decade. Small/CubeSat constellations are becoming a reality, and a plan to incorporate them quickly into the overall precipitation constellation is needed. A point of emphasis was that a sensor in an inclined orbit is a necessity when it comes to providing a reference measurement to support this effort – see Figure 3.

PPM Figure 3
Figure 3. Evaluation of passive microwave (PMW) frequencies and coverage to assess data gaps and needs for the future of precipitation constellation.
Figure credit: Rachael Kroodsma/GSFC

JAXA Precipitation Measuring Mission (JAXA PMM) Radar

Plans call for JAXA’s next generation of precipitation radar to be deployed as part of the agency’s future Precipitating Measuring Mission (PMM – yes, the same acronym as the Precipitation Measurement Mission). Objectives for this next-generation precipitation radar include Doppler observations, higher sensitivity measurements, and scanning capability. JAXA has collaborated with a Japanese science team and user community to explore the feasibility of a next-generation, dual-frequency precipitation radar. The discussion focused on the importance of measuring convection through Doppler velocities from spaceborne radar. The EarthCARE mission will feature the first Cloud Profiling Radar (CPR) with Doppler capability in space. JAXA has participated in NASA’s AOS Pre-Phase A activities. The synergy between the GPM DPR and PMM/KuDPR is expected to contribute to the construction of a longer-term precipitation dataset by providing overlapping observations.

Update on Cloud Services at NASA GES DISC

NASA’s Goddard Earth Sciences Data and Information Services Center (GES DISC), one of two data archive centers for GPM, is moving its data archive to the cloud – with all GES DISC data and services remaining free to all users. This will offer quick access to and subsetting capability for a large volume of data through multiple data access methods (e.g., Amazon Simple Storage Service) and cloud services. Multidisciplinary NASA data will be in one place – the Earthdata Cloud – and available for online analysis and in the cloud environment. Expanded services (e.g., access to the Common Metadata Repository–SpatioTemporal Asset Catalog (CMR-STAC), Harmony – a collective Earth Observing System Data and Information System (EOSDIS) effort to make data access more consistent and easier across all DAACs and Zarr – a data format designed to store compressed multidimensional arrays and thus well suited to cloud computing) are expected to be implemented in the near future. With the migration of GES DISC data to the cloud, some services may look different with details on the exact changes to services coming soon.

GPM Core Observatory Boost

As George Huffman discussed in his presentation, based on forecasted solar activity, the GPM Core Observatory could run out of fuel as early as October 2025 if the current orbit altitude is maintained. To prolong its operations, NASA and JAXA have decided to boost the GPM Core Observatory orbit by ~35 km (~22 mi), which places GPM at an altitude of ~435 km (~270 mi)) – placing it above the International Space Station orbital altitude. The post-boost operations of the satellite are expected to continue through the early 2030s. The boost is expected to last only 2–4 days and occur in the time window between November 2023 and March 2024 (likely November 7–9, 2023, as stated above), the boost will permanently change the sensors’ Field of Views (FOVs) and likely cause a gap of several months in DPR product delivery.

Precipitation in 2040

Sarah Ringerud [GSFC] and George Huffman led this plenary discussion that explored two questions: What comes next? and What does the cutting edge of precipitation science look like 20 years from now? CubeSats, reduced volume of low-frequency-channel observations, shorter sensor lifetimes, increased sampling, and calibration challenges are recognized as inevitable. Exciting new developments are seen in the opportunity for data fusion and interdisciplinary work. Interagency and private sector collaborations are foreseen as critical points for maintaining optimal monitoring of Earth precipitation.

Conclusion

The 2023 PMM STM brought together scientists from around the world to engage on a range of topics that advance the understanding of precipitation science, algorithms, and contributions to applications. The STM highlighted updates and activities enabled by the PMM scientific community. The closing session provided an opportunity for quick updates from precipitation working group members, who held splinter sessions. These updates were followed by an open discussion and review of PMM action items led by George Huffman. He reminded PMM STM participants of several important and noteworthy items, including updates on the orbit boost and subsequent algorithm adjustments, which will be available on the GPM website and be at the forefront for the project for the next six months; V08 of GPM data products are anticipated by early 2026; the budget reduction for the project – but not for current ROSES projects – will impact activities, including next year’s PMM STM; and the next NASA ROSES call might have a different package of opportunities, not strictly focused on PMM/GPM. He concluded by encouraging the PMM ST to share highlights and publications with the GPM Science Program Management Team as well as to continue to initiate collaborations with other colleagues to keep pushing the boundaries of science and outreach.

The next PMM STM will likely be held in September 2024. Details will be posted on the GPM website once they become available.

Black Separator Line

Acknowledgements The author would like to recognize the following individuals, all of whom made contributions to this article: Ali Behrangi [University of Arizona], Anthony Didlake [Penn State University], Gerry Heymsfield [GSFC], George Huffman [GSFC], Matthew Igel [University of California Davis], Toshio Iguchi [Osaka University], Dorian Janney [GSFC/ADNET Systems], Chuntao Liu [Texas A&M Corpus Christi], Veljko Petkovic [UMD], Courtney Schumacher [Texas A&M Corpus Christi], and Joe Turk [NASA/Jet Propulsion Laboratory].

Black Separator Line

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Improving space-based pharmaceutical research
      View of the Ice Cubes experiment #6 (Kirara) floating in the Columbus European Laboratory module aboard the International Space Station.UAE (United Arab Emirates)/Sultan Alneyadi Researchers found differences in the stability and degradation of the anti-Covid drug Remdesivir in space and on Earth on its first research flight, but not on a second. This highlights the need for more standardized procedures for pharmaceutical research in space.

      Long-term stability of drugs is critical for future space missions. Because multiple characteristics of spaceflight could influence chemical stability, the scientists repeated their experiment under circumstances as nearly identical as possible. This research used Kirara, a temperature-controlled incubator developed by JAXA (Japan Aerospace Exploration Agency) for crystallizing proteins in microgravity. Results also confirmed that a solubility enhancer used in the drug is radiation resistant and its quality was not affected by microgravity and launch conditions.

      Evaluating postflight task performance
      A test subject performing a sensorimotor field test on the ground.NASA/Lauren Harnett Immediately after returning from the International Space Station and for up to one week, astronauts perform functional tasks in ways similar to patients on Earth who have a loss of inner ear function. This finding suggests that comparing data from these patients and astronauts could provide insight into the role of the balance and sensory systems in task performance during critical parts of a mission such as landing on the Moon or Mars.   

      Spaceflight causes changes to the balance (vestibular) and sensory systems that can lead to symptoms such as disorientation and impaired locomotion. Standard Measures collects a set of data, including tests of sensorimotor function, related to human spaceflight risks from astronauts before, during, and after missions to help characterize how people adapt to living and working in space.

      View the full article
    • By NASA
      6 Min Read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind 
      Earth is immersed in material streaming from the Sun. This stream, called the solar wind, is washing over our planet, causing breathtaking auroras, impacting satellites and astronauts in space, and even affecting ground-based infrastructure. 
      NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission will be the first to image the Sun’s corona, or outer atmosphere, and solar wind together to better understand the Sun, solar wind, and Earth as a single connected system.  
      Launching no earlier than Feb. 28, 2025, aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California, PUNCH will provide scientists with new information about how potentially disruptive solar events form and evolve. This could lead to more accurate predictions about the arrival of space weather events at Earth and impact on humanity’s robotic explorers in space. 
      “What we hope PUNCH will bring to humanity is the ability to really see, for the first time, where we live inside the solar wind itself,” said Craig DeForest, principal investigator for PUNCH at Southwest Research Institute’s Solar System Science and Exploration Division in Boulder, Colorado. 
      This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14773.
      Video credit: NASA’s Goddard Space Flight Center Seeing Solar Wind in 3D 
      The PUNCH mission’s four suitcase-sized satellites have overlapping fields of view that combine to cover a larger swath of sky than any previous mission focused on the corona and solar wind. The satellites will spread out in low Earth orbit to construct a global view of the solar corona and its transition to the solar wind. They will also track solar storms like coronal mass ejections (CMEs). Their Sun-synchronous orbit will enable them to see the Sun 24/7, with their view only occasionally blocked by Earth.  
      Typical camera images are two dimensional, compressing the 3D subject into a flat plane and losing information. But PUNCH takes advantage of a property of light called polarization to reconstruct its images in 3D. As the Sun’s light bounces off material in the corona and solar wind, it becomes polarized — meaning the light waves oscillate in a particular way that can be filtered, much like how polarized sunglasses filter out glare off of water or metal. Each PUNCH spacecraft is equipped with a polarimeter that uses three distinct polarizing filters to capture information about the direction that material is moving that would be lost in typical images.  
      “This new perspective will allow scientists to discern the exact trajectory and speed of coronal mass ejections as they move through the inner solar system,” said DeForest. “This improves on current instruments in two ways: with three-dimensional imaging that lets us locate and track CMEs which are coming directly toward us; and with a broad field of view, which lets us track those CMEs all the way from the Sun to Earth.” 
      All four spacecraft are synchronized to serve as a single “virtual instrument” that spans the whole PUNCH constellation. 
      Crews conduct additional solar array deployment testing for NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located on Vandenberg Space Force Base in California on Wednesday, Jan. 22, 2025. USSF 30th Space Wing/Alex Valdez The PUNCH satellites include one Narrow Field Imager and three Wide Field Imagers. The Narrow Field Imager (NFI) is a coronagraph, which blocks out the bright light from the Sun to better see details in the Sun’s corona, recreating what viewers on Earth see during a total solar eclipse when the Moon blocks the face of the Sun — a narrower view that sees the solar wind closer to the Sun. The Wide Field Imagers (WFI) are heliospheric imagers that view the very faint, outermost portion of the solar corona and the solar wind itself — giving a wide view of the solar wind as it spreads out into the solar system.   
      “I’m most excited to see the ‘inbetweeny’ activity in the solar wind,” said Nicholeen Viall, PUNCH mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This means not just the biggest structures, like CMEs, or the smallest interactions, but all the different types of solar wind structures that fill that in between area.” 
      When these solar wind structures from the Sun reach Earth’s magnetic field, they can drive dynamics that affect Earth’s radiation belts. To launch spacecraft through these belts, including ones that will carry astronauts to the Moon and beyond, scientists need to understand the solar wind structure and changes in this region. 
      Building Off Other Missions 
      “The PUNCH mission is built on the shoulders of giants,” said Madhulika Guhathakurta, PUNCH program scientist at NASA Headquarters in Washington. “For decades, heliophysics missions have provided us with glimpses of the Sun’s corona and the solar wind, each offering critical yet partial views of our dynamic star’s influence on the solar system.” 
      When scientists combine data from PUNCH and NASA’s Parker Solar Probe, which flies through the Sun’s corona, they will see both the big picture and the up-close details. Working together, Parker Solar Probe and PUNCH span a field of view from a little more than half a mile (1 kilometer) to over 160 million miles (about 260 million kilometers). 
      Additionally, the PUNCH team will combine their data with diverse observations from other missions, like NASA’s CODEX (Coronal Diagnostic Experiment) technology demonstration, which views the corona even closer to the surface of the Sun from its vantage point on the International Space Station. PUNCH’s data also complements observations from NASA’s EZIE (Electrojet Zeeman Imaging Explorer) — targeted for launch in March 2025 — which investigates the magnetic field perturbations associated with Earth’s high-altitude auroras that PUNCH will also spot in its wide-field view.  
      A conceptual animation showing the heliosphere, the vast bubble that is generated by the Sun’s magnetic field and envelops all the planets.
      NASA’s Goddard Space Flight Center Conceptual Image Lab As the solar wind that PUNCH will observe travels away from the Sun and Earth, it will then be studied by the IMAP (Interstellar Mapping and Acceleration Probe) mission, which is targeting a launch in 2025. 
      “The PUNCH mission will bridge these perspectives, providing an unprecedented continuous view that connects the birthplace of the solar wind in the corona to its evolution across interplanetary space,” said Guhathakurta. 
      The PUNCH mission is scheduled to conduct science for at least two years, following a 90-day commissioning period after launch. The mission is launching as a rideshare with the agency’s next astrophysics observatory, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer).  
      “PUNCH is the latest heliophysics addition to the NASA fleet that delivers groundbreaking science every second of every day,” said Joe Westlake, heliophysics division director at NASA Headquarters in Washington. “Launching this mission as a rideshare bolsters its value to the nation by optimizing every pound of launch capacity to maximize the scientific return for the cost of a single launch.” 
      The PUNCH mission is led by Southwest Research Institute’s offices in San Antonio, Texas, and Boulder, Colorado. The mission is managed by the Explorers Program Office at NASA Goddard for NASA’s Science Mission Directorate in Washington. 
      By Abbey Interrante 
      NASA’s Goddard Space Flight Center, Greenbelt, Md. 
      Header Image:
      An artist’s concept showing the four PUNCH satellites orbiting Earth.
      Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab
      Share








      Details
      Last Updated Feb 21, 2025 Related Terms
      Heliophysics Coronal Mass Ejections Goddard Space Flight Center Heliophysics Division Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate Solar Wind Space Weather The Sun Explore More
      2 min read Hubble Spies a Spiral That May Be Hiding an Imposter


      Article


      3 hours ago
      3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska


      Article


      3 days ago
      2 min read NASA Science: Being Responsive to Executive Orders


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 35 min read
      Summary of the Joint NASA LCLUC–SARI Synthesis Meeting
      Introduction
      The NASA Land-Cover and Land-Use Change (LCLUC) is an interdisciplinary scientific program within NASA’s Earth Science program that aims to develop the capability for periodic global inventories of land use and land cover from space. The program’s goal is to develop the mapping, monitoring and modeling capabilities necessary to simulate the processes taking place and evaluate the consequences of observed and predicted changes. The South/Southeast Asia Research Initiative (SARI) has a similar goal for South/Southeast Asia, as it seeks to develop innovative regional research, education, and capacity building programs involving state-of-the-art remote sensing, natural sciences, engineering, and social sciences to enrich land use/cover change (LUCC) science in South/Southeast Asia. Thus it makes sense for these two entities to periodically meet jointly to discuss their endeavors.
      The latest of these joint meetings took place January 1–February 2, 2024, in Hanoi, Vietnam. A total of 85 participants attended the three-day, in-person meeting—see Photo.  A total of 85 participants attended the three-day, in-person meeting. The attendees represented multiple international institutions, including NASA (Headquarters and Centers), the University of Maryland, College Park (UMD), other American academic institutions, the Vietnam National Space Center (VNSC, the event host), the Vietnam National University’s University of Engineering and Technology, and Ho Chi Minh University of Technology, the Japanese National Institute of Environmental Studies (NIES), Center for Environmental Sciences, and the University of Tokyo. In addition, several international programs participated, including GEO Global Agricultural Monitoring (GEOGLAM), the System for Analysis, Research and Training (START), Global Observation of Forest and Land-use Dynamics (GOFC–GOLD), and NASA Harvest.
      Photo. A group picture of the meeting participants on the first day of the 2024 LCLUC SARI meeting in Hanoi, Vietnam. Photo credit: Hotel staff (Hanoi Club Hotel, Hanoi, Vietnam) Meeting Overview
      The purpose of the 2024 NASA LCLUC–SARI Synthesis meeting was to discuss LUCC issues – with a particular focus on their impact on Southeast Asian countries. Presenters highlighted ongoing projects aimed to advance our understanding of the spatial extent, intensity, social consequences, and impacts on the environment in South/Southeast Asian countries. While presenters reported on specific science results, they also were intentional to review and synthesize work from other related projects going on in Southeast Asia. 
      Meeting Goal
      The meeting’s overarching goal was to create a comprehensive and holistic understanding of various LUCC issues by examining them from multiple angles, including: collating information; employing interdisciplinary approaches; integrating research; identifying key insights; and enhancing regional collaborations. The meeting sought to bring the investigators together to bridge gaps, promote collaborations, and advance knowledge regarding LUCC issues in the region. The meeting format also provided ample time between sessions for networking to promote coordination and collaboration among scientists and teams. 
      Meeting and Summary Format
      The meeting consisted of seven sessions that focused on various LUCC issues. The summary report that follows is organized by day and then by session. All presentations in Session I and II are summarized (i.e., with all speakers, affiliations, and appropriate titles identified). The keynote presentation(s) from Sessions III–VI are summarized similarly. The technical presentations in each of these sessions are presented as narrative summaries. Session VII consisted of topical discussions to close out the meeting and summaries of these discussions are included herein. Sessions III–VI also included panel discussions, but to keep the article length more manageable, summaries of these discussions have been omitted. Readers interested in learning more about the panel discussions or viewing any of these presentations in full can access the information on the Joint LCLUC–SARI Synthesis meeting website.
      DAY ONE
      The first day of the meeting included welcoming remarks from the U.S. Ambassador to Vietnam (Session I), program executives of LCLUC and SARI,  as well as from national space agencies in South and Southeast Asia (Session II), and other LCLUC-thematic/overview presentations (Session III).
      Session 1: Welcoming Remarks
      Garik Gutman [NASA Headquarters—LCLUC Program Manager], Vu Tuan [VNSC’s Vietnam Academy of Science and Technology (VAST)—Vice Director General], Chris Justice [University of Maryland, College Park (UMD)—LCLUC Program Scientist], Matsunaga Tsuneo [National Institute of Environmental Studies (NIES), Japan], and Krishna Vadrevu [NASA’s Marshall Space Flight Center—SARI Lead] delivered opening remarks that highlighted collaborations across air pollution, agriculture, forestry, urban development, and other LUCC research areas. While each of the speakers covered different topics, they emphasized common themes, including advancing new science algorithms, co-developing products, and fostering applications through capacity building and training.
      After the opening remarks, special guest Marc Knapper [U.S. Ambassador to Vietnam] gave a presentation in which he emphasized the value of collaborative research between U.S. and Vietnamese scientists to address environmental challenges – especially climate change and LUCC issues. He expressed appreciation to the meeting organizers for promoting these collaborations and highlighted the joint initiatives between NASA and the U.S. Agency for International Development (USAID) to monitor environmental health and climate change, develop policies to reduce emissions, and support adaptation in agriculture. The U.S.–Vietnam Comprehensive Strategic Partnership emphasizes the commitment to address climate challenges and advance bilateral research. He concluded by encouraging active participation from all attendees and stressed the need for ongoing international collaboration to develop effective LUCC policies.
      Session-II: Programmatic and Space Agency Presentations
      NOTE: Other than Ambassador Knapper, the presenters in Session I gave welcoming remarks and programmatic and/or space agency presentations in Session II,.
      Garik Gutman began the second session by presenting an overview of the LCLUC program, which aims to enhance understanding of LUCC dynamics and environmental implications by integrating diverse data sources (i.e., satellite remote sensing) with socioeconomic and ecological datasets for a comprehensive view of land-use change drivers and consequences. Over the past 25 years, LCLUC has funded over 325 projects involving more than 800 researchers, resulting in over 1500 publications. The program’s focus balances project distribution that spans detection and monitoring, and impacts and consequences, including drivers, modeling, and synthesis. Gutman highlighted examples of population growth and urban expansion in Southeast Asia, resulting in environmental and socio-economic impacts. Urbanization accelerates deforestation, shifts farming practices to higher-value crops, and contributes to the loss of wetlands. This transformation alters the carbon cycle, degrades air quality, and increases flooding risks due to reduced rainwater absorption. Multi-source remote sensing data and social dimensions are essential in addressing LUCC issues, and the program aims to foster international collaborations and capacity building in land-change science through partnerships and training initiatives. (To learn more about the recent activities of the LCLUC Science Team, see Summary of the 2024 Land Cover Land Use Change Science Team Meeting.)
      Krishna Vadrevu explained how SARI connects regional and national projects with researchers from the U.S. and local institutions to advance LUCC mapping, monitoring, and impact assessments through shared methodologies and data. The initiative has spurred extensive activities, including meetings, training sessions, publications, collaborations, and fieldwork. To date, the LCLUC program has funded 35 SARI projects and helped build collaborations with space agencies, universities, and decision-makers worldwide. SARI Principal Investigators have documented notable land-cover and land-use transformations, observing shifts in land conversion practices across Asia. For example, the transition from traditional slash-and-burn practices for subsistence agriculture to industrial oil palm and rubber plantations in Southeast Asia. Rapid urbanization has also reshaped several South and Southeast Asian regions, expanding both horizontally in rural areas and vertically in urban centers. The current SARI solicitation funds three projects across Asia, integrating the latest remote sensing data and methods to map, monitor, and assess LUCC drivers and impacts to support policy-making.
      Vu Tuan provided a comprehensive overview of Vietnam’s advances in satellite technology and Earth observation capabilities, particularly through the LOTUSat-1 satellite (name derived from the “Lotus” flower), which is equipped with an advanced X-band Synthetic Aperture Radar (SAR) sensor capable of providing high-resolution imagery [ranging from 1–16 m (3–52 ft)]. This satellite is integral to Vietnam’s efforts to enhance disaster management and climate change mitigation, as well as to support a range of applications in topography, agriculture, forestry, and water management, as well as in oceanography and environmental monitoring. The VNSC’s efforts are part of a broader strategy to build national expertise and self-reliance in satellite technology, such as developing a range of small satellites (e.g., NanoDragon, PicoDragon, and MicroDragon) that progress in size and capability. Alongside satellite development, the VNSC has established key infrastructure, facilities, and capacity building in Hanoi, Nha Trang, and Ho Chi Minh City to support satellite assembly, integration, testing, and operation. Tuan showcased the application of remotely sensed LUCC data to map and monitor urban expansion in Ha Long city from 2000–2023 and the policies needed to manage these changes sustainably – see Figure 1.
      Figure 1. Urban expansion area in Ha Long City, Vietnam from 2000–2023 from multidate Landsat satellite imagery. Figure credit: Vu Tuan [VNSC] Tsuneo Matsunaga provided a detailed overview of Japan’s Greenhouse Gases Observing Satellite (GOSAT) series of satellites, data from which provide valuable insights into global greenhouse gas (GHG) trends and support international climate agreements, including the Paris Agreement.
      Matsunaga reviewed the first two satellites in the series: GOSAT and GOSAT-2, then previewed the next satellite in the series: GOSAT-GW, which is scheduled to launch in 2025. GOSAT-GW will fly the Total Anthropogenic and Natural Emissions Mapping Observatory–3 (TANSO-3) – an improved version of TANSO-2, which flies on GOSAT-2. TANSO-3 includes a Fourier Transform Spectrometer (FTS-3) that has improved spatial resolution [10.5 km (6.5 mi)] over TANSO-FTS-2 and precision that matches or exceeds that of its predecessor. TANSO-FTS-3 will allow estimates with precision better than 1 ppm for carbon dioxide (CO2) and 10 ppb for methane (CH4), as well as enabling nitrogen dioxide (NO2) measurements. GOSAT–GW will also fly the Advanced Microwave Scanning Radiometer (AMSR3) that will monitor water cycle components (e.g., precipitation, soil moisture) and ocean surface winds. AMSR3 builds on the heritage of three previous AMSR instruments that have flown on NASA and Japan Aerospace Exploration Agency (JAXA) missions.
      Matsunaga also highlighted the importance of ground-based validation networks, such as the Total Carbon Column Observing Network, COllaborative Carbon Column Observing Network, and the Pandora Global Network, to ensure satellite data accuracy.
      Son Nghiem [NASA/Jet Propulsion Laboratory (JPL)] addressed dynamic LUCC in Cambodia, Laos, Thailand, Vietnam, and Malaysia. The synthesis study examined the factors that evolve along the rural–urban continuum (RUC). Nghiem showcased this effort using Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1 mission to map a typical RUC in Bac Lieu, Vietnam – see Figure 2.
      Figure 2. Land cover map of Bae Lieu, Vietnam, and surrounding rural areas. The image shows persistent building structures (red), agricultural areas (light green), aquacultural (light blue), tree cover (dark green), and water bodies (dark blue). Land-use classes used on this map are derived from Sentinel-1 Synthetic Aperture Radar (SAR) for the rural urban continuum around Bac Lieu. Figure credit: Son Nghiem [JPL] Nghiem described the study, which examined the role of rapid urbanization, agricultural conversion, climate change, and environment–human feedback processes in causing non-stationary and unpredictable impacts. This work illustrates how traditional trend analysis is insufficient for future planning. The study also examined whether slower or more gradual changes could inform policy development. To test these hypotheses, his research will integrate high-resolution radar and hyperspectral data with socioeconomic analyses. The study highlights the need for policies that are flexible and responsive to the unique challenges of different areas, particularly in “hot-spot” regions experiencing rapid changes.
      Peilei Fan [Tufts University] presented a study that synthesizes the complex patterns of LUCC, identifying both the spatial and temporal dynamics that characterize transitions in urban systems. The study explores key drivers, including economic development, population growth, urbanization, agricultural expansion, and policy shifts. She emphasized the importance of understanding these drivers for sustainable land management and urban planning. For example, the Yangon region of Myanmar has undergone rapid urbanization – see Figure 3. Her work reveals the need for integrated approaches that consider both urban and rural perspectives to manage land resources effectively and mitigate negative environmental and social impacts. Through a combination of case studies, statistical analysis, and policy review, Fan and her team aim to provide a nuanced understanding of the interactions between human activities and environmental changes occurring in the rapidly transforming landscapes of Southeast Asia.
      Figure 3. Landsat data can be used to track land cover change over time. For example, Thematic Mapper data have been used to track urban expansion around Yangon, Myanmar. The data show that the built-up area expanded from 161 km2 (62 mi2) in 1990 to 739 km2 (285 mi2) in 2020. Figure credit: Peleli Fan [Tufts University] Session III: Land Cover/Land Use Change Studies
      Tanapat Tanaratkaittikul [Geo-Informatics and Space Technology Development Agency (GISTDA), Thailand] highlighted GISTDA activities, which play a crucial role in advancing Thailand’s technological capabilities and addressing both national and global challenges, including Thailand Earth Observation System (THEOS) and its successors: THEOS-2 and THEOS-2A. THEOS-1, which launched in 2008, provides 2-m (6-ft) panchromatic and 15-m (45-ft) multispectral resolution with a 26-day revisit cycle, which can be reduced to 3 days with off-nadir pointing. Launched in 2023, THEOS-2 includes two satellites – THEOS-2A [a very high-resolution satellite with 0.5-m (1.5-ft) panchromatic and 2-m (6-ft) multispectral imagery] and THEOS-2B [a high-resolution satellite with 4-m (12-ft) multispectral resolution] – with a five-day revisit cycle. GISTDA also develops geospatial applications for drought assessment, flood prediction, and carbon credit calculations to support government decision-making and climate initiatives. GISTDA partners with international collaborators on regional projects, such as the Lancang-Mekong Cooperation Special Fund Project.
      Eric Vermote [NASA’s Goddard Space Flight Center] presented a keynote that focused on atmospheric correction of land remote sensing data and related algorithm updates. He highlighted the necessity of correcting surface imaging for atmospheric effects, such as molecular scattering, aerosol scattering, and gaseous absorption, which can significantly distort the satellite spectral signals and lead to potential errors in applications, such as land cover mapping, vegetation monitoring, and climate change studies.
      Vermote explained that the surface reflectance algorithm uses precise vector radiative transfer modeling to improve accuracy by incorporating atmospheric parameter inversion. It also adjusts for various atmospheric conditions and aerosol types – enhancing corrections across regions and seasons. He explained that SkyCam – a network of ground-based cameras – provides real-time assessments of cloud cover that can be used to validate cloud masks, while the Cloud and Aerosol Measurement System (CAMSIS) offers additional ground validation by measuring atmospheric conditions. He said that together, SkyCam and CAMSIS improve satellite-derived cloud masks, supporting more accurate climate models and environmental monitoring. Vermote’s work highlights the ongoing advancement of atmospheric correction methods in remote sensing.
      Other presentations in this session included one in which the speaker described how Yangon, the capital city in Myanmar, is undergoing rapid urbanization and industrial growth. From 1990–2020, the urban area expanded by over 225% – largely at the expense of agricultural and green lands. Twenty-nine industrial zones cover about 10.92% of the city, which have attracted significant foreign direct investment, particularly in labor-intensive sectors. This growth has led to challenges with land confiscations, inadequate infrastructure, and environmental issues (e.g., air pollution). Additionally, rural migration for employment has resulted in informal settlements, emphasizing the need for comprehensive urban planning that balances economic development with social equity and sustainability.
      Another presentation highlighted varying LUCC trends across Vietnam. In the Northern and Central Coastal Uplands, for example, swidden systems are shifting toward permanent tree crops, such as rubber and coffee. Meanwhile, the Red River Delta is seeing urban densification and consolidation of farmland – transitioning from rice to mixed farming with increased fruit and flower production. Similarly, the Central Coastal Lowlands and Southeastern regions are experiencing urban growth and a shift from coastal agriculture – in this case, to shrimp farming – leading to mangrove loss. The Central Highlands is moving from swidden to tree crops, particularly fruit trees, while the Mekong River Delta is increasing rice cropping and aquaculture. These changes contribute to urbanization, altered farming practices, and biodiversity loss. Advanced algorithms (e.g., the Time-Feature Convolutional Neural Network model) are being used to effectively map these varied LUCC changes in Vietnam.
      Another presenter explained how 10-m (33-ft) resolution spatially gridded population datasets are essential to address LUCC in environmental and socio-demographic research. There was also a demonstration of PopGrid, which is a collaborative initiative that provides access to various global-gridded population databases, which are valuable for regional LUCC studies and can support informed decision-making and policy development.
      DAY TWO
      The second day’s presentations centered around urban LUCC (Session IV) as well as interconnections between agriculture and water resources. (Session V).
      Session IV: Urban Land Cover/Land Use Change
      Gay Perez [Philippines Remote Sensing Agency (PhilSA)] presented a keynote focused on PhilSA’s mission to advance Philippines as a space-capable country by developing indigenous satellite and launch technologies. He explained that PhilSA provides satellite data in various categories, including sovereign, commercial, open-access, and disaster-activated. He noted that the ground infrastructure – which includes three stations and a new facility in Quezon – supports efficient data processing. For example, Perez stated that in 2023, PhilSA produced over 10,000 maps for disaster relief, agricultural assessments, and conservation planning.
      Perez reviewed PhilSA’s Diwata-2 mission, which launched in 2018 and operates in a Sun-synchronous orbit around 620 km (385 mi) above Earth. With a 10-day revisit capability, it features a high-precision telescope [4.7 m (15ft) resolution], a multispectral imager with four bands, an enhanced resolution camera, and a wide-field camera. Since launch, Diwata-2 has captured over 100,000 global images, covering 95% of the Philippines. Looking to the near future, Perez reported that PhilSA’s launch of the Multispectral Unit for Land Assessment (MULA) satellite is planned for 2025. He explained that MULA will capture images with a 5-m (~16-ft) resolution and 10–20-day revisit time, featuring 10 spectral bands for vegetation, water, and urban analysis.
      Perez also described the Drought and Crop Assessment and Forecasting project, which addresses drought risks and mapping ground motion in areas, e.g., Baguio City and Pangasinan. Through partnerships in the Pan-Asia Partnership for Geospatial Air Pollution Information (PAPGAPI) and the Pandora Asia Network, PhilSA monitors air quality across key locations, tracking urban pollution and cross-border particulate transport. PhilSA continues to strengthen Southeast Asian partnerships to drive sustainable development in the region.
      Jiquan Chen [Michigan State University] presented the second keynote address, which focused on the Urban Rural Continuum (URC). Chen emphasized the importance of synthesizing studies that explore factors such as population dynamics, living standards, and economic development in the URC. Key considerations include differentiating between two- and three-dimensional infrastructures and understanding constraints from historical contexts. Chen highlighted critical variables from his analysis including net primary productivity, household income, and essential infrastructure elements, such as transportation and healthcare systems. He advocated for integrated models that combine mechanistic and empirical approaches to grasp the dynamics of URC changes, stressing their implications for urban planning, environmental sustainability, and social equity. He concluded with a call for collaboration to enhance these models and tackle challenges arising from the changing urban–rural landscape.
      Tep Makathy [Cambodian Institute For Urban Studies] discussed urbanization in Phnom Penh, Cambodia. He explained that significant LUCC and infrastructure developments have been fueled by direct foreign investment; however, this development has resulted in environmental degradation, urban flooding, and infrastructure strain. Tackling pollution, congestion, preservation of green spaces, and preserving the historical heritage of the city will require sustainable urban planning efforts.
      Nguyen Thi Thuy Hang [Vietnam Japan University, Vietnam National University, Hanoi] explained how flooding poses a significant annual threat to infrastructure and livelihoods in Can Tho, Vietnam. Therefore, it is essential to incorporate climate change considerations into land-use planning by enhancing the accuracy of vegetation layer classifications. Doing so will improve the representation of land-cover dynamics in models that decision-makers use when planning urban development. In addition, Hang reported that a more comprehensive survey of dyke systems will improve flood protection and identify areas needing reinforcement or redesign. These studies could also explore salinity intrusion in coastal agricultural areas that could impact crop yields and endanger food security.
      In this session, two presenters highlighted how SAR data, which uses high backscatter to enhance the radar signal, is being used to assist with mapping urban areas in their respective countries. The phase stability and orientation of building structures across SAR images aid in consistent monitoring and backscatter, producing distinct image textures specific to urban settings. Researchers can use this heterogeneity and texture to map urban footprints, enabling automated discrimination between urban and non-urban areas. The first presenters showed how Interferometric Synthetic Aperture Radar techniques, such as Small Baseline Subset (SBAS) and Persistent Scatterer (PS) have been highly effective for mapping and monitoring land subsidence in coastal and urban areas in Vietnam. This approach has been applied to areas along the Saigon River as well as in Ho Chi Minh, Vietnam. The second presenter described an approach (using SAR data with multitemporal coherence and the K-means classification method) that has been used effectively to study urban growth in the Denpasar Greater Area of Indonesia between 2016 and 2022. The technique identified the conversion of 4376 km2 (1690 mi2) of rural to built-up areas, averaging 72.9 hectares (0.3 mi2) per year. Urban sprawl was predominantly observed in the North Kuta District, where the shift from agricultural to built-up land use has been accompanied by severe traffic congestion and other environmental issues.
      Another presenter showed how data from the QuikSCAT instrument, which flew on the Quick Scatterometer satellite, and from the Sentinel-1 C-band SAR can be combined to measure and analyze urban built-up volume, specifically focusing on the vertical growth of buildings across various cities. By integrating these datasets, researchers can assess urban expansion, monitor the development of high-rise buildings, and evaluate the impact of urbanization on infrastructure and land use. This information is essential for urban planning, helping city planners and policymakers make informed decisions to accommodate growing populations and enhance sustainable urban development.
      Session V – LUCC, Agriculture, and Water Resources
      Chris Justice presented the keynote for this session, in which he addressed the GEOGLAM initiative and the NASA Harvest program. GEOGLAM, initiated by the G20 Agriculture Ministers in 2011, focuses on agriculture and food security to increase market transparency and improve food security. These efforts leverage satellite-based Earth observations to produce and disseminate timely, relevant, and actionable information about agricultural conditions at national, regional, and global scales to support agricultural markets and provide early warnings for proactive responses to emerging food emergencies. NASA Harvest uses satellite Earth observations to benefit global food security, sustainability, and agriculture for disaster response, climate risk assessments, and policy support. Justice also emphasized the use of open science and open data principles, promoting the integration of Earth observation data into national and international agricultural monitoring systems. He also discussed the development and application of essential agricultural variables, in situ data requirements, and the need for comprehensive and accurate satellite data products.
      During this session, another presentation focused on how VNSC is engaged in several agricultural projects, including mapping rice crops, estimating yields, and assessing environmental impacts. VNSC has created high-accuracy rice maps for different seasons that the Vietnamese government uses to monitor and manage agricultural production. Current initiatives involve using satellite data to estimate CH4 emissions from rice paddies, biomass mapping, and monitoring rice straw burning. For example, in the Mekong Delta, numerous environmental factors, including climate change-induced stress (e.g., sea-level rise), flooding, drought, land subsidence, and saltwater intrusion, along with human activities like dam construction, sand mining, and groundwater extraction, threaten the sustainability of rice farming and farmer livelihoods. To address these challenges, sustainable agricultural practices are essential to improving rice quality, diversify farming systems, adopt low-carbon techniques, and enhance water management.
      Presentations highlighted the importance of both optical and SAR data for LUCC studies, particularly in mapping agricultural areas. A study using Landsat time-series data demonstrated its value in monitoring agricultural LUCC in Houa Phan Province, Laos, and Son La Province, Vietnam. Land cover types were classified through spectral pattern analysis, identifying distinct classes based on Landsat reflectance values. The findings revealed significant natural forest loss alongside increases in cropland and forest plantations due to agricultural expansion. High-resolution imagery validated these results, indicating the scalability of this approach for broader regional and global land-cover monitoring. Another study showcased the effectiveness of SAR data from the Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) on the Japanese Advanced Land Observing Satellite-2 (ALOS-2) for mapping and monitoring agricultural land use in Suphanburi, Thailand. This data proved particularly useful for capturing seasonal variations and diverse agricultural practices. Supervised machine learning methods, such as Random Forest classifiers, combined with innovative spatial averaging techniques, achieved high accuracy in distinguishing various agricultural conditions.
      In the session, presenters also discussed the use of Sentinel-1 SAR data for mapping submerged and non-submerged paddy soils was highlighted, demonstrating its effectiveness in understanding water management issues see – Figure 4. Additionally, large-scale remote sensing data and cloud computing were shown to provide unprecedented opportunities for tracking agricultural land-use changes in greater detail. Case studies from India and China illustrated key challenges, such as groundwater depletion in irrigated agriculture across the Indo-Ganges region and the impacts on food, water, and air quality in both countries.
      Figure 4. Series of Sentinel-1 radar data images showing submerged paddy soil (blue) and non-submerged paddy soil (red) in the Mekong Delta, Vietnam. Figure credit: Hiranori Arai [International Rice Research Institute] The session also focused on Water–Energy–Food (WEF) issues related to the Mekong River Basin’s extensive network of hydroelectric dams, which present both benefits and challenges. While these dams support sectors such as irrigated agriculture and hydropower, they also disrupt vital ecosystem services, including fish habitats and biodiversity. Collaborative studies integrating satellite and ground data, hydrological models, and socio-economic frameworks highlight the need to balance these benefits with ecological and social costs. Achieving sustainable management requires cross-sectoral and cross-border cooperation, as well as the incorporation of traditional knowledge to address WEF trade-offs and governance challenges in the region.
      DAY THREE
      The third day included a session that explored the impacts of fire, GHG emissions, and pollution (Session VI) as well as a summary discussion on synthesis (Session VII).
      Session VI: Fires, Greenhouse Gas Emissions, and Pollution
      Chris Elvidge [Colorado School of Mines] presented a keynote on the capabilities and applications of the Visible Infrared Imaging Radiometer Suite (VIIRS) Nightfire [VNF] system, an advanced satellite-based tool developed by the Earth Observation Group. VIIRS Nightfire uses four near- and short-wave infrared channels, initially designed for daytime imaging, to detect and monitor infrared emissions at night. The system identifies various combustion sources, including both flaming and non-flaming activities (e.g., biomass burning, gas flaring, and industrial processes). It calculates the temperature, source area, and radiant heat of detected infrared emitters using physical laws to enable precise monitoring of combustion events and provide insight into exothermic and endothermic processes.
      Elvidge explained that VNF has been vital for near-real-time data in Southeast Asia. The system has been used to issue daily alerts for Vietnam, Thailand, and Indonesia. Recent updates in Version 4 (V4) include atmospheric corrections and testing for secondary emitters with algorithmic improvements – with a 50% success rate in identifying additional heat sources. The Earth Observation Group maintains a multiyear catalog of over 20,000 industrial infrared emitters available through the Global Infrared Emitter Explorer (GIREE) web-map service. With VIIRS sensors expected to operate until about 2040 on the Joint Polar Satellite System (JPSS) platforms, this system ensures long-term, robust monitoring and analysis of global combustion events, proving essential for tracking the environmental impacts of industrial activities and natural combustion processes on the atmosphere and ecosystems.
      Toshimasa Ohara [Center for Environmental Science, Japan—Research Director] continued with the second keynote and provided an in-depth analysis of long-term trends in anthropogenic emissions across Asia. The regional mission inventory in Asia encompasses a range of pollutants and offers detailed emissions data from 1950–2020 at high spatial and temporal resolutions. The study employs both bottom-up and top-down approaches for estimating emissions, integrating satellite observations to validate data and address uncertainties. Notably, emissions from China, India, and Japan have shown signs of stabilization or reduction, attributed to stricter emission control policies and technological advancements. Ohara also highlighted Japan’s effective air pollution measures and the importance of extensive observational data in corroborating emission trends. His presentation emphasized the need for improved methodologies in emission inventory development and validation across Asia, aiming to enhance policymaking and environmental management in rapidly industrializing regions.
      Several presenters during this session focused on innovative approaches to understand and mitigate GHG emissions and air pollution. One presenter showed how NO2 data from the TROPOspheric Monitoring Instrument (TROPOMI) on the European Sentinel-5 Precursor have been validated against ground-based observations from Pandora stations in Japan, highlighting the influence of atmospheric conditions on measurement accuracy. Another presenter described an innovative system that GISTDA used to combine satellite remote sensing data with Artificial Intelligence (AI). This system was used to monitor and analyze the concentration of fine particulate matter (PM) in the atmosphere in Thailand. (In this context fine is defined as particles with diameters ≤ 2.5 µm, or PM2.5.) These applications, which are accessible through online, cloud-based platforms and mobile applications for iOS and Android devices, allow users, including citizens, government officers, and policymakers, to access PM2.5 data in real-time through web and mobile interfaces.
      A project under the United Nations Economic and Social Commission for Asia and the Pacific in Thailand is focused on improving air quality monitoring across the Asia–Pacific region by integrating satellite and ground-based data. At the core of this effort, the Pandora Asia Network, which includes 30 ground-based instruments measuring pollutants such as NO₂ and sulfur dioxide (SO₂), is complemented by high-resolution observations from the Geostationary Environment Monitoring Spectrometer (GEMS) aboard South Korea’s GEO-KOMPSAT-2B (GK-2B) satellite. The initiative also provides training sessions to strengthen regional expertise in remote sensing technologies for air quality management and develops decision support systems for evidence-based policymaking, particularly for monitoring pollution sources and transboundary effects like volcanic eruptions. Future plans include expanding the Pandora network and enhancing data integration to support local environmental management practices.
      PM2.5 levels in Vietnam are influenced by both local emissions and long-range pollutant transport, particularly in urban areas.The Vietnam University of Engineering and Technology, in conjunction with VNSC, continues to map and monitor PM2.5 using satellites and machine learning while addressing data quality issues that stem from missing satellite data and limited ground monitoring stations – see Figure 5.
      In addition to mapping and monitoring pollutants, another presentater explained that significant research is underway to address their health impacts. In Hanoi, exposure to pollutants ( e.g., PM2.5, PM10, and NO2) has led to increased rates of respiratory diseases (e.g., pneumonia, bronchitis, and asthma) among children,  as well as elevated instances of cardiovascular diseases among adults. A substantial mortality burden is attributable to fine particulate matter – particularly in densely populated areas like Hanoi. Compliance with stricter air quality guidelines could potentially prevent thousands of premature deaths. For example, preventive measures enacted during the COVID-19 pandemic resulted in reduced pollution levels that were associated with a decrease in avoidable mortality rates. In response to these challenges, Vietnam has implemented air quality management policies, including national technical regulations and action plans aimed at controlling emissions and enhancing monitoring; however, current national standards still fall short of the more stringent guidelines recommended by the World Health Organization. Improved air quality standards and effective policy interventions are needed to mitigate the health risks associated with air pollution in Vietnam.
      Figure 5. Map of particulate matter (PM 2.5) variations observed across Vietnam, using multisatellite aerosol optical depth (AOD) data from the Moderate Resolution Imaging Spectrogradiometer (MODIS) on NASA’s Aqua and Terra platforms, and from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA–NOAA Suomi NPP platform, combined with ground-based AOD and meteorological data. Figure credit: Thanh Nguyen [Vietnam National University of Engineering and Technology, Vietnam] Another presenter explained how food production in Southeast Asia contributes about 40% of the region’s total GHG emissions – with rice and beef production identified as the largest contributors for plant-based and animal-based emissions, respectively. Another presentation focused on a study that examined GHG emissions from agricultural activities, which suggests that animal-based food production – particularly beef – generates substantially higher GHG emissions per kg of food produced compared to plant-based foods, such as wheat and rice. Beef has an emission intensity of about 69 kg of CO2 equivalent-per-kg, compared to 2 to 3 kg of CO2 equivalent-per-kg for plant-based foods. The study points to mitigation strategies (e.g., changing dietary patterns, improving agricultural practices) and adopting sustainable land management. Participants agreed that a comprehensive policy framework is needed to address the environmental impacts of food production and reduce GHG emissions in the agricultural sector.
      In another presentation, the speaker highlighted the fact that Southeast Asian countries need an advanced monitoring, reporting, and verification system to track GHG emissions – particularly within high-carbon reservoirs like rice paddies. To achieve this, cutting-edge technologies (e.g., satellite remote sensing, low-cost unmanned aerial vehicles, and Internet of Things devices) can be beneficial in creating sophisticated digital twin technology for sustainable rice production and GHG mitigation.
      Another presentation featured a discussion about pollution resulting from forest and peatland fires in Indonesia, which is significantly impacting air quality. Indonesia’s tropical peatlands – among the world’s largest and most diverse – face significant threats from frequent fires. Repeated burning has transformed forests into shrubs and secondary vegetation regions, with fires particularly affecting forest edges and contributing to a further retreat of intact forest areas. High-resolution data is essential to map and monitor changes in forest cover, including pollution impacts.
      Another speaker described a web-based Geographic Information Systems (GIS) application that has been developed to support carbon offsetting efforts in Laos – to address significant environmental challenges, e.g., deforestation and climate change. Advanced technologies (e.g., remote sensing, GIS, and Global Navigation Satellite Systems) are used to monitor land-use changes, carbon sequestration, and ecosystem health. By integrating various spatial datasets, the web GIS app enhances data collection precision, streamlines monitoring processes, and provides real-time information to stakeholders for informed decision-making. This initiative fosters collaboration among local communities, government agencies, and international partners, while emphasizing the importance of government support and international partnerships. Ultimately, the web GIS application represents a significant advancement in Laos’s commitment to environmental sustainability, economic growth, and the creation of a greener future.
      Session VII. Discussion Session on Synthesis
      The meeting concluded with a comprehensive discussion on synthesizing themes related to LUCC. The session focused on three themes: LUCC, agriculture, and air pollution. The session focused on trends and projections as well as the resulting impacts in the coming years. It also highlighted research related to these topics to inform more sustainable land use policies. A panel of experts from different Southeast Asian countries addressed these topics. A summary of the key points shared by the panelists for each theme during the discussion is provided below.
      LUCC Discussions
      This discussion focused on the challenges of balancing economic development with environmental sustainability in Southeast Asian countries, e.g., mining in Myanmar, agriculture in Vietnam, and rising land prices in Thailand. More LUCC research is needed to inform decision-making and improve land-use planning during transitions from agriculture to industrialization while ensuring food security. The panelists also discussed urban sprawl and infrastructure development along main roads in several Southeast Asian countries, highlighting the social and environmental challenges arising from uncoordinated growth. It was noted that urban infrastructure lags behind population increases, resulting in traffic congestion, pollution, and social inequality. Cambodia, for example, has increased foreign investments, which presents similar dilemmas of economic growth accompanied by significant environmental degradation. Indonesia is another example of a Southeast Asian nation facing rapid urbanization and inadequate spatial planning, leading to flooding, groundwater depletion, and pollution. These issues further highlight the need for integrated satellite monitoring to inform land-use policies. Finally, recognizing the importance of public infrastructure in growth management, it was reported that the Thai government is already using technology to manage urban development alongside green spaces.
      Panelists agreed that LUCC research is critical for guiding policymakers toward sustainable land-use practices – emphasizing the necessity for improved communication between researchers and policymakers. While the integration of technologies (e.g., GIS and remote sensing) is beginning to influence policy decisions, room for improvement remains. In summary, the discussions stressed the importance of better planning, technology integration, and policy-informed research to reconcile economic growth with sustainability. Participants also highlighted the need to engage policymakers, non-government organizations, and the private sector in using scientific evidence for sustainable development. Capacity building in Laos, Cambodia, and Myanmar, where GIS and remote sensing technologies are still developing, is crucial. Community involvement is essential for translating research findings into actionable policies to address real-world challenges and social equity.
      Agriculture Discussions
      These discussions explored the intricate relationships between agricultural practices, economic growth, and environmental sustainability in Southeast Asia. As an example, despite national policies to manage the land transition in Vietnam, rapid conversions from forest to agricultural land and further to residential and industrial continue. While it is recognized that strict land management plans may hinder future adaptability, further regulation is needed. These rapid shifts in land use have increased land for economic development – especially in industrial and residential sectors – and contribute to environmental degradation, e.g., pollution and soil erosion. In Thailand, land is distributed among agriculture (50%), forest (30%), and urban (20%) areas. Despite a long history of agricultural practices, Vietnam faces new challenges from climate change and extreme weather.
      Thailand, meanwhile, is exploring carbon credits to incentivize sustainable farming practices – although this requires significant investment and time. The nation is well-equipped with a robust water supply system, and ongoing efforts to enhance crop yields on Vietnam’s Mekong Delta, salinity levels, and flooding intensity have increased as a result of the rise in incidents of extreme weather, prompting advancements in rice farming mechanization to be implemented that are modeled after practices that have been successfully used in the Philippines.
      Despite these advances, issues (e.g., over-application of rice seeds) remain. The dominant land cover type in Malaysia is tropical rainforest, although agriculture – particularly oil palm plantations – also plays a significant role in land use. While stable, it shares environmental concerns with Indonesia. The country is integrating solar energy initiatives, placing solar panels on former agricultural lands and recreational areas, which raises coastal environmental concerns. In Taiwan, substantial land use changes have stemmed from solar panel installations to support green energy goals but have led to increased temperatures and altered wind patterns.
      All panelists agreed that remote sensing technologies are vital to inform agricultural policy across the region. They emphasized the need to transition from academic research to actionable insights that directly inform policy. Panelists also discussed the challenge of securing funding for actionable research – underlining the importance of recognizing the transition required for research to inform operational use. Some countries (e.g., Thailand) have established operational crop monitoring systems, while others (e.g., Vietnam) primarily depend on research projects. Despite progress in Malaysia’s monitoring of oil palm plantations, a comprehensive operational monitoring system is still lacking in many areas. The participants concluded that increased efforts are needed to promote the wider adoption of remote sensing technologies for agricultural and environmental monitoring, with emphasis on developing operational systems that can be integrated into policy and decision-making processes.
      Air Pollution Discussions
      The discussion on air pollution focused on various sources in Southeast Asia, which included both local and transboundary factors. Panelists highlighted that motor vehicles, industrial activities, and power plants are major contributors to pollutants, such as PM2.5, NO2, ozone (O3), and carbon monoxide (CO). Forest fires in Indonesia – particularly from South Sumatra and Riau provinces – are significantly impacting neighboring countries, e.g., Malaysia. A study found that most PM2.5 pollution in Kuala Lumpur originates from Indonesia. During the COVID-19 pandemic, pollution levels dropped sharply due to reduced economic activity; however, data from 2018–2023 shows that PM2.5 levels have returned to pre-pandemic conditions.
      The Indonesian government is actively working to reduce deforestation and emissions, aiming for a 29% reduction by 2030. Indonesia is also participating in carbon markets and receiving international payments for emission reductions. Indonesia’s emissions also stem from energy production, industrial activities, and land-use changes, including peat fires. The Indonesian government reports anthropogenic sources – particularly from the energy sector and industrial activities, forest and peat fires, waste, and agriculture – continue to escalate. While Indonesia is addressing these issues, growing population and energy demands continue to drive pollution levels higher.
      Vietnam and Laos are facing similar challenges related to air pollution – particularly from agricultural residue burning. Both governments are working on expanding air quality monitoring, regulating waste burning, and developing policies to mitigate pollution. Vietnam has been developing provincial air quality management plans and expanding its monitoring network. Laos has seen increased awareness of pollution, accompanied by government measures aimed at restricting burning and improving waste management practices.
      The panelists agreed that collaborative efforts for regional cooperation are essential to address air pollution. This will require collaboration in research and data sharing to inform policy decisions. There is a growing interest in leveraging satellite technology and modeling approaches to enhance air quality forecasting and management. To ensure that research translates into effective policy, communication of scientific findings to policymakers is essential – particularly by clearly communicating complex research concepts in accessible formats. All panelists agreed on the importance of improving governance, transparency, and scientific communication to better translate research into policy actions, highlighting collaborations with international organizations – including NASA – to address air quality issues. While significant challenges related to air pollution persist in Southeast Asia, noteworthy efforts are underway to improve awareness, research, and collaborative governance aimed at enhancing air quality and reducing emissions.
      Conclusion
      The LCLUC–SARI Synthesis meeting fostered collaboration among researchers and provided valuable updates on recent developments in LUCC research, exchange of ideas, integration of new data products, and discussions on emerging science directions. This structured dialogue (particularly the discussions in each session) helped the attendees identify priorities and needs within the LUCC community. All panelists and meeting participants commended the SARI leadership for their proactive role in facilitating collaborations and discussions that promote capacity-building activities across the region. SARI activities have significantly contributed to enhancing the collective ability of countries in South and Southeast Asia to address pressing environmental challenges. The meeting participants emphasized the importance of maintaining and expanding these collaborative efforts, which are crucial for fostering partnerships among governments, research institutions, and local communities. They urged SARI to continue organizing workshops, training sessions, and knowledge-sharing platforms that can equip stakeholders with the necessary skills and resources to tackle environmental issues such as air pollution, deforestation, climate change, and sustainable land management.
      Krishna Vadrevu
      NASA’s Marshall Space Flight Center
      krishna.p.vadrevu@nasa.gov
      Vu Tuan
      Vietnam National Science Center, Vietnam
      vatuan@vnsc.org.vn
      Than Nguyen
      Vietnam National University Engineering and Technology, Vietnam
      thanhntn@vnu.edu.vn
      Son Nghiem
      Jet Propulsion Laboratory
      son.v.nghiem@jpl.nasa.gov
      Tsuneo Matsunaga
      National Institute of Environmental Studies, Japan
      matsunag@nies.go.jp
      Garik Gutman
      NASA Headquarters
      ggutman@nasa.gov
      Christopher Justice
      University of Maryland College Park
      cjustice@umd.edu
      Share








      Details
      Last Updated Feb 20, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      2 min read
      NASA Science: Being Responsive to Executive Orders
      February 18, 2025
      To the NASA Science Community – 
      As the nation’s leader in Earth and space science, NASA Science operates within the broader context of the federal government and its priorities. As part of the Executive Branch, we are always responsive to the direction set by the Administration, including executive orders and policy guidance that relate to our programs and activities. 
      We are working as quickly as possible to implement these Executive Orders and related policies. We understand that these priorities can have tangible effects on our community, from potential changes in solicitations and mission planning to impacts on grants and research programs. We recognize that uncertainty can be challenging but we are committed to keeping you as informed as possible as we comply with these changes.  
      Our goal remains steadfast: to support groundbreaking science that advances knowledge and benefits society. As we work through these transitions, we are engaging with stakeholders, assessing implications, and ensuring that we continue to deliver on NASA’s science mission.  
      We appreciate your patience and dedication, and we will share more details as they become available. Thank you for your continued partnership in advancing NASA Science for the benefit of the nation. 
      -Nicky Fox
      Associate Administrator, NASA Science Mission Directorate 
      Share








      Details
      Last Updated Feb 18, 2025 Related Terms
      Science Mission Directorate Explore More
      5 min read Ultra-low-noise Infrared Detectors for Exoplanet Imaging


      Article


      4 hours ago
      2 min read Hubble Captures a Cosmic Cloudscape


      Article


      4 days ago
      5 min read NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm


      Article


      2 weeks ago
      View the full article
    • By NASA
      The 2024 Annual Highlights of Results from the International Space Station is now available. This new edition contains updated bibliometric analyses, a list of all the publications documented in fiscal year 2024, and synopses of the most recent and recognized scientific findings from investigations conducted on the space station. These investigations are sponsored by NASA and all international partners – CSA (Canadian Space Agency), ESA (European Space Agency), JAXA (Japan Aerospace Exploration Agency), and the State Space Corporation Roscosmos (Roscosmos) – for the advancement of science, technology, and education.
      Dr. Dmitry Oleynikov remotely operates a surgical robot aboard the Space Station using controls at the Virtual Incision offices in Lincoln, Nebraska. Robotic Surgery Tech Demo tests techniques for performing a simulated surgical procedure in microgravity using a miniature surgical robot that can be remotely controlled from Earth. Credits: University of Nebraska-Lincoln Between Oct. 1, 2023, and Sept. 30, 2024, more than 350 publications were reported. With approximately 40% of the research produced in collaboration between more than two countries and almost 80% of the high-impact studies published in the past seven years, station has continued to generate compelling and influential science above national and global standards since 2010.
      The results achieved from station research provide insights that advance the commercialization of space and benefit humankind.
      Some of the findings presented in this edition include:
      Improved machine learning algorithms to detect space debris (Italian Space Agency, Roscosmos, ESA) Visuospatial processing before and after spaceflight (CSA) Metabolic changes during fasting intervals in astronauts (ESA) Vapor bubble production for the improvement of thermal systems (NASA) Immobilization of particles for the development of optical materials (JAXA) Maintained function of cardiac 3D stem cells after weeks of exposure to space (NASA) The content in the Annual Highlights of Results from the International Space Station has been reviewed and approved by the International Space Station Program Science Forum, a team of scientists and administrators representing NASA and international partners that are dedicated to planning, improving, and communicating the research operated on the space station.
      [See the list of Station Research Results publications here and find the current edition of the Annual Highlights of Results here.]  
      Keep Exploring Discover More Topics
      Space Station Research Results
      Space Station Research and Technology
      ISS National Laboratory
      Opportunities and Information for Researchers
      View the full article
  • Check out these Videos

×
×
  • Create New...