Members Can Post Anonymously On This Site
Winners Announced in Gateways to Blue Skies Aeronautics Competition
-
Similar Topics
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s LRO (Lunar Reconnaissance Orbiter) imaged Firefly Aerospace’s Blue Ghost Mission 1 lunar lander on the Moon’s surface the afternoon of March 2, not quite 10 hours after the spacecraft landed.
Firefly Aerospace’s Blue Ghost Mission 1 lunar lander, which appears in this image from NASA’s Lunar Reconnaissance Orbiter as a bright pixel casting a shadow in the middle of the white box, reached the surface of the Moon on March 2 at 3:34 a.m. EST.NASA/Goddard/Arizona State University The delivery is part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign. This is the first CLPS delivery for Firefly, and their first Moon landing.
LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
More on this story from Arizona State University’s LRO Camera website
Media Contact:
Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Mar 25, 2025 Related Terms
Lunar Reconnaissance Orbiter (LRO) View the full article
-
By NASA
This year’s RASC-AL competition invited undergraduate and graduate students from across the nation to develop new, innovative concepts to improve our ability to operate on the Moon, Mars, and beyond.ASANASA Fourteen university teams have been selected as finalists for NASA’s 2025 Revolutionary Aerospace Systems – Academic Linkage (RASC-AL) Competition. This year’s competition invited undergraduate and graduate students from across the nation to develop new, innovative concepts to improve our ability to operate on the Moon, Mars, and beyond. Finalists will present their proposed concepts to a panel of NASA and aerospace industry leaders.
The 2025 Finalists are:
Sustained Lunar Evolution – An Inspirational Moment: Massachusetts Institute of Technology, “M.I.S.T.R.E.S.S. – Moon Infrastructure for Sustainable Technologies, Resource Extraction, and Self-Sufficiency” Tulane University, “Scalable Constructs for Advanced Lunar Activities and Research (SCALAR)” Virginia Polytechnic Institute and State University, “Project Aeneas” Virginia Polytechnic Institute and State University, “Project Khonsu” Advanced Science Missions and Technology Demonstrators for Human-Mars Precursor Campaign: Auburn University, “Dynamic Ecosystems for Mars ECLSS Testing, Evaluation, and Reliability (DEMETER)” University of Illinois, Urbana-Champaign, “MATER: Mars Architecture for Technology Evaluation and Research” Virginia Polytechnic Institute and State University, “Project Vehicles for Engineering Surface Terrain Architectures (VESTA)” Small Lunar Servicing and Maintenance Robot: Arizona State University, “DIANA – Diagnostic and Intelligent Autonomously Navigated Assistant” South Dakota State University, “Next-gen Operations and Versatile Assistant (NOVA)” South Dakota State University, “MANTIS: Maintenance and Navigation for Technical Infrastructure Support” Texas A&M University, “R.A.M.S.E.E.: Robotic Autonomous Maintenance System for Extraterrestrial Environments” University of Maryland, “Servicing Crane Outfitted Rover for Payloads, Inspection, Operations, N’stuff (SCORPION)” University of Puerto Rico, Mayagüez, “Multi-functional Operational Rover for Payload Handling and Navigation (MORPHN)” Virginia Polytechnic Institute & State University, “Adaptive Device for Assistance and Maintenance (ADAM)” The RASC-AL Competition is designed to engage university students and academic institutions in innovation within the field of aerospace engineering. By providing a platform for students to develop and present their ideas, NASA aims to cultivate foundational research for new concepts and technologies for the future of space exploration. This year’s RASC-AL projects include scalable lunar infrastructure and services, a lunar robot that can work autonomously or be controlled remotely, and a concept for a science or technology demonstration mission using human-scale launch, transportation, entry, and landing capabilities at Mars. All of these functions are critical to future NASA missions.
“This year’s RASC-AL projects are not just academic exercises; they will contribute real solutions to some of the most pressing challenges we currently face. The competition continues to highlight the importance of innovation and interdisciplinary collaboration in aerospace,” said Daniel Mazanek, RASC-AL program sponsor and senior space systems engineer from NASA’s Langley Research Center in Hampton, VA.
These finalist teams will move forward to the next phase of the competition, where they will prepare and submit a detailed technical paper outlining their designs, methodologies, and anticipated impacts. Each team will present their concepts at the 2025 RASC-AL Competition Forum in June 2025 showcasing their work to a judging panel of NASA and industry experts for review and discussion.
“The ingenuity and out-of-the-box designs showcased by these students is inspiring,” added Dr. Christopher Jones, RASC-AL program sponsor and chief technologist for the Systems Analysis and Concepts Directorate at NASA’S Langley “We are excited to see how their ideas can contribute to NASA’s ongoing missions and future exploration goals. This is just the beginning of their journey, and we are proud to be part of it.”
To learn more about NASA’s RASC-AL Competition, visit NASA’s RASC-AL Competition Website. RASC-AL is sponsored by the Strategy and Architecture Office within the Exploration Systems Development Mission Directorate at NASA Headquarters, and by the Space Mission Analysis Branch within the Systems Analysis and Concepts Directorate at NASA’s Langley Research Center. It is administered by the National Institute of Aerospace.
Genevieve Ebarle / Victoria O’Leary
National Institute of Aerospace
View the full article
-
By NASA
This compressed, resolution-limited gif shows the view of lunar sunset from one of the six Stereo Cameras for Lunar-Plume Surface Studies (SCALPSS) 1.1 cameras on Firefly’s Blue Ghost lander, which operated on the Moon’s surface for a little more than 14 days and stopped, as anticipated, a few hours into lunar night. The bright, swirly light moving across the surface on the top right of the image is sunlight reflecting off the lander. Images taken by SCALPSS 1.1 during Blue Ghost’s descent and landing, as well as images from the surface during the long lunar day, will help researchers better understand the effects of a lander’s engine plumes on the lunar soil, or regolith. The instrument collected almost 9000 images and returned 10 GB of data. This data is important as trips to the Moon increase and the number of payloads touching down in proximity to one another grows. The SCALPSS 1.1 project is funded by the Space Technology Mission Directorate’s Game Changing Development program. SCALPSS was developed at NASA’s Langley Research Center in Hampton, Virginia, with support from Marshall Space Flight Center in Huntsville, Alabama.NASA/Olivia TyrrellView the full article
-
By NASA
Students, mentors, and team supporters donning team colors watch robots clash on the playing field at the FIRST Robotics Los Angeles regional competition in El Segundo on March 16. NASA/JPL-Caltech Robots built by high schoolers vied for points in a fast-moving game inspired by complex ocean ecosystems at the FIRST Robotics Los Angeles regional competition.
High school students who spent weeks designing, assembling, and testing 125-pound rolling robots put their fast-moving creations into the ring over the weekend, facing off at the annual Los Angeles regional FIRST Robotics Competition, an event supported by NASA’s Jet Propulsion Laboratory in Southern California.
Four of the 43 participating teams earned a chance to compete in April at the FIRST international championship tournament in Houston, which draws winning teams from across the country.
Held March 14 to 16 at the Da Vinci Schools campus in El Segundo, the event is one of many supported by the nonprofit FIRST (For Inspiration and Recognition of Science and Technology), which pairs students with STEM professionals. Teams receive the game rules, which change every year, in January and sprint toward competition, assembling their robot based on FIRST’s specifications. The global competition not only gives students engineering experience but also helps them develop business skills with a range of activities, from fundraising for their team to marketing.
For this year’s game, called “Reefscape,” two alliances of three teams competed for points during each 2½-minute match. That meant six robots at a time sped across the floor, knocking into each other and angling to seed “coral” (pieces of PVC pipe) on “reefs” and harvesting “algae” (rubber balls). In the final seconds of each round, teams could earn extra points if their robots were able to hoist themselves into the air and dangle from hanging cages, as though they were ascending to the ocean surface.
The action was set to a bouncy soundtrack that reverberated through the gym, while in the bleachers there were choreographed dancing, loud cheers, pom-poms, and even some tears.
The winning alliance was composed of Warbots from Downey’s Warren High School, TorBots from Torrance’s South High School, and West Torrance Robotics from Torrance’s West High School. The Robo-Nerds of Benjamin Franklin High in Los Angeles’ Highland Park and Robo’Lyon from Notre Dame de Bellegarde outside Lyon, France, won awards that mean they’ll also get to compete in Houston, alongside the Warbots and the TorBots.
NASA and its Robotics Alliance Project provide grants for high school teams across the country and support FIRST Robotics competitions to encourage students to pursue STEM careers in aerospace. For the L.A. regional competition, JPL has coordinated volunteers — and provided coaching and mentoring to teams, judges, and other competition support — for 25 years.
For more information about the FIRST Los Angeles regional, visit:
https://cafirst.org/frc/losangeles/
News Media Contact
Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
626-314-4928
melissa.pamer@jpl.nasa.gov
2025-037
Share
Details
Last Updated Mar 17, 2025 Related Terms
Jet Propulsion Laboratory Explore More
3 min read NASA Analysis Shows Unexpected Amount of Sea Level Rise in 2024
Article 4 days ago 6 min read Cosmic Mapmaker: NASA’s SPHEREx Space Telescope Ready to Launch
Article 1 week ago 5 min read NASA Turns Off 2 Voyager Science Instruments to Extend Mission
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
This picture, captured from the surface of the Moon, shows Firefly’s Blue Ghost lunar lander, which performed operations on the Moon from March 2, to March 16, 2025, in the foreground, and Earth in the sky above it. Credit: Firefly Aerospace NASA and Firefly Aerospace will host a news conference at 2 p.m. EDT Tuesday, March 18, from NASA’s Johnson Space Center in Houston to discuss the company’s successful Blue Ghost Mission 1 on the Moon’s surface.
Watch the news conference on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
U.S. media interested in participating in person or remotely must request accreditation by 5 p.m., Monday, March 17, by contacting the NASA Johnson newsroom at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is online. To ask questions via phone, media must dial into the news conference no later than 15 minutes prior to the start of the call.
Firefly’s Blue Ghost lunar lander touched down March 2, on the Moon’s Mare Crisium basin. The lander’s NASA payloads were activated, collected science data, and performed operations as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term lunar presence. The mission is not designed to survive through the lunar night; however, Blue Ghost continued operations for five hours after lunar sunset on March 16.
Participants will include:
Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters in Washington Jason Kim, CEO, Firefly Aerospace Ray Allensworth, spacecraft program director, Firefly Adam Schlesinger, CLPS project manager, NASA Johnson The Blue Ghost Mission 1 mission launched at 1:11 a.m., Jan. 15, on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The lander delivered 10 NASA science investigations and technology demonstrations including testing and demonstrating lunar drilling technology, regolith (lunar rocks and soil) sample collection capabilities, global navigation satellite system abilities, radiation tolerant computing, and lunar dust mitigation. The data captured will benefit humans on Earth in many ways, providing insights into how space weather and other cosmic forces impact our home planet.
NASA continues to work with multiple American companies to deliver science and technology to the lunar surface through the agency’s CLPS initiative. This pool of companies may bid on NASA contracts for end-to-end lunar surface delivery services, including all payload integration and operations, launching from Earth and landing on the surface of the Moon.
Through the Artemis campaign, commercial robotic deliveries will perform science experiments, test technologies, and demonstrate capabilities on and around the Moon to help NASA explore in advance of Artemis Generation astronaut missions to the lunar surface, and ultimately crewed missions to Mars.
For more information about the agency’s Commercial Lunar Payload Services initiative:
https://www.nasa.gov/clps
-end-
Karen Fox / Alise Fisher
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
Share
Details
Last Updated Mar 17, 2025 LocationNASA Headquarters Related Terms
Missions Artemis Commercial Lunar Payload Services (CLPS) View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.