Members Can Post Anonymously On This Site
Winners Announced in Gateways to Blue Skies Aeronautics Competition
-
Similar Topics
-
By NASA
This updated version of “the Pale Blue Dot,” made for the photo’s 30th anniversary in 2020, uses modern image-processing software and techniques to revisit the well-known Voyager view while attempting to respect the original data and intent of those who planned the images.NASA/JPL-Caltech Earth is but a tiny light blue dot in this 30th anniversary version of the iconic “Pale Blue Dot” image. The original photo, taken by NASA’s Voyager 1 spacecraft on Feb. 14, 1990, is now 35 years old. Voyager 1 was 3.7 billion miles (6 billion km) away from the Sun, giving it a unique vantage point to take a series of photos that created a “family portrait” of our solar system. Voyager’s view was important to Carl Sagan and the Voyager Imaging Team; they felt this photo was needed to show Earth’s vulnerability and that our home world is just a tiny, fragile speck in the cosmic ocean.
Learn more about this famous image of our home planet.
Image credit: NASA/JPL-Caltech
View the full article
-
By NASA
NASA asked artists to imagine the future of deep space exploration in artwork meant to inspire the Artemis Generation. The NASA Moon to Mars Architecture art challenge sought creative images that represent the agency’s bold vision for crewed exploration of the lunar surface and the Red Planet. The agency has selected the recipients of the art challenge competition.
This collage features all the winners of the NASA Moon to Mars Architecture Art Challenge.Jimmy Catanzaro, Jean-Luc Sabourin, Irene Magi, Pavlo Kandyba, Antonella Di Cristofaro, Francesco Simone, Mia Nickell, Lux Bodell, Olivia De Grande, Sophie Duan The challenge, hosted by contractor yet2 through NASA’s Prizes, Challenges, and Crowdsourcing program, was open to artists from around the globe. Guidelines asked artists to consider NASA’s Moon to Mars Architecture development effort, which uses engineering processes to distil NASA’s Moon to Mars Objectives into the systems needed to accomplish them. NASA received 313 submissions from 22 U.S. states and 47 countries.
The architecture includes four segments of increasing complexity. For this competition, NASA sought artistic representations of the two furthest on the timeline: the Sustained Lunar Evolution segment and the Humans to Mars segment.
The Sustained Lunar Evolution segment is an open canvas for exploration of the Moon, embracing new ideas, systems, and partners to grow to a long-term presence on the lunar surface. Sustained lunar evolution means more astronauts on the Moon for longer periods of time, increased opportunities for science, and even the large-scale production of goods and services derived from lunar resources. It also means increased cooperation and collaboration with international partners and the aerospace industry to build a robust lunar economy. The Humans to Mars segment will see the first human missions to Mars, building on the lessons we learn from exploring the Moon. These early missions will focus on Martian exploration and establishing the foundation for a sustained Mars presence. NASA architects are examining a wide variety of options for transportation, habitation, power generation, utilization of Martian resources, scientific investigations, and more. Final judging for the competition took place at NASA’s annual Architecture Concept Review meeting. That review brought together agency leadership from NASA mission directorates, centers, and technical authorities to review the 2024 updates to the Moon to Mars Architecture. NASA selected the winning images below during that review:
Sustained Lunar Evolution Segment Winners
First Place:
Jimmy Catanzaro – Henderson, Nevada
Second Place:
Jean-Luc Sabourin – Ottawa, Canada
Third Place (Tie):
Irene Magi – Prato, Italy
Pavlo Kandyba – Kyiv, Ukraine
Humans to Mars Segment Winners
First Place (Tie):
Antonella Di Cristofaro – Chieti, Italy
Francesco Simone – Gatteo, Italy
Third Place:
Mia Nickell – Suwanee, Georgia
Under 18 Submission Winners
First Place:
Lux Bodell – Minnetonka, Minnesota
Second Place:
Olivia De Grande – Milan, Italy
Third Place:
Sophie Duan – Ponte Vedra, Florida
The NASA Tournament Lab, part of the Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate, managed the challenge. The program supports global public competitions and crowdsourcing as tools to advance NASA research and development and other mission needs.
View the full article
-
By NASA
6 Min Read NASA International Space Apps Challenge Announces 2024 Global Winners
The 2024 NASA Space Apps Challenge was hosted at 485 events in 163 countries and territories. Credits: NASA NASA Space Apps has named 10 global winners, recognizing teams from around the world for their exceptional innovation and collaboration during the 2024 NASA Space Apps Challenge. As the largest annual global hackathon, this event invites participants to leverage open data from NASA and its space agency partners to tackle real-world challenges on Earth and in space.
Last year’s hackathon welcomed 93,520 registered participants, including space, science, technology, and storytelling enthusiasts of all ages. Participants gathered at local events in 163 countries and territories, forming teams to address the challenges authored by NASA subject matter experts. These challenges included subjects/themes/questions in ocean ecosystems, exoplanet exploration, Earth observation, planetary seismology, and more.
The 2024 Global Winners were determined out of 9,996 project submissions and judged by subject matter experts from NASA and space agency partners.
“These 10 exceptional teams created projects that reflect our commitment to understanding our planet and exploring beyond, with the potential to transform Earth and space science for the benefit of all,” said Dr. Keith Gaddis, NASA Space Apps Challenge program scientistat NASA Headquarters in Washington. “The NASA Space Apps Challenge showcases the potential of every idea and individual. I am excited to see how these innovators will shape and inspire the future of science and exploration.”
You can watch the Global Winners Announcement here to meet these winning teams and learn about the inspiration behind their projects.
2024 NASA Space Apps Challenge Global Winners
Best Use of Science Award: WMPGang
Team Members: Dakota C., Ian C., Maximilian V., Simon S.
Challenge: Create an Orrery Web App that Displays Near-Earth Objects
Country/Territory: Waterloo,Canada
Using their skills in programming, data analysis, and visualization, WMPGang created a web app that identifies satellite risk zones using real-time data on Near-Earth Objects and meteor streams.
Learn more about WMPGang’s SkyShield: Protecting Earth and Satellites from Space Hazards project Best Use of Data Award: GaamaRamma
Team Members: Aakash H., Arun G., Arthur A., Gabriel A., May K.
Challenge: Leveraging Earth Observation Data for Informed Agricultural Decision-Making
Country/Territory: Universal Event, United States
GaamaRamma’s team of tech enthusiasts aimed to create a sustainable way to help farmers efficiently manage water availability in the face of drought, pests, and disease.
Learn more about GaamaRamma’s Waterwise project Best Use of Technology Award: 42 QuakeHeroes
Team Members: Alailton A., Ana B., Gabriel C., Gustavo M., Gustavo T., Larissa M.
Challenge: Seismic Detection Across the Solar System
Country/Territory: Maceió, Brazil
Team 42 QuakeHeroes employed a deep neural network model to identify the precise locations of seismic events within time-series data. They used advanced signal processing techniques to isolate and analyze unique components of non-stationary signals.
Learn more about 42 QuakeHeroes’ project Galactic Impact Award: NVS-knot
Team Members: Oksana M., Oleksandra M., Prokipchyn Y., Val K.
Challenge: Leveraging Earth Observation Data for Informed Agricultural Decision-Making
Country/Territory: Kyiv, Ukraine
The NVS-knot team assessed planting conditions using surface soil moisture and evapotranspiration data, then created an app that empowers farmers to manage planting risks.
Learn more about NVS-knot’s 2plant | ! 2plant project Best Mission Concept Award: AsturExplorers
Team Members: Coral M., Daniel C., Daniel V., Juan B., Samuel G., Vladimir C.
Challenge: Landsat Reflectance Data: On the Fly and at Your Fingertips
Country/Territory: Gijón, Spain
AsturExplorers created Landsat Connect, a web app that provides a simple, intuitive way to track Landast satellites and access Landsat surface reflectance data. The app also allows users to set a target location and receive notifications when Landsat satellites pass over their area.
Learn more about AsturExplorers’ Landsat Connect project Most Inspirational Award: Innovisionaries
Team Members: Rikzah K., Samira K., Shafeeqa J., Umamah A.
Challenge: SDGs in the Classroom
Country/Territory: Sharjah, United Arab Emirates
Innovisionaries developed Eco-Metropolis to inspire sustainability through gameplay. This city-building game engages players in making critical urban planning and resource management decisions based on real-world environmental data.
Learn more about Innovisionaries’ Eco-Metropolis: Sustainable City Simulation project Best Storytelling Award: TerraTales
Team Members: Ahmed R., Fatma E., Habiba A., Judy A., Maya M.
Challenge: Tell Us a Climate Story!
Country/Territory: Cairo, Egypt
TerraTales shared stories of how Earth’s changing climate affects three unique regions: Egypt, Brazil, and Germany. The web app also features an artificial intelligence (AI) model for climate forecasting and an interactive game to encourage users to make eco-friendly choices.
Learn more about TerraTale’s project Global Connection Award: Asteroid Destroyer
Team Members: Kapeesh K., Khoi N., Sathyajit L., Satyam S.
Challenge: Navigator for the Habitable Worlds Observatory (HWO): Mapping the Characterizable Exoplanets in our Galaxy
Country/Territory: Saskatoon, Canada
Team Asteroid Destroyer honed in on exoplanets, utilizing data processing and machine learning techniques to map exoplanets based on size, temperature, and distance.
Learn more about Asteroid Destroyer’s project Art & Technology Award: Connected Earth Museum
Team Members: Gabriel M., Luc R., Lucas R., Mattheus L., Pedro C., Riccardo S.
Challenge: Imagine our Connected Earth
Country/Territory: Campinas, Brazil
Team Connected Earth Museum created an immersive virtual museum experience to raise awareness of Earth’s changing climate. An AI host guides users through an interactive gallery featuring 3D and 2D visualizations, including a time series on Earth and ocean temperatures, population density, wildfires, and more.
Learn more about Connected Earth Museums’ project Local Impact Award: Team I.O.
Team Members: Frank R., Jan K., Raphael R., Ryan Z., Victoria M.
Challenge: Community Mapping
Country/Territory: Florianópolis, Brazil
Team I.O. bridges the gap between complex Geographic Information Systems data and user-friendly communication, making critical environmental information accessible to everyone, regardless of technical expertise.
Learn more about Team I.O.’s G.R.O.W. (Global Recovery and Observation of Wildfires) project Want to take part in the 2025 NASA Space Apps Challenge? Mark your calendars for October 4 and 5! Registration will open in July. At that time, participants will be able to register for a local event hosted by NASA Space Apps leads from around the world. You can stay connected with NASA Space Apps on Facebook, Instagram, and X.
Space Apps is funded by NASA’s Earth Science Division through a contract with Booz Allen Hamilton, Mindgrub, and SecondMuse.
Share
Details
Last Updated Jan 16, 2025 Related Terms
STEM Engagement at NASA Earth View the full article
-
By NASA
Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary 4 Min Read NASA’s Hubble Tracks Down a ‘Blue Lurker’ Among Stars
Evolution of a “Blue Lurker” Star in a Triple System Credits:
NASA, ESA, Leah Hustak (STScI) The name “blue lurker” might sound like a villainous character from a superhero movie. But it is a rare class of star that NASA’s Hubble Space Telescope explored by looking deeply into the open star cluster M67, roughly 2,800 light-years away.
Forensics with Hubble data show that the star has had a tumultuous life, mixing with two other stars gravitationally bound together in a remarkable triple-star system. The star has a kinship to so-called “blue stragglers,” which are hotter, brighter, and bluer than expected because they are likely the result of mergers between stars.
Evolution of a “Blue Lurker” Star in a Triple System Panel 1: A triple star system containing three Sun-like stars. Two are very tightly orbiting. The third star has a much wider orbit. Panel 2: The close stellar pair spiral together and merge to form one more massive star. Panel 3: The merged star evolves into a giant star. As the huge photosphere expands, some of the material falls onto the outer companion, causing the companion to grow larger and its rotation rate to increase. Panels 4-5: The central merged star eventually burns out and forms a massive white dwarf, and the outer companion spirals in towards the white dwarf, leaving a binary star system with a tighter orbit. Panel 6: The surviving outer companion is much like our Sun but nicknamed a “blue lurker.” Although it is slightly brighter bluer than expected because of the earlier mass-transfer from the central star and is now rotating very rapidly, these features are subtle. The star could easily be mistaken for a normal Sun-like star despite its exotic evolutionary history. NASA, ESA, Leah Hustak (STScI) The blue lurker is spinning much faster than expected, an unusual behavior that led to its identification. Otherwise it looks like a normal Sun-like star. The term “blue” is a bit of a misnomer because the star’s color blends in with all the other solar-mass stars in the cluster. Hence it is sort of “lurking” among the common stellar population.
The spin rate is evidence that the lurker must have siphoned in material from a companion star, causing its rotation to speed up. The star’s high spin rate was discovered with NASA’s retired Kepler space telescope. While normal Sun-like stars typically take about 30 days to complete one rotation, the lurker takes only four days.
How the blue lurker got that way is a “super complicated evolutionary story,” said Emily Leiner of Illinois Institute of Technology in Chicago. “This star is really exciting because it’s an example of a star that has interacted in a triple-star system.” The blue lurker originally rotated more slowly and orbited a binary system consisting of two Sun-like stars.
Around 500 million years ago, the two stars in that binary merged, creating a single, much more massive star. This behemoth soon swelled into a giant star, dumping some of its own material onto the blue lurker and spinning it up in the process. Today, we observe that the blue lurker is orbiting a white dwarf star — the burned out remains of the massive merger.
“We know these multiple star systems are fairly common and are going to lead to really interesting outcomes,” Leiner explained. “We just don’t yet have a model that can reliably connect through all of those stages of evolution. Triple-star systems are about 10 percent of the Sun-like star population. But being able to put together this evolutionary history is challenging.”
Hubble observed the white dwarf companion star that the lurker orbits. Using ultraviolet spectroscopy, Hubble found the white dwarf is very hot (as high as 23,000 degrees Fahrenheit, or roughly three times the Sun’s surface temperature) and a heavyweight at 0.72 solar masses. According to theory, hot white dwarfs in M67 should be only about 0.5 solar masses. This is evidence that the white dwarf is the byproduct of the merger of two stars that once were part of a triple-star system.
“This is one of the only triple systems where we can tell a story this detailed about how it evolved,” said Leiner. “Triples are emerging as potentially very important to creating interesting, explosive end products. It’s really unusual to be able to put constraints on such a system as we are exploring.”
Leiner’s results are being presented at the 245th meeting of the American Astronomical Society in Washington, D.C.
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Ray Villard
Space Telescope Science Institute, Baltimore, MD
Science Contact:
Emily Leiner
Illinois Institute of Technology, Chicago, IL
Share
Details
Last Updated Jan 13, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Open Clusters Stars Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble Science Highlights
Hubble’s Night Sky Challenge
Hubble Multimedia
View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.