Jump to content

NASA’s Stennis Space Center Employees Receive NASA Honor Awards


Recommended Posts

  • Publishers
Posted

NASA Stennis Space Center Director John Bailey and NASA Associate Administrator for Space Operations Kenneth Bowersox presented NASA Honor Awards to Stennis employees during an onsite ceremony May 15.

Prior to presenting NASA Honor Awards to Stennis employees, Bailey received the Meritorious Senior Executive Presidential Rank Award. The award from the President of the United States is one of the highest awards given to career Senior Executive Service employees.

Since joining NASA in 1999, Bailey has served in various management and leadership roles. He was named NASA Stennis center director in April. As director, Bailey is responsible for implementing NASA’s mission in rocket propulsion testing and developing and maintaining NASA’s world-class rocket propulsion test facilities. He has provided leadership and managed critical rocket propulsion test assets exceeding $2 billion in replacement value and managed projects over $221 million.

One NASA Stennis employee received NASA’s Outstanding Leadership Medal. The medal is awarded to government employees for notable leadership accomplishments that have significantly influenced the NASA mission.

NASA Honor Awards Recipients

MIchael Tubbs
MIchael Tubbs
NASA/Stennis

Michael Tubbs of Diamondhead, Mississippi, received the NASA Outstanding Leadership Medal for his work as deputy director of the Office of Strategic Infrastructure within the Center Operations Directorate at NASA Stennis. The Yorktown, Virginia, native ushered in improvements and new initiatives that have helped achieve a cultural transformation and millions in cost-saving measures. His accomplishments also include leading the efforts to complete lease agreements between NASA and Rocket Lab of America for use of the A-3 Test Stand and between NASA and Relativity Space for use of the A-2 Test Stand.

Five NASA Stennis employees received NASA’s Exceptional Service Medal. The medal is awarded to government employees for sustained performance that embodies multiple contributions to NASA projects, programs, or initiatives.

David Lorance
David Lorance
NASA/Stennis

David Lorance of Slidell, Louisiana, received the NASA Exceptional Service Medal for his efforts in furthering the NASA mission through leadership of the Environmental and Health Services Office Division in the Center Operations Directorate at NASA Stennis. Lorance has been responsible for ensuring compliance with numerous environmental programs, managing resources to ensure requirements are met with no impact to mission projects, managing hundreds of regulatory reports for submission on time, and ensuring environmental permits are maintained.

Bradley Messer
Bradley Messer
NASA/Stennis

Brad Messer of Santa Rosa Beach, Florida, received the NASA Exceptional Service Medal for more than 32 years of service to NASA. Since joining NASA in 1991, Messer has contributed to a variety of propulsion test and engineering projects. As assistant director of the NASA Stennis Engineering and Test Directorate in charge of the Office of Project Management, Planning and Control, he has been responsible for the day-to-day business operations and project activities across the test complex. Messer has also made significant contributions to the strategic planning and execution of activities essential to the future state of the test complex.

Kevin Power
Kevin Power
NASA/Stennis

Kevin Power of Mandeville, Louisiana, received the NASA Exceptional Service Medal for more than 34 years of service to NASA. As deputy assistant director for the Office of Project Management, Planning and Control in the Engineering and Test Directorate at NASA Stennis, the Port Sulphur, Louisiana, native has consistently delivered support to the NASA Stennis vision and mission. He has helped accomplish center, NASA, and national goals by providing management and engineering leadership, expertise, resources, and guidance to multiple NASA and commercial propulsion test projects, including some of the center’s most critical test infrastructure efforts.

Cecile Saltzman
Cecile Saltzman
NASA/Stennis

Cecile Saltzman of Pass Christian, Mississippi, received the NASA Exceptional Service Medal for more than 20 years of service to the NASA Stennis Engineering and Test Directorate. Saltzman’s work has included management of the directorate document process control function, ensuring NASA Stennis test complex assets and support facilities are operated, utilized, and continually improved in providing premier testing services to NASA and commercial customers. The Thibodaux, Louisiana, native has consistently exceeded the agency’s timeline for editing fiscal year accomplishments of all NASA Stennis senior executive service and senior level personnel.

John Stealey
John Stealey
NASA/Stennis

John Stealey of Diamondhead, Mississippi, received the NASA Exceptional Service Medal for more than 35 years of service to NASA, including 26 years at NASA Stennis. The Granville, Tennessee, native has contributed to a range of agency and center projects. Among his accomplishments, Stealey has assisted in overseeing strategic planning for NASA Stennis propulsion test facilities and workforce. He has served in various center roles, including as deputy of the Safety and Mission Assurance Directorate and assistant director of the Engineering and Test Directorate. He also served on the agency-level Exploration System Directorate Standing Review Board, providing expert advice on systems engineering and project management.

One NASA Stennis employee received NASA’s Exceptional Public Service Medal. The medal is awarded to non-government individuals or to an individual who was not a government employee during the period in which the service was performed for sustained performance that embodies multiple contributions on NASA projects, programs, or initiatives.

Rodney King
Rodney King
NASA/Stennis

Rodney King of Picayune, Mississippi, received the NASA Exceptional Public Service Medal for efforts as the facility maintenance supervisor on the Synergy-Achieving Consolidated Operations and Maintenance contract at NASA Stennis. In that role, King has been responsible for electrical and high voltage work at the site. King’s service-centered approach has rendered him successful in technical work activities and how he relates to customers, management, peers, and direct reports. He has been recognized by organizations throughout the NASA Stennis federal city for his quick response to outages or calls within their facilities.

Four NASA Stennis employees received NASA’s Exceptional Bravery Medal. The medal is awarded to both government and non-government individuals for exemplary and courageous handling of an emergency by an individual who, independent of personal danger, has acted to prevent the loss of human life and/or government property.

Barry Hoda
Barry Hoda
NASA/Stennis

Barry Hoda of Kiln, Mississippi, received the NASA Exceptional Bravery Medal for exemplary and courageous actions while responding to a medical emergency at NASA Stennis to prevent the loss of human life on Dec. 7, 2022. An officer with Chenega Global Protection, Hoda noted the employee was unresponsive, and no pulse or respiration were detected. Hoda immediately began cardiopulmonary resuscitation (CPR) and then synchronized CPR chest compressions with other respondents, ensuring a continuous, uninterrupted blood supply to the employee’s brain. The rapid response and coordinated effort were directly responsible for saving a life.

Leeanna Dunigan of Diamondhead, Mississippi, received the NASA Exceptional Bravery Medal for exemplary and courageous actions while responding to a medical emergency at NASA Stennis to prevent the loss of human life on Dec. 7, 2022. A captain with Chenega Global Protection, Dunigan helped provide cardiopulmonary resuscitation (CPR) to the employee in distress by synchronizing CPR chest compressions with other respondents, ensuring a continuous, uninterrupted blood supply to the employee’s brain. The rapid response and coordinated effort were directly responsible for saving a life.

Brenden Burns of Gulfport, Mississippi, received the NASA Exceptional Bravery Medal for exemplary and courageous actions while responding to a medical emergency at NASA Stennis to prevent the loss of human life on Dec. 7, 2022. An officer with Chenega Global Protection, Burns utilized an automated external defibrillator on an employee in distress. The rapid response and coordinated effort with others were directly responsible for saving a life.

Issac Delancey
Issac Delancey
NASA/Stennis

Issac Delancey of Picayune, Mississippi, received the NASA Exceptional Bravery Medal for exemplary and courageous actions while responding to a medical emergency at NASA Stennis to prevent the loss of human life on Dec. 7, 2022. An officer with Chenega Global Protection, Delancey provided the automated external defibrillator while responding to an incident of an employee in distress. Upon arrival, Delancey provided the employee with artificial respiration and coordinated effort with others to maximize the effect of chest compressions. The rapid response and coordinated effort were directly responsible for saving a life.

One NASA Stennis employee received the NASA Exceptional Technology Achievement Medal. The medal is awarded to government or non-government individuals for exceptional technology contributions.

Richard Smith
Richard Smith
NASA/Stennis

Richard Smith of Picayune, Mississippi, received NASA’s Exceptional Technology Achievement Medal for efforts that led to significant advances to the data acquisition and thrust vector control systems that provide critical support to propulsion testing onsite. Among his contributions, Smith, a contractor on the operations and maintenance contract at NASA Stennis, was the primary software system architect for the thrust vector control work to enable rocket engine gimbal testing. He also worked to ensure safe hydraulic operation of the system. His efforts enabled the NASA Stennis test team to perform successful certification testing of the new RS-25 production engine.

Four NASA Stennis employees received the NASA Exceptional Achievement Medal. The medal is awarded to any government employee for a significant specific achievement or substantial improvement in operations, efficiency, service, financial savings, science, or technology which contributes to the mission of NASA.

John Boffenmyer
John Boffenmyer
NASA/Stennis

John Boffenmyer of Slidell, Louisiana, received NASA’s Exceptional Achievement Medal for maintaining the highest levels of performance in his remediation responsibilities within the NASA Stennis Center Operations Directorate, resulting in substantial benefits to the agency. As NASA Remediation Program manager for NASA Stennis, Boffenmyer’s work is integral to the Environmental and Health Services Office achieving the NASA Stennis and NASA missions. In conjunction with management of field operations, the Pottsville, Pennsylvania, native has demonstrated outstanding program management, with all audits of the NASA Stennis program proving successful.

Thomas Meredith
Thomas Meredith
NASA/Stennis

Thomas Meredith of Slidell, Louisiana, received NASA’s Exceptional Achievement Medal for his efforts as deputy chief engineer at NASA Stennis. During his tenure, the Enterprise, Alabama native has made substantial improvements to the management of test facility hardware in support of the center’s rocket propulsion test operations. Meredith’s leadership and dedication in the management of rocket propulsion test hardware have contributed to two areas of agency emphasis, the sustainment and modernization of mission-critical facilities and the employment of digital technologies to change and improve a process, product, or capability.

Kris Mobbs
Kris Mobbs

Kris Mobbs of Woolmarket, Mississippi, received NASA’s Exceptional Achievement Medal for his efforts as software engineer in the NASA Stennis Engineering and Test Directorate to lead development of the NASA Data Acquisition Software suite for the acquisition, displaying, and recording of critical data during daily and test activities. Mobbs has led in identifying and implementing new capabilities of the software suite and in development of software packages to help increase the reliability of test data and performance of the test team. As a direct outcome of his leadership, use of the software has expanded to all the NASA Stennis-operated test facilities.

Ryan Seals
Ryan Seals
NASA/Stennis

Ryan Seals of Carriere, Mississippi, received NASA’s Exceptional Achievement Medal for his contributions to the NASA Stennis propulsion test mission. Since beginning his career with NASA in 2016, the Poplarville, Mississippi, native has proven his expertise regarding test stand components and systems, contributing to the team responsible for testing the RS-25 engine that powers NASA’s SLS (Space Launch System) rocket. Seals also provided depth for the Thad Cochran Test Stand (B-2) team in preparation for hot fire testing of the SLS core stage. He also has supported commercial partner testing at the E Test Complex.

Four NASA Stennis employees received NASA’s Early Career Achievement Medal. The medal is awarded to government employees for unusual and significant performance during the first 10 years of an individual’s career in support of the agency.

Huy Nguyen
Huy Nguyen
NASA/Stennis

Huy Nguyen of Slidell, Louisana, received the NASA Early Career Achievement Medal for his contributions as the facility controls engineer in the Electrical Test Operations Branch in the NASA Stennis Engineering and Test Directorate. In that role, Nguyen has supported the daily operations of the High Pressure Gas Facility and High Pressure Industrial Water Facility, which provide critical support to test complex propulsion activities. Among his contributions, Nguyen was instrumental to the success of upgrades, analysis, and practice runs to mitigate any risks during Green Run testing of the SLS (Space Launch System) core stage at NASA Stennis.

Kevin Oramous
Kevin Oramous
NASA/Stennis

Kevin Oramous of Slidell, Louisiana, received the NASA Early Career Achievement Medal for his contributions to propulsion test activities and support facilities to directly advance NASA’s rocket propulsion test mission. The New Orleans native began his career at NASA Stennis in 2019 in the Mechanical Operations Branch of the NASA Stennis engineering and Test Directorate, working in the site’s E Test Complex and High Pressure Gas Facility, using his expertise to support operation and systems projects and activities. Oramous also has supported RS-25 testing, propellant and commodity management, and the Thad Cochran Test Stand (B-2) during the SLS (Space Launch System) core stage testing.

Jason Richard
Jason Richard
NASA/Stennis

Jason Richard of Mandeville, Louisiana, received the NASA Early Career Achievement Medal for contributions to NASA’s support of commercial propulsion test partners at NASA Stennis. As project engineer at the E-1 Test Facility, Richard ensured completion of facility design, construction, and activation phases for the Relativity Space Aeon-R Thrust Chamber Assembly test project, while maintaining rigorous quality and safety standards. Working with the NASA Stennis Strategic Business Development Office, Richard has helped bridge the propulsion testing and business development teams and worked to implement the office’s information technology strategy.

Bradley Tyree
Bradley Tyree
NASA/Stennis

Bradley Tyree of Picayune, Mississippi, received the NASA Early Career Achievement Medal for his work in the Mechanical Operations Branch in the NASA Stennis Engineering and Test Directorate. Tyree has provided leadership and technical expertise to key projects, including E Test Complex support of SLS (Space Launch System) core stage testing at NASA Stennis. Since being assigned to support RS-25 testing, his knowledge of propellant handling techniques, technical system maintenance, and test processes have proved invaluable and enabled his progression as a propellant transfer engineer and RS-25 test conductor.

One NASA Stennis employee received NASA’s Silver Achievement Medal. The medal is awarded to any government or non-government employee for a stellar achievement that supports one or more of NASA’s core values, when it is deemed to be extraordinarily important and appropriate to recognize such achievement in a timely and personalized manner.

Gregg De Felicibus
Gregg De Felicibus
NASA/Stennis

Gregg De Felicibus of Pass Christian, Mississippi, received the NASA Silver Achievement Medal for displaying NASA’s core values of safety, integrity, teamwork, excellence, and inclusion while carrying out his work as a contracting officer in the Office of Procurement in support of advancing Space Exploration and NASA’s strategic goals. He has been responsible for the award and management of five critical services contracts valued at over $18.6 million. He has served as an advisor and mentor, has supported the NASA Stennis Small Business Office in achieving its socio-economic goals, has administered over $43 million in contracts, and has negotiated over $5.7 million in cost savings.

For information about NASA’s Stennis Space Center, visit:

Stennis Space Center – NASA

Share

Details

Last Updated
Jun 03, 2024
Editor
NASA Stennis Communications
Contact
C. Lacy Thompson
Location
Stennis Space Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Artemis II SLS (Space Launch System) rocket poised to send four astronauts from Earth on a journey around the Moon next year may appear identical to the Artemis I SLS rocket. On closer inspection, though, engineers have upgraded the agency’s Moon rocket inside and out to improve performance, reliability, and safety.
      SLS flew a picture perfect first mission on the Artemis I test flight, meeting or exceeding parameters for performance, attitude control, and structural stability to an accuracy of tenths or hundredths of a percent as it sent an uncrewed Orion thousands of miles beyond the Moon. It also returned volumes of invaluable flight data for SLS engineers to analyze to drive improvements.
      Teams with NASA’s Exploration Ground Systems integrate the SLS (Space Launch System) Moon rocket with the solid rocket boosters onto mobile launcher 1 inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in March 2025. Artemis II is the first crewed test flight under NASA’s Artemis campaign and is another step toward missions on the lunar surface and helping the agency prepare for future human missions to Mars.NASA/Frank Michaux For Artemis II, the major sections of SLS remain unchanged – a central core stage, four RS-25 main engines, two five-segment solid rocket boosters, the ICPS (interim cryogenic propulsion stage), a launch vehicle stage adapter to hold the ICPS, and an Orion stage adapter connecting SLS to the Orion spacecraft. The difference is in the details.
      “While we’re proud of our Artemis I performance, which validated our overall design, we’ve looked at how SLS can give our crews a better ride,” said John Honeycutt, NASA’s SLS Program manager. “Some of our changes respond to specific Artemis II mission requirements while others reflect ongoing analysis and testing, as well as lessons learned from Artemis I.”
      Engineers have outfitted the ICPS with optical targets that will serve as visual cues to the astronauts aboard Orion as they manually pilot Orion around the upper stage and practice maneuvers to inform docking operations for Artemis III.
      The Artemis II rocket includes an improved navigation system compared to Artemis I.  Its communications capability also has been improved by repositioning antennas on the rocket to ensure continuous communications with NASA ground stations and the U.S. Space Force’s Space Launch Delta 45 which controls launches along the Eastern Range.
      An emergency detection system on the ICPS allows the rocket to sense and respond to problems and notify the crew. The flight safety system adds a time delay to the self-destruct system to allow time for Orion’s escape system to pull the capsule to safety in event of an abort.
      The separation motors that push the solid rocket booster away after the elements are no longer needed were angled an additional 15 degrees to increase separation clearance as the rest of the rocket speeds by.
      Additionally, SLS will jettison the spent boosters four seconds earlier during Artemis II ascent than occurred during Artemis I. Dropping the boosters several seconds closer to the end of their burn will give engineers flight data to correlate with projections that shedding the boosters several seconds sooner will yield approximately 1,600 pounds of payload to Earth orbit for future SLS flights.
      Engineers have incorporated additional improvements based on lessons learned from Artemis I. During the Artemis I test flight the SLS rocket experienced higher-than-expected vibrations near the solid rocket booster attachment points that was caused by unsteady airflow.
      To steady the airflow, a pair of six-foot-long strakes flanking each booster’s forward connection points on the SLS intertank will smooth vibrations induced by airflow during ascent, and the rocket’s electronics system was requalified to endure higher levels of vibrations.
      Engineers updated the core stage power distribution control unit, mounted in the intertank, which controls power to the rocket’s other electronics and protects against electrical hazards.
      These improvements have led to an enhanced rocket to support crew as part of NASA’s Golden Age of innovation and exploration.
      The approximately 10-day Artemis II test flight is the first crewed flight under NASA’s Artemis campaign. It is another step toward new U.S.-crewed missions on the Moon’s surface that will help the agency prepare to send the first astronauts – Americans – to Mars.
      https://www.nasa.gov/artemis
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256.631.9126
      jonathan.e.deal@nasa.gov
      Share
      Details
      Last Updated Sep 17, 2025 EditorLee MohonContactJonathan DealLocationMarshall Space Flight Center Related Terms
      Space Launch System (SLS) Artemis Artemis 2 Exploration Ground Systems Marshall Space Flight Center Explore More
      2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet
      Article 1 day ago 6 min read Artemis II Crew to Advance Human Spaceflight Research
      Article 5 days ago 9 min read Artemis II Crew Both Subjects and Scientists in NASA Deep Space Research
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      It’s been 30 years since the discovery of the first planet around another star like our Sun. With every new discovery, scientists move closer to answering whether there are other planets like Earth that could host life as we know it. NASA/JPL-Caltech The milestone highlights the accelerating rate of discoveries, just over three decades since the first exoplanets were found.
      The official number of exoplanets — planets outside our solar system — tracked by NASA has reached 6,000. Confirmed planets are added to the count on a rolling basis by scientists from around the world, so no single planet is considered the 6,000th entry. The number is monitored by NASA’s Exoplanet Science Institute (NExScI), based at Caltech’s IPAC in Pasadena, California. There are more than 8,000 additional candidate planets awaiting confirmation, with NASA leading the world in searching for life in the universe.
      See NASA's Exoplanet Discoveries Dashboard “This milestone represents decades of cosmic exploration driven by NASA space telescopes — exploration that has completely changed the way humanity views the night sky,” said Shawn Domagal-Goldman, acting director, Astrophysics Division, NASA Headquarters in Washington. “Step by step, from discovery to characterization, NASA missions have built the foundation to answering a fundamental question: Are we alone? Now, with our upcoming Nancy Grace Roman Space Telescope and Habitable Worlds Observatory, America will lead the next giant leap — studying worlds like our own around stars like our Sun. This is American ingenuity, and a promise of discovery that unites us all.”
      Scientists have found thousands of exoplanets (planets outside our solar system) throughout the galaxy. Most can be studied only indirectly, but scientists know they vary widely, as depicted in this artist’s concept, from small, rocky worlds and gas giants to water-rich planets and those as hot as stars. NASA’s Goddard Space Flight Center The milestone comes 30 years after the first exoplanet was discovered around a star similar to our Sun, in 1995. (Prior to that, a few planets had been identified around stars that had burned all their fuel and collapsed.) Although researchers think there are billions of planets in the Milky Way galaxy, finding them remains a challenge. In addition to discovering many individual planets with fascinating characteristics as the total number of known exoplanets climbs, scientists are able to see how the general planet population compares to the planets of our own solar system.
      For example, while our solar system hosts an equal number of rocky and giant planets, rocky planets appear to be more common in the universe. Researchers have also found a range of planets entirely different from those in our solar system. There are Jupiter-size planets that orbit closer to their parent star than Mercury orbits the Sun; planets that orbit two stars, no stars, and dead stars; planets covered in lava; some with the density of Styrofoam; and others with clouds made of gemstones.
      “Each of the different types of planets we discover gives us information about the conditions under which planets can form and, ultimately, how common planets like Earth might be, and where we should be looking for them,” said Dawn Gelino, head of NASA’s Exoplanet Exploration Program (ExEP), located at the agency’s Jet Propulsion Laboratory in Southern California. “If we want to find out if we’re alone in the universe, all of this knowledge is essential.” 
      Searching for other worlds
      Fewer than 100 exoplanets have been directly imaged, because most planets are so faint they get lost in the light from their parent star. The other four methods of planet detection are indirect. With the transit method, for instance, astronomers look for a star to dim for a short period as an orbiting planet passes in front of it.
      To account for the possibility that something other than an exoplanet is responsible for a particular signal, most exoplanet candidates must be confirmed by follow-up observations, often using an additional telescope, and that takes time. That’s why there is a long list of candidates in the NASA Exoplanet Archive (hosted by NExScI) waiting to be confirmed.
      “We really need the whole community working together if we want to maximize our investments in these missions that are churning out exoplanets candidates,” said Aurora Kesseli, the deputy science lead for the NASA Exoplanet Archive at IPAC. “A big part of what we do at NExScI is build tools that help the community go out and turn candidate planets into confirmed planets.”
      The rate of exoplanet discoveries has accelerated in recent years (the database reached 5,000 confirmed exoplanets just three years ago), and this trend seems likely to continue. Kesseli and her colleagues anticipate receiving thousands of additional exoplanet candidates from the ESA (European Space Agency) Gaia mission, which finds planets through a technique called astrometry, and NASA’s upcoming Nancy Grace Roman Space Telescope, which will discover thousands of new exoplanets primarily through a technique called gravitational microlensing.
      Many telescopes contribute to the search for and study of exoplanets, including some in space (artists concepts shown here) and on the ground. Doing the work are organizations around the world, including ESA (European Space Agency), CSA (Canadian Space Agency), and NSF (National Science Foundation). NASA/JPL-Caltech Future exoplanets
      At NASA, the future of exoplanet science will emphasize finding rocky planets similar to Earth and studying their atmospheres for biosignatures — any characteristic, element, molecule, substance, or feature that can be used as evidence of past or present life. NASA’s James Webb Space Telescope has already analyzed the chemistry of over 100 exoplanet atmospheres.
      But studying the atmospheres of planets the size and temperature of Earth will require new technology. Specifically, scientists need better tools to block the glare of the star a planet orbits. And in the case of an Earth-like planet, the glare would be significant: The Sun is about 10 billion times brighter than Earth — which would be more than enough to drown out our home planet’s light if viewed by a distant observer.
      NASA has two main initiatives to try overcoming this hurdle. The Roman telescope will carry a technology demonstration instrument called the Roman Coronagraph that will test new technologies for blocking starlight and making faint planets visible. At its peak performance, the coronagraph should be able to directly image a planet the size and temperature of Jupiter orbiting a star like our Sun, and at a similar distance from that star. With its microlensing survey and coronagraphic observations, Roman will reveal new details about the diversity of planetary systems, showing how common solar systems like our own may be across the galaxy.
      Additional advances in coronagraph technology will be needed to build a coronagraph that can detect a planet like Earth. NASA is working on a concept for such a mission, currently named the Habitable Worlds Observatory.
      More about ExEP, NExScI 
      NASA’s Exoplanet Exploration Program is responsible for implementing the agency’s plans for the discovery and understanding of planetary systems around nearby stars. It acts as a focal point for exoplanet science and technology and integrates cohesive strategies for future discoveries. The science operations and analysis center for ExEP is NExScI, based at IPAC, a science and data center for astrophysics and planetary science at Caltech. JPL is managed by Caltech for NASA.
      /
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2025-119
      Share
      Details
      Last Updated Sep 17, 2025 Related Terms
      Exoplanets Exoplanet Discoveries Gas Giant Exoplanets Jet Propulsion Laboratory Kepler / K2 Nancy Grace Roman Space Telescope Neptune-Like Exoplanets Super-Earth Exoplanets Terrestrial Exoplanets TESS (Transiting Exoplanet Survey Satellite) The Search for Life Explore More
      7 min read How NASA’s Roman Mission Will Unveil Our Home Galaxy Using Cosmic Dust
      Article 1 day ago 2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet
      Article 1 day ago 4 min read NASA Analysis Shows Sun’s Activity Ramping Up
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA Prelaunch News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA Science News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA/Jonny Kim NASA astronaut Zena Cardman processes bone cell samples inside the Kibo laboratory module’s Life Science Glovebox on Aug. 28, 2025, as part of an experiment that tests how microgravity affects bone-forming and bone-degrading cells and explore potential ways to prevent bone loss. This research could help protect astronauts on future long-duration missions to the Moon and Mars, while also advancing treatments for millions of people on Earth who suffer from osteoporosis.
      Image credit: NASA/Jonny Kim
      View the full article
  • Check out these Videos

×
×
  • Create New...